PYTHIA  8.317
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
FluctuatingSubCollisionModel Class Referenceabstract

#include <HISubCollisionModel.h>

Inheritance diagram for FluctuatingSubCollisionModel:
SubCollisionModel DoubleStrikmanSubCollisionModel LogNormalSubCollisionModel

Public Member Functions

 FluctuatingSubCollisionModel (int nParmIn, int modein)
 The default constructor simply lists the nucleon-nucleon cross sections.
 
virtual ~FluctuatingSubCollisionModel () override
 Virtual destructor.
 
virtual bool init (int idAIn, int idBIn, double eCMIn) override
 Virtual init method. More...
 
virtual void generateNucleonStates (Nucleus &proj, Nucleus &targ) override
 Generate radii for all nucleons. More...
 
virtual SubCollisionSet getCollisions (Nucleus &proj, Nucleus &targ) override
 Main function returning the possible sub-collisions. More...
 
SubCollisionSet getCollisionsNew (Nucleus &proj, Nucleus &targ)
 
vector< double > getCollTypeProbs (const vector< double > &T) const
 Helper function. More...
 
virtual SigEst getSig () const override
 Calculate the cross sections for the given set of parameters. More...
 
- Public Member Functions inherited from SubCollisionModel
 SubCollisionModel (int nParm)
 
virtual ~SubCollisionModel ()
 Virtual destructor.
 
void initPtr (NucleusModel &projIn, NucleusModel &targIn, SigmaTotal &sigTotIn, Settings &settingsIn, Info &infoIn, Rndm &rndmIn)
 Initialize the pointers.
 
void initLowEnergy (SigmaCombined *sigmaCombPtrIn)
 Initialize low energy treatment.
 
bool hasXSec () const
 
double sigTot () const
 The target total nucleon-nucleon cross section. More...
 
double sigEl () const
 The target elastic cross section.
 
double sigCDE () const
 The target central diffractive excitation cross section.
 
double sigSDE () const
 The target single diffractive excitation cross section (both sides).
 
double sigSDEP () const
 The target single diffractive excitation cross section (projectile).
 
double sigSDET () const
 The target single diffractive excitation cross section (target).
 
double sigDDE () const
 The target double diffractive excitation cross section.
 
double sigND () const
 The target non-diffractive (absorptive) cross section.
 
double sigLow () const
 The Low-energy cross sections.
 
double sigLExc () const
 The Low-energy excitation cross section (code 157).
 
double sigLAnn () const
 The Low-energy annihilation cross section (code 158).
 
double sigLRes () const
 The Low-energy resonant cross section (code 159).
 
double bSlope () const
 The target elastic b-slope parameter.
 
double avNDB () const
 Return the average non-diffractive impact parameter.
 
void updateSig (int idAIn, int idBIn, double eCMIn)
 Update internally stored cross sections. More...
 
double Chi2 (const SigEst &sigs, int npar) const
 Calculate the Chi2 for the given cross section estimates. More...
 
bool setKinematics (double eCMIn)
 Set beam kinematics. More...
 
bool setIDA (int idA)
 Set projectile particle.
 
bool evolve (int nGenerations, double eCM, int idANow)
 Use a genetic algorithm to fit the parameters. More...
 
int nParms () const
 Get the number of free parameters for the model.
 
void setParm (const vector< double > &parmIn)
 Set the parameters of this model.
 
vector< double > getParm () const
 Get the current parameters of this model.
 
virtual vector< double > minParm () const =0
 Get the minimum allowed parameter values for this model.
 
virtual vector< double > defParm () const =0
 Get the default parameter values for this model.
 
virtual vector< double > maxParm () const =0
 Get the maximum allowed parameter values for this model.
 

Protected Member Functions

virtual double pickRadiusProj () const =0
 Pick a radius for the nucleon, depending on the specific model.
 
virtual double pickRadiusTarg () const =0
 

Protected Attributes

int opacityMode
 Optional mode for opacity.
 
- Protected Attributes inherited from SubCollisionModel
vector< double > sigTarg
 
vector< double > sigErr
 
vector< vector< double > > sigTargNN
 
vector< double > parmSave
 Saved parameters.
 
int NInt
 
int NPop
 
double sigFuzz
 
double impactFudge
 
bool fitPrint
 
double eCMlow
 
double avNDb
 
double avNDolap
 
NucleusModelprojPtr = {}
 Info from the controlling HeavyIons object.
 
