PYTHIA  8.313
HINucleusModel.h
1 // HINucleusModel.h is a part of the PYTHIA event generator.
2 // Copyright (C) 2025 Torbjorn Sjostrand.
3 // PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
4 // Please respect the MCnet Guidelines, see GUIDELINES for details.
5 
6 // This file contains the definition of the HIUserHooks class and a
7 // set of other classes used inside Pythia8 to model collisions
8 // involving heavy ions.
9 // Nucleon: represents a proton or a neutron inside a necleus.
10 // NucleusModel: models the Nucleon distribution in a nucleus.
11 // WoodsSaxonModel: NucleusModel implementing a simple Woods-Saxon.
12 // GLISSANDOModel: NucleusModel implementing the GLISSANDO prescription.
13 
14 #ifndef Pythia8_HINucleusModel_H
15 #define Pythia8_HINucleusModel_H
16 
17 #include "Pythia8/HIBasics.h"
18 
19 namespace Pythia8 {
20 
21 //==========================================================================
22 
23 // The Nucleon class represents a nucleon in a nucleus. It has an id
24 // number (proton or neutron) an impact parameter position (absolute
25 // and relative to the nucleus center), a status and a state to be
26 // defined and used by a SubCollisionModel.
27 
28 class Nucleon {
29 
30 public:
31 
32  // Enum for specifying the status of a nucleon.
33  enum Status : int {
34  UNWOUNDED = 0, // The nucleon is not wounded.
35  ELASTIC = 1, // The nucleon is elastically scattered.
36  DIFF = 2, // The nucleon is diffractively wounded.
37  ABS = 3 // The nucleon is absorptively wounded.
38  };
39 
40  // The state of a nucleon is a general vector of doubles.
41  typedef vector<double> State;
42 
43  // The constuctor takes a particle id and a position in impact
44  // parameter relative to the nucleus center as arguments.
45  Nucleon(int idIn = 0, int indexIn = 0, const Vec4 & pos = Vec4())
46  : idSave(idIn), indexSave(indexIn), nPosSave(pos), bPosSave(pos),
47  statusSave(UNWOUNDED), eventp(0), isDone(0) {}
48 
49  // Accessor functions:
50 
51  // The particle id of the nucleon.
52  int id() const { return idSave; }
53 
54  // The index of the nucleon in the nucleus.
55  int index() const { return indexSave; }
56 
57  // The position of this nucleon relative to the nucleus center.
58  const Vec4 & nPos() const { return nPosSave; }
59 
60  // The absolute position in impact parameter space.
61  const Vec4 & bPos() const { return bPosSave; }
62 
63  // Shift the absolute position in impact parameter space.
64  void bShift(const Vec4 & bvec) { bPosSave += bvec; }
65 
66  // The status of the nucleon.
67  Nucleon::Status status() const { return statusSave; }
68 
69  // Check if nucleon has been assigned.
70  bool done() const { return isDone; }
71 
72  // The event this nucleon is assigned to.
73  EventInfo * event() const { return eventp; }
74 
75  // The physical state of the incoming nucleon.
76  const State & state() const { return stateSave; }
77 
78  // Return an alternative state.
79  const State & altState(int i = 0) {
80  static State nullstate;
81  return i < int(altStatesSave.size())? altStatesSave[i]: nullstate;
82  }
83 
84  // Manipulating functions:
85 
86  // Set the status.
87  void status(Nucleon::Status s) { statusSave = s; }
88 
89  // Set the physical state.
90  void state(State s) { stateSave = s; }
91 
92  // Add an alternative state.
93  void addAltState(State s) { altStatesSave.push_back(s); }
94 
95  // Select an event for this nucleon.
96  void select(EventInfo & evp, Nucleon::Status s) {
97  eventp = &evp;
98  isDone = true;
99  status(s);
100  }
101 
102  // Select this nucleon to be assigned to an event.
103  void select() { isDone = true; }
104 
105  // Print out debugging information.
106  void debug();
107 
108  // Reset the states and status.
109  void reset() {
110  statusSave = UNWOUNDED;
111  altStatesSave.clear();
112  bPosSave = nPosSave;
113  isDone = false;
114  eventp = 0;
115  }
116 
117 private:
118 
119  // The type of nucleon.
120  int idSave;
121 
122  // The index of this nucleon.
123  int indexSave;
124 
125  // The position in impact parameter relative to the nucleus center.
126  Vec4 nPosSave;
127 
128  // The absolute position in impact parameter.
129  Vec4 bPosSave;
130 
131  // The status.
132  Nucleon::Status statusSave;
133 
134  // The state of this nucleon.
135  State stateSave;
136 
137  // Alternative states to be used to understand fluctuations in the
138  // state of this nucleon.
139  vector<State> altStatesSave;
140 
141  // Pointer to the event this nucleon ends up in.
142  EventInfo * eventp;
143 
144  // True if this nucleon has been assigned to an event.
145  bool isDone;
146 
147 };
148 
149 //==========================================================================
150 
151 
152 class Nucleus {
153 
154 public:
155 
156  // Default constructor.
157  Nucleus() = default;
158 
159  // Constructor with nucleons and impact parameter.
160  Nucleus(vector<Nucleon> nucleons, Vec4 bPos) : bPosSave(bPos) {
161  nucleonsSave = make_shared<vector<Nucleon>>(nucleons);
162  for (Nucleon& nucleon : *nucleonsSave) {
163  nucleon.reset();
164  nucleon.bShift(bPos);
165  }
166  }
167 
168  // Iterate over nucleons.
169  vector<Nucleon>::iterator begin() { return nucleonsSave->begin(); }
170  vector<Nucleon>::iterator end() { return nucleonsSave->end(); }
171  vector<Nucleon>::const_iterator begin() const {return nucleonsSave->begin();}
172  vector<Nucleon>::const_iterator end() const {return nucleonsSave->end();}
173 
174 private:
175 
176  // Saved nucleons and impact parameter.
177  shared_ptr<vector<Nucleon>> nucleonsSave;
178  Vec4 bPosSave;
179 
180 };
181 
182 //==========================================================================
183 
184 // This class generates the impact parameter distribution of nucleons
185 // in a nucleus.
186 
188 
189 public:
190 
191  // Default constructor giving the nucleus id and an optional
192  // radius (in femtometer).
193  NucleusModel() : isProj(true), idSave(0), ISave(0), ASave(0),
194  ZSave(0), LSave(0), RSave(0.0), settingsPtr(0),
195  rndmPtr(0) {}
196 
197  // Virtual destructor.
198  virtual ~NucleusModel() {}
199 
200  static shared_ptr<NucleusModel> create(int model);
201 
202  // Init method.
203  void initPtr(int idIn, bool isProjIn, Info& infoIn);
204  virtual bool init() { return true; }
205  virtual bool initGeometry() { return false; }
206 
207  // Set the particle id of the produced nucleus.
208  void setParticle(int idIn);
209 
210  // Set (new) nucleon momentum.
211  virtual void setPN(const Vec4 & pNIn) { pNSave = pNIn; }
212 
213  // Set (new) effective nucleon mass.
214  virtual void setMN(double mNIn) { mNSave = mNIn; }
215 
216  // Produce an instance of the incoming nucleon.
217  virtual Particle produceIon();
218 
219  // Generate a vector of nucleons according to the implemented model
220  // for a nucleus given by the PDG number.
221  virtual vector<Nucleon> generate() const = 0;
222 
223  // Accessor functions.
224  int id() const { return idSave; }
225  int I() const { return ISave; }
226  int A() const { return ASave; }
227  int Z() const { return ZSave; }
228  int L() const { return LSave; }
229  double R() const { return RSave; }
230 
231  int idN() const { return idNSave; }
232  const Vec4 & pN() const { return pNSave; }
233  double mN() const { return mNSave; }
234 
235 protected:
236 
237  // Projectile or target.
238  bool isProj;
239 
240  // The nucleus.
241  int idSave;
242 
243  // Cache information about the nucleus.
244  int ISave, ASave, ZSave, LSave;
245 
246  // The estimate of the nucleus radius.
247  double RSave;
248 
249  // The mass of the nucleus and its nucleons.
250  double mSave{};
251 
252  // The nucleon beam momentum.
253  Vec4 pNSave{};
254 
255  // The effective nucleon mass.
256  double mNSave{};
257 
258  int idNSave = 2212;
259 
260  // Pointers to useful objects.
262  Settings* settingsPtr;
263  Rndm* rndmPtr;
264  Logger* loggerPtr;
265 
266 };
267 
268 //==========================================================================
269 
270 // A nucleus model defined by an external file to be read in, containing
271 // x,y,z coordinates of the nucleons.
272 
274 
275 public:
276 
277  // Default constructor.
278  ExternalNucleusModel() : fName(""), doShuffle(true), nUsed(0) {}
279 
280  // Initialize class. Read in file to buffer.
281  bool init() override;
282 
283  // Generate a vector of nucleons according to the implemented model
284  // for a nucleus given by the PDG number.
285  vector<Nucleon> generate() const override;
286 
287 private:
288 
289  // The filename to read from.
290  string fName;
291 
292  // Shuffle configurations.
293  bool doShuffle;
294 
295  // The read nucleon configurations. Time component is always zero.
296  mutable vector<vector<Vec4> > nucleonPositions;
297 
298  // The number of configurations used so far.
299  mutable size_t nUsed;
300 
301 };
302 
303 //==========================================================================
304 
305 // A NucleusModel which allows for a hard core, optionally a Gaussian
306 // hard core. This is an abstract class intended as a base class for
307 // models with this functionality.
308 
309 class HardCoreModel : public NucleusModel {
310 
311 public:
312 
313  // Default constructor.
314  HardCoreModel() : useHardCore(), gaussHardCore(), hardCoreRadius(0.9) {}
315 
316  // Virtual destructor.
317  virtual ~HardCoreModel() {}
318 
319  // Initialize the parameters for hard core generation.
320  // To be called in init() in derived classes.
321  void initHardCore();
322 
323  // Get the radius of the hard core. If using a Gaussian hard core, the
324  // radius is distributed according to a 1D Gaussian.
325  double rSample() const {
326  if (gaussHardCore) return hardCoreRadius * abs(rndmPtr->gauss());
327  return hardCoreRadius;}
328 
329 protected:
330 
331  // Use the hard core or not.
333 
334  // Use a Gaussian hard core.
336 
337  // The radius or width of the hard core.
339 
340 };
341 
342 //==========================================================================
343 
344 // A general Woods-Saxon distributed nucleus.
345 
347 
348 public:
349 
350  // Virtual destructor.
351  virtual ~WoodsSaxonModel() {}
352 
353  // The default constructor needs a nucleus id, a radius, R, and a
354  // "skin width", a (both length in femtometers).
355  WoodsSaxonModel(): aSave(0.0), intlo(0.0),
356  inthi0(0.0), inthi1(0.0), inthi2(0.0) {}
357 
358  // Initialize parameters.
359  bool init() override;
360  bool initGeometry() override;
361 
362  // Generate all the nucleons.
363  vector<Nucleon> generate() const override;
364 
365  // Accessor functions.
366  double a() const { return aSave; }
367 
368 protected:
369 
370  // Generate the position of a single nucleon. (The time component
371  // is always zero).
372  Vec4 generateNucleon() const;
373 
374  // Calculate overestimates for sampling.
375  void overestimates() {
376  intlo = R()*R()*R()/3.0;
377  inthi0 = a()*R()*R();
378  inthi1 = 2.0*a()*a()*R();
379  inthi2 = 2.0*a()*a()*a();
380  }
381 
382 protected:
383 
384  // The nucleus radius, skin depth parameter, and hard core nucleon radius.
385  double aSave;
386 
387 private:
388 
389  // Cashed integrals over the different parts of the over estimating
390  // functions.
391  double intlo, inthi0, inthi1, inthi2;
392 
393 };
394 
395 
396 //==========================================================================
397 
398 // The GLISSANDOModel is a specific parameterization of a Woods-Saxon
399 // potential for A>16. It is described in arXiv:1310.5475 [nucl-th].
400 
402 
403 public:
404 
405  // Default constructor.
407 
408  // Virtual destructor.
409  virtual ~GLISSANDOModel() {}
410 
411  // Initialize.
412  bool init() override;
413  bool initGeometry() override;
414 
415 };
416 
417 //==========================================================================
418 
419 // A Harmonic-Oscillator Shell model for light nuclei.
420 
421 class HOShellModel : public HardCoreModel {
422 
423 public:
424 
425  // Default constructor.
426  HOShellModel(): nucleusChR(), protonChR(), C2() {}
427 
428  // Destructor.
429  virtual ~HOShellModel() {}
430 
431  // Initialize, set up parameters.
432  virtual bool init() override;
433 
434  // Generate a vector of nucleons according to the implemented model
435  // for a nucleus given by the PDG number.
436  virtual vector<Nucleon> generate() const override;
437 
438 protected:
439 
440  // Generate the position of a single nucleon. (The time component
441  // is always zero).
442  virtual Vec4 generateNucleon() const;
443 
444  // The density function.
445  double rho(double r) const {
446  double pref = 4./(pow(sqrt(M_PI * C2),3)) * (1 + (A() - 4.)/6. * r*r/C2);
447  return pref * exp(-r*r / C2);
448  };
449 
450  // Nucleus charge radius.
451  double nucleusChR;
452 
453  // Nucleon charge radius.
454  double protonChR;
455 
456  // C2 parameter.
457  double C2;
458 
459  // Maximum rho for these parameters.
460  double rhoMax;
461 
462 };
463 
464 //==========================================================================
465 
466 // The Hulthen potential for deuterons.
467 
468 class HulthenModel : public NucleusModel {
469 
470 public:
471 
472  // Default constructor.
473  HulthenModel(): hA(), hB() {}
474 
475  // Virtual destructor.
476  virtual ~HulthenModel() {}
477 
478  virtual bool init() override;
479 
480  // Generate a vector of nucleons according to the Hulthen potential.
481  virtual vector<Nucleon> generate() const override;
482 
483 protected:
484 
485  // The (normalized) density function.
486  double rho(double r) const {
487  double pref = (2*hA*hB*(hA + hB))/pow2(hA - hB);
488  double exps = exp(-2.*hA*r) + exp(-2.*hB*r) - 2.*exp(-(hA+hB)*r);
489  return pref * exps;
490  };
491 
492  // Parameters of the Hulthen model.
493  double hA;
494  double hB;
495 
496 };
497 
498 //==========================================================================
499 
500 // A Gaussian distribution for light nuclei.
501 
502 class GaussianModel : public HardCoreModel {
503 
504 public:
505 
506  // Default constructor.
507  GaussianModel(): nucleusChR() {}
508 
509  // Destructor.
510  virtual ~GaussianModel() {}
511 
512  virtual bool init() override;
513 
514  // Generate a vector of nucleons according to the implemented model
515  // for a nucleus given by the PDG number.
516  virtual vector<Nucleon> generate() const override;
517 
518 protected:
519 
520  // Generate the position of a single nucleon. (The time component
521  // is always zero).
522  virtual Vec4 generateNucleon() const;
523 
524  // Nucleus charge radius.
525  double nucleusChR;
526 
527 };
528 
529 //==========================================================================
530 
531 // A model for nuclei clustered in smaller nuclei.
532 
533 class ClusterModel : public HardCoreModel {
534 
535 public:
536 
537  // Contructor.
539 
540  // Virtual destructor.
541  virtual ~ClusterModel() {}
542 
543  // Initialize parameters.
544  virtual bool init() override;
545 
546  // Generate a vector of nucleons. Note that this model
547  // is only implemented for XX, YY ZZ.
548  virtual vector<Nucleon> generate() const override;
549 
550 private:
551 
552  // The model to generate clusters from.
553  unique_ptr<NucleusModel> nModelPtr;
554 
555 };
556 
557 //==========================================================================
558 
559 } // end namespace Pythia8
560 
561 #endif // Pythia8_HINucleusModel_H
Z0 Z(f is quark or lepton).*/ void Sigma1ffbar2gmZZprime
Initialize process.
Definition: SigmaNewGaugeBosons.cc:110
constexpr double pow2(const double &x)
Powers of small integers - for balance speed/code clarity.
Definition: PythiaStdlib.h:182
double rho(double r) const
The (normalized) density function.
Definition: HINucleusModel.h:486
GLISSANDOModel()
Default constructor.
Definition: HINucleusModel.h:406
double nucleusChR
Nucleus charge radius.
Definition: HINucleusModel.h:448
double a() const
Accessor functions.
Definition: HINucleusModel.h:366
Definition: Info.h:45
bool done() const
Check if nucleon has been assigned.
Definition: HINucleusModel.h:70
virtual ~HardCoreModel()
Virtual destructor.
Definition: HINucleusModel.h:317
void reset()
Reset the states and status.
Definition: HINucleusModel.h:109
A general Woods-Saxon distributed nucleus.
Definition: HINucleusModel.h:346
double hA
Parameters of the Hulthen model.
Definition: HINucleusModel.h:490
Definition: HINucleusModel.h:152
double RSave
The estimate of the nucleus radius.
Definition: HINucleusModel.h:247
void overestimates()
Calculate overestimates for sampling.
Definition: HINucleusModel.h:375
vector< Nucleon >::iterator begin()
Iterate over nucleons.
Definition: HINucleusModel.h:169
The Hulthen potential for deuterons.
Definition: HINucleusModel.h:468
HardCoreModel()
Default constructor.
Definition: HINucleusModel.h:314
vector< double > State
The state of a nucleon is a general vector of doubles.
Definition: HINucleusModel.h:41
bool gaussHardCore
Use a Gaussian hard core.
Definition: HINucleusModel.h:335
virtual ~HOShellModel()
Destructor.
Definition: HINucleusModel.h:429
const Vec4 & bPos() const
The absolute position in impact parameter space.
Definition: HINucleusModel.h:61
Definition: HINucleusModel.h:28
Definition: HINucleusModel.h:187
const Vec4 & nPos() const
The position of this nucleon relative to the nucleus center.
Definition: HINucleusModel.h:58
GaussianModel()
Default constructor.
Definition: HINucleusModel.h:507
int index() const
The index of the nucleon in the nucleus.
Definition: HINucleusModel.h:55
Definition: Logger.h:23
double protonChR
Nucleon charge radius.
Definition: HINucleusModel.h:454
virtual void setPN(const Vec4 &pNIn)
Set (new) nucleon momentum.
Definition: HINucleusModel.h:211
const State & altState(int i=0)
Return an alternative state.
Definition: HINucleusModel.h:79
EventInfo * event() const
The event this nucleon is assigned to.
Definition: HINucleusModel.h:73
Definition: HINucleusModel.h:401
Nucleus(vector< Nucleon > nucleons, Vec4 bPos)
Constructor with nucleons and impact parameter.
Definition: HINucleusModel.h:160
HOShellModel()
Default constructor.
Definition: HINucleusModel.h:426
bool useHardCore
Use the hard core or not.
Definition: HINucleusModel.h:332
A Gaussian distribution for light nuclei.
Definition: HINucleusModel.h:502
Definition: Basics.h:388
The nucleon is not wounded.
Definition: HINucleusModel.h:35
bool isProj
Projectile or target.
Definition: HINucleusModel.h:238
A Harmonic-Oscillator Shell model for light nuclei.
Definition: HINucleusModel.h:421
double rho(double r) const
The density function.
Definition: HINucleusModel.h:445
The nucleon is diffractively wounded.
Definition: HINucleusModel.h:37
double aSave
The nucleus radius, skin depth parameter, and hard core nucleon radius.
Definition: HINucleusModel.h:385
virtual void setMN(double mNIn)
Set (new) effective nucleon mass.
Definition: HINucleusModel.h:214
The nucleon is elastically scattered.
Definition: HINucleusModel.h:36
double hardCoreRadius
The radius or width of the hard core.
Definition: HINucleusModel.h:338
Info * infoPtr
Pointers to useful objects.
Definition: HINucleusModel.h:261
int idSave
The nucleus.
Definition: HINucleusModel.h:241
int id() const
Accessor functions:
Definition: HINucleusModel.h:52
Definition: Event.h:32
ExternalNucleusModel()
Default constructor.
Definition: HINucleusModel.h:278
void debug()
Print out debugging information.
Definition: HINucleusModel.cc:23
int ISave
Cache information about the nucleus.
Definition: HINucleusModel.h:244
void state(State s)
Set the physical state.
Definition: HINucleusModel.h:90
virtual ~GaussianModel()
Destructor.
Definition: HINucleusModel.h:510
void select()
Select this nucleon to be assigned to an event.
Definition: HINucleusModel.h:103
Status
Enum for specifying the status of a nucleon.
Definition: HINucleusModel.h:33
Class for storing Events and Info objects.
Definition: HIBasics.h:25
int id() const
Accessor functions.
Definition: HINucleusModel.h:224
void select(EventInfo &evp, Nucleon::Status s)
Select an event for this nucleon.
Definition: HINucleusModel.h:96
virtual ~NucleusModel()
Virtual destructor.
Definition: HINucleusModel.h:198
Definition: HINucleusModel.h:273
double rSample() const
Definition: HINucleusModel.h:325
void addAltState(State s)
Add an alternative state.
Definition: HINucleusModel.h:93
Nucleon::Status status() const
The status of the nucleon.
Definition: HINucleusModel.h:67
WoodsSaxonModel()
Definition: HINucleusModel.h:355
void bShift(const Vec4 &bvec)
Shift the absolute position in impact parameter space.
Definition: HINucleusModel.h:64
NucleusModel()
Definition: HINucleusModel.h:193
HulthenModel()
Default constructor.
Definition: HINucleusModel.h:473
double rhoMax
Maximum rho for these parameters.
Definition: HINucleusModel.h:460
Header for classes to set beam momentum and interaction vertex spread.
Definition: Analysis.h:20
const State & state() const
The physical state of the incoming nucleon.
Definition: HINucleusModel.h:76
void status(Nucleon::Status s)
Manipulating functions:
Definition: HINucleusModel.h:87
Nucleon(int idIn=0, int indexIn=0, const Vec4 &pos=Vec4())
Definition: HINucleusModel.h:45
virtual ~HulthenModel()
Virtual destructor.
Definition: HINucleusModel.h:476
double nucleusChR
Nucleus charge radius.
Definition: HINucleusModel.h:525
A model for nuclei clustered in smaller nuclei.
Definition: HINucleusModel.h:533
double C2
C2 parameter.
Definition: HINucleusModel.h:457
Definition: HINucleusModel.h:309
virtual ~GLISSANDOModel()
Virtual destructor.
Definition: HINucleusModel.h:409
Definition: Basics.h:32
virtual ~WoodsSaxonModel()
Virtual destructor.
Definition: HINucleusModel.h:351
virtual ~ClusterModel()
Virtual destructor.
Definition: HINucleusModel.h:541
Definition: Settings.h:196
ClusterModel()
Contructor.
Definition: HINucleusModel.h:538