NucleusModeltargPtr = {}
 
SigmaTotalsigTotPtr = {}
 
SigmaCombinedsigCmbPtr = {}
 
SettingssettingsPtr = {}
 
InfoinfoPtr = {}
 
RndmrndmPtr = {}
 
LoggerloggerPtr = {}
 
ParticleDataparticleDataPtr = {}
 
int idASave
 For variable energies.
 
int idBSave
 
bool doVarECM
 
bool doVarBeams
 
double eMin
 
double eMax
 
double eSave
 
int eCMPts
 
vector< int > idAList
 The list of particles that have been fitted.
 
vector< LogInterpolator > * subCollParmsPtr
 
map< int, vector< LogInterpolator > > subCollParmsMap
 Mapping id -> interpolator, one entry for each particle.
 
int elasticMode
 
double elasticFudge
 
SigmaCache lowEnergyCache
 

Additional Inherited Members

- Static Public Member Functions inherited from SubCollisionModel
static shared_ptr< SubCollisionModelcreate (int model)
 Create a new SubCollisionModel of the given model. More...
 

Detailed Description

A base class for sub-collision models where each nucleon has a fluctuating "radius". The base model has two parameters, sigd and alpha, which are used for opacity calculations. Subclasses may have additional parameters to describe the radius distributions of that specific model.

Member Function Documentation

void generateNucleonStates ( Nucleus proj,
Nucleus targ 
)
overridevirtual

Generate radii for all nucleons.

Generate fluctuating radii for the nucleons in the projectile and target nuclei.

Assign two states to each nucleon.

Reimplemented from SubCollisionModel.

SubCollisionSet getCollisions ( Nucleus proj,
Nucleus targ 
)
overridevirtual

Main function returning the possible sub-collisions.

Take two nuclei and pick specific states for each nucleon, then get the corresponding sub-collisions.

The factorising S-matrix.

Go through all pairs of nucleons

First and most important, check if this is an absorptive scattering.

Now set up calculation for probability of diffractively wounded nucleons.

Finally set up calculation for elastic scattering. This can never be exact, but let's do as well as we can.

Implements SubCollisionModel.

SubCollisionSet getCollisionsNew ( Nucleus proj,
Nucleus targ 
)

Main function returning the possible sub-collisions (new version for better reproduction of inelastic cross sections).

The factorising S-matrix.

Probability of no inelastic scattering.

Go through all pairs of nucleons.

Option to include the probability that the nuclei were wounded by elastic NN scatterings. Calculate the overall probability that the AA collision was inelastic (summed over the four state combinations.

Now calculate the probability that there were inelastic NN scatterings, again summed over states.

Shuffle the difference in probabilities (note that it may be negative, so we need a fudge factor) between states and get the share of elastic NN causing inelastic AA for our primary state.

vector< double > getCollTypeProbs ( const vector< double > &  T) const

Helper function.

Helper function Given 2x2 statistically equivalent elastic amplitudes, shuffle probabilities between them so that the different probabilities for inelastic scattering are above zero and below unity for all four cases.

Return a vector with the probabilities for non-diffractive, double diffractive excitation, single projectile excitation, single target excitation, and elastic, for the main amplitude T11. Also trurn theprobability of inelastic scatterning for the four statistically equivalent amplitudes.

First calculate the differenct dSigma/d2b for the different amplitudes.

Then spread out the summed probabilities for diffractive scatterings in proportion to the available probabilities.

Finally see if there is room for elastic scatterings.

Now everything (except the elastic probability) should be fine.

SubCollisionModel::SigEst getSig ( ) const
overridevirtual

Calculate the cross sections for the given set of parameters.

Numerically estimate the NN semi-inclusive cross sections corresponding to the current parameter setting. The radii are sampled each iteration, while the integral over impact parametr is done analytaically

FPE prevention.

The random sampling of radii is a bit time-consuming. If we generate a fair amount of them from start and then randomly pick from them for each iteration, we gain a factor of more than 2 in speed.

First we pick 2x2 statistically independent radii combinations.

Calculate the total cross section.

Calculate the non-diffractive cross section and collect information about corresponding overlap and average impact parameter.

Calculate the elstic cross section.

Calculate the cross sections for wounded projectile and target.

Calculate the doubly diffracted cross section.

Calculate the elastic b-slope.

Normalise everything.

Protect from FPEs.

We don't really know how to calculate central diffraction yet.

Protect from FPEs.

Implements SubCollisionModel.

bool init ( int  idAIn,
int  idBIn,
double  eCMIn 
)
overridevirtual

Virtual init method.

DoubleStrikman uses a fluctuating and semi-transparent disk for each Nucleon in a sub-collision resulting in a fluctuating interaction probability. To assess the fluctuation each Nucleon has two random states in each collision, one main state and one helper state to assess the fluctuations.

Reimplemented from SubCollisionModel.


The documentation for this class was generated from the following files: