PYTHIA  8.311
HINucleusModel.h
1 // HINucleusModel.h is a part of the PYTHIA event generator.
2 // Copyright (C) 2024 Torbjorn Sjostrand.
3 // PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
4 // Please respect the MCnet Guidelines, see GUIDELINES for details.
5 
6 // This file contains the definition of the HIUserHooks class and a
7 // set of other classes used inside Pythia8 to model collisions
8 // involving heavy ions.
9 // Nucleon: represents a proton or a neutron inside a necleus.
10 // NucleusModel: models the Nucleon distribution in a nucleus.
11 // WoodsSaxonModel: NucleusModel implementing a simple Woods-Saxon.
12 // GLISSANDOModel: NucleusModel implementing the GLISSANDO prescription.
13 
14 #ifndef Pythia8_HINucleusModel_H
15 #define Pythia8_HINucleusModel_H
16 
17 #include "Pythia8/HIBasics.h"
18 
19 namespace Pythia8 {
20 
21 //==========================================================================
22 
23 // The Nucleon class represents a nucleon in a nucleus. It has an id
24 // number (proton or neutron) an impact parameter position (absolute
25 // and relative to the nucleus center), a status and a state to be
26 // defined and used by a SubCollisionModel.
27 
28 class Nucleon {
29 
30 public:
31 
32  // Enum for specifying the status of a nucleon.
33  enum Status : int {
34  UNWOUNDED = 0, // The nucleon is not wounded.
35  ELASTIC = 1, // The nucleon is elastically scattered.
36  DIFF = 2, // The nucleon is diffractively wounded.
37  ABS = 3 // The nucleon is absorptively wounded.
38  };
39 
40  // The state of a nucleon is a general vector of doubles.
41  typedef vector<double> State;
42 
43  // The constuctor takes a particle id and a position in impact
44  // parameter relative to the nucleus center as arguments.
45  Nucleon(int idIn = 0, int indexIn = 0, const Vec4 & pos = Vec4())
46  : idSave(idIn), indexSave(indexIn), nPosSave(pos), bPosSave(pos),
47  statusSave(UNWOUNDED), eventp(0), isDone(0) {}
48 
49  // Accessor functions:
50 
51  // The particle id of the nucleon.
52  int id() const { return idSave; }
53 
54  // The index of the nucleon in the nucleus.
55  int index() const { return indexSave; }
56 
57  // The position of this nucleon relative to the nucleus center.
58  const Vec4 & nPos() const { return nPosSave; }
59 
60  // The absolute position in impact parameter space.
61  const Vec4 & bPos() const { return bPosSave; }
62 
63  // Shift the absolute position in impact parameter space.
64  void bShift(const Vec4 & bvec) { bPosSave += bvec; }
65 
66  // The status of the nucleon.
67  Nucleon::Status status() const { return statusSave; }
68 
69  // Check if nucleon has been assigned.
70  bool done() const { return isDone; }
71 
72  // The event this nucleon is assigned to.
73  EventInfo * event() const { return eventp; }
74 
75  // The physical state of the incoming nucleon.
76  const State & state() const { return stateSave; }
77 
78  // Return an alternative state.
79  const State & altState(int i = 0) {
80  static State nullstate;
81  return i < int(altStatesSave.size())? altStatesSave[i]: nullstate;
82  }
83 
84  // Manipulating functions:
85 
86  // Set the status.
87  void status(Nucleon::Status s) { statusSave = s; }
88 
89  // Set the physical state.
90  void state(State s) { stateSave = s; }
91 
92  // Add an alternative state.
93  void addAltState(State s) { altStatesSave.push_back(s); }
94 
95  // Select an event for this nucleon.
96  void select(EventInfo & evp, Nucleon::Status s) {
97  eventp = &evp;
98  isDone = true;
99  status(s);
100  }
101 
102  // Select this nucleon to be assigned to an event.
103  void select() { isDone = true; }
104 
105  // Print out debugging information.
106  void debug();
107 
108  // Reset the states and status.
109  void reset() {
110  statusSave = UNWOUNDED;
111  altStatesSave.clear();
112  bPosSave = nPosSave;
113  isDone = false;
114  eventp = 0;
115  }
116 
117 private:
118 
119  // The type of nucleon.
120  int idSave;
121 
122  // The index of this nucleon.
123  int indexSave;
124 
125  // The position in impact parameter relative to the nucleus center.
126  Vec4 nPosSave;
127 
128  // The absolute position in impact parameter.
129  Vec4 bPosSave;
130 
131  // The status.
132  Nucleon::Status statusSave;
133 
134  // The state of this nucleon.
135  State stateSave;
136 
137  // Alternative states to be used to understand fluctuations in the
138  // state of this nucleon.
139  vector<State> altStatesSave;
140 
141  // Pointer to the event this nucleon ends up in.
142  EventInfo * eventp;
143 
144  // True if this nucleon has been assigned to an event.
145  bool isDone;
146 
147 };
148 
149 //==========================================================================
150 
151 
152 class Nucleus {
153 
154 public:
155 
156  // Default constructor.
157  Nucleus() = default;
158 
159  // Constructor with nucleons and impact parameter.
160  Nucleus(vector<Nucleon> nucleons, Vec4 bPos) : bPosSave(bPos) {
161  nucleonsSave = make_shared<vector<Nucleon>>(nucleons);
162  for (Nucleon& nucleon : *nucleonsSave) {
163  nucleon.reset();
164  nucleon.bShift(bPos);
165  }
166  }
167 
168  // Iterate over nucleons.
169  vector<Nucleon>::iterator begin() { return nucleonsSave->begin(); }
170  vector<Nucleon>::iterator end() { return nucleonsSave->end(); }
171  vector<Nucleon>::const_iterator begin() const {return nucleonsSave->begin();}
172  vector<Nucleon>::const_iterator end() const {return nucleonsSave->end();}
173 
174 private:
175 
176  // Saved nucleons and impact parameter.
177  shared_ptr<vector<Nucleon>> nucleonsSave;
178  Vec4 bPosSave;
179 
180 };
181 
182 //==========================================================================
183 
184 // This class generates the impact parameter distribution of nucleons
185 // in a nucleus.
186 
188 
189 public:
190 
191  // Default constructor giving the nucleus id and an optional
192  // radius (in femtometer).
193  NucleusModel() : isProj(true), idSave(0), ISave(0), ASave(0),
194  ZSave(0), LSave(0), RSave(0.0), settingsPtr(0),
195  rndmPtr(0) {}
196 
197  // Virtual destructor.
198  virtual ~NucleusModel() {}
199 
200  static shared_ptr<NucleusModel> create(int model);
201 
202  // Init method.
203  void initPtr(int idIn, bool isProjIn, Info& infoIn);
204  virtual bool init() { return true; }
205 
206  // Set (new) nucleon momentum.
207  virtual void setPN(const Vec4 & pNIn) { pNSave = pNIn; }
208 
209  // Produce an instance of the incoming nucleon.
210  virtual Particle produceIon();
211 
212  // Generate a vector of nucleons according to the implemented model
213  // for a nucleus given by the PDG number.
214  virtual vector<Nucleon> generate() const = 0;
215 
216  // Accessor functions.
217  int id() const { return idSave; }
218  int I() const { return ISave; }
219  int A() const { return ASave; }
220  int Z() const { return ZSave; }
221  int L() const { return LSave; }
222  double R() const { return RSave; }
223 
224 protected:
225 
226  // Projectile or target.
227  bool isProj;
228 
229  // The nucleus.
230  int idSave;
231 
232  // Cache information about the nucleus.
233  int ISave, ASave, ZSave, LSave;
234 
235  // The estimate of the nucleus radius.
236  double RSave;
237 
238  // The mass of the nucleus and its nucleons.
239  double mSave{};
240 
241  // The nucleon beam momentum.
242  Vec4 pNSave{};
243 
244  // Pointers to useful objects.
246  Settings* settingsPtr;
247  Rndm* rndmPtr;
248  Logger* loggerPtr;
249 
250 };
251 
252 //==========================================================================
253 
254 // A nucleus model defined by an external file to be read in, containing
255 // x,y,z coordinates of the nucleons.
256 
258 
259 public:
260 
261  // Default constructor.
262  ExternalNucleusModel() : fName(""), doShuffle(true), nUsed(0) {}
263 
264  // Initialize class. Read in file to buffer.
265  bool init() override;
266 
267  // Generate a vector of nucleons according to the implemented model
268  // for a nucleus given by the PDG number.
269  vector<Nucleon> generate() const override;
270 
271 private:
272 
273  // The filename to read from.
274  string fName;
275 
276  // Shuffle configurations.
277  bool doShuffle;
278 
279  // The read nucleon configurations. Time component is always zero.
280  mutable vector<vector<Vec4> > nucleonPositions;
281 
282  // The number of configurations used so far.
283  mutable size_t nUsed;
284 
285 };
286 
287 //==========================================================================
288 
289 // A NucleusModel which allows for a hard core, optionally a Gaussian
290 // hard core. This is an abstract class intended as a base class for
291 // models with this functionality.
292 
293 class HardCoreModel : public NucleusModel {
294 
295 public:
296 
297  // Default constructor.
298  HardCoreModel() : useHardCore(), gaussHardCore(), hardCoreRadius(0.9) {}
299 
300  // Virtual destructor.
301  virtual ~HardCoreModel() {}
302 
303  // Initialize the parameters for hard core generation.
304  // To be called in init() in derived classes.
305  void initHardCore();
306 
307  // Get the radius of the hard core. If using a Gaussian hard core, the
308  // radius is distributed according to a 1D Gaussian.
309  double rSample() const {
310  if (gaussHardCore) return hardCoreRadius * abs(rndmPtr->gauss());
311  return hardCoreRadius;}
312 
313 protected:
314 
315  // Use the hard core or not.
317 
318  // Use a Gaussian hard core.
320 
321  // The radius or width of the hard core.
323 
324 };
325 
326 //==========================================================================
327 
328 // A general Woods-Saxon distributed nucleus.
329 
331 
332 public:
333 
334  // Virtual destructor.
335  virtual ~WoodsSaxonModel() {}
336 
337  // The default constructor needs a nucleus id, a radius, R, and a
338  // "skin width", a (both length in femtometers).
339  WoodsSaxonModel(): aSave(0.0), intlo(0.0),
340  inthi0(0.0), inthi1(0.0), inthi2(0.0) {}
341 
342  // Initialize parameters.
343  bool init() override;
344 
345  // Generate all the nucleons.
346  vector<Nucleon> generate() const override;
347 
348  // Accessor functions.
349  double a() const { return aSave; }
350 
351 protected:
352 
353  // Generate the position of a single nucleon. (The time component
354  // is always zero).
355  Vec4 generateNucleon() const;
356 
357  // Calculate overestimates for sampling.
358  void overestimates() {
359  intlo = R()*R()*R()/3.0;
360  inthi0 = a()*R()*R();
361  inthi1 = 2.0*a()*a()*R();
362  inthi2 = 2.0*a()*a()*a();
363  }
364 
365 protected:
366 
367  // The nucleus radius, skin depth parameter, and hard core nucleon radius.
368  double aSave;
369 
370 private:
371 
372  // Cashed integrals over the different parts of the over estimating
373  // functions.
374  double intlo, inthi0, inthi1, inthi2;
375 
376 };
377 
378 
379 //==========================================================================
380 
381 // The GLISSANDOModel is a specific parameterization of a Woods-Saxon
382 // potential for A>16. It is described in arXiv:1310.5475 [nucl-th].
383 
385 
386 public:
387 
388  // Default constructor.
390 
391  // Virtual destructor.
392  virtual ~GLISSANDOModel() {}
393 
394  // Initialize.
395  bool init() override;
396 
397 };
398 
399 //==========================================================================
400 
401 // A Harmonic-Oscillator Shell model for light nuclei.
402 
403 class HOShellModel : public HardCoreModel {
404 
405 public:
406 
407  // Default constructor.
408  HOShellModel(): nucleusChR(), protonChR(), C2() {}
409 
410  // Destructor.
411  virtual ~HOShellModel() {}
412 
413  // Initialize, set up parameters.
414  virtual bool init() override;
415 
416  // Generate a vector of nucleons according to the implemented model
417  // for a nucleus given by the PDG number.
418  virtual vector<Nucleon> generate() const override;
419 
420 protected:
421 
422  // Generate the position of a single nucleon. (The time component
423  // is always zero).
424  virtual Vec4 generateNucleon() const;
425 
426  // The density function.
427  double rho(double r) const {
428  double pref = 4./(pow(sqrt(M_PI * C2),3)) * (1 + (A() - 4.)/6. * r*r/C2);
429  return pref * exp(-r*r / C2);
430  };
431 
432  // Nucleus charge radius.
433  double nucleusChR;
434 
435  // Nucleon charge radius.
436  double protonChR;
437 
438  // C2 parameter.
439  double C2;
440 
441  // Maximum rho for these parameters.
442  double rhoMax;
443 
444 };
445 
446 //==========================================================================
447 
448 // The Hulthen potential for deuterons.
449 
450 class HulthenModel : public NucleusModel {
451 
452 public:
453 
454  // Default constructor.
455  HulthenModel(): hA(), hB() {}
456 
457  // Virtual destructor.
458  virtual ~HulthenModel() {}
459 
460  virtual bool init() override;
461 
462  // Generate a vector of nucleons according to the Hulthen potential.
463  virtual vector<Nucleon> generate() const override;
464 
465 protected:
466 
467  // The (normalized) density function.
468  double rho(double r) const {
469  double pref = (2*hA*hB*(hA + hB))/pow2(hA - hB);
470  double exps = exp(-2.*hA*r) + exp(-2.*hB*r) - 2.*exp(-(hA+hB)*r);
471  return pref * exps;
472  };
473 
474  // Parameters of the Hulthen model.
475  double hA;
476  double hB;
477 
478 };
479 
480 //==========================================================================
481 
482 // A Gaussian distribution for light nuclei.
483 
484 class GaussianModel : public HardCoreModel {
485 
486 public:
487 
488  // Default constructor.
489  GaussianModel(): nucleusChR() {}
490 
491  // Destructor.
492  virtual ~GaussianModel() {}
493 
494  virtual bool init() override;
495 
496  // Generate a vector of nucleons according to the implemented model
497  // for a nucleus given by the PDG number.
498  virtual vector<Nucleon> generate() const override;
499 
500 protected:
501 
502  // Generate the position of a single nucleon. (The time component
503  // is always zero).
504  virtual Vec4 generateNucleon() const;
505 
506  // Nucleus charge radius.
507  double nucleusChR;
508 
509 };
510 
511 //==========================================================================
512 
513 // A model for nuclei clustered in smaller nuclei.
514 
515 class ClusterModel : public HardCoreModel {
516 
517 public:
518 
519  // Contructor.
521 
522  // Virtual destructor.
523  virtual ~ClusterModel() {}
524 
525  // Initialize parameters.
526  virtual bool init() override;
527 
528  // Generate a vector of nucleons. Note that this model
529  // is only implemented for XX, YY ZZ.
530  virtual vector<Nucleon> generate() const override;
531 
532 private:
533 
534  // The model to generate clusters from.
535  unique_ptr<NucleusModel> nModelPtr;
536 
537 };
538 
539 //==========================================================================
540 
541 } // end namespace Pythia8
542 
543 #endif // Pythia8_HINucleusModel_H
Z0 Z(f is quark or lepton).*/ void Sigma1ffbar2gmZZprime
Initialize process.
Definition: SigmaNewGaugeBosons.cc:110
constexpr double pow2(const double &x)
Powers of small integers - for balance speed/code clarity.
Definition: PythiaStdlib.h:182
double rho(double r) const
The (normalized) density function.
Definition: HINucleusModel.h:468
GLISSANDOModel()
Default constructor.
Definition: HINucleusModel.h:389
double nucleusChR
Nucleus charge radius.
Definition: HINucleusModel.h:430
double a() const
Accessor functions.
Definition: HINucleusModel.h:349
Definition: Info.h:45
bool done() const
Check if nucleon has been assigned.
Definition: HINucleusModel.h:70
virtual ~HardCoreModel()
Virtual destructor.
Definition: HINucleusModel.h:301
void reset()
Reset the states and status.
Definition: HINucleusModel.h:109
A general Woods-Saxon distributed nucleus.
Definition: HINucleusModel.h:330
double hA
Parameters of the Hulthen model.
Definition: HINucleusModel.h:472
Definition: HINucleusModel.h:152
double RSave
The estimate of the nucleus radius.
Definition: HINucleusModel.h:236
void overestimates()
Calculate overestimates for sampling.
Definition: HINucleusModel.h:358
vector< Nucleon >::iterator begin()
Iterate over nucleons.
Definition: HINucleusModel.h:169
The Hulthen potential for deuterons.
Definition: HINucleusModel.h:450
HardCoreModel()
Default constructor.
Definition: HINucleusModel.h:298
vector< double > State
The state of a nucleon is a general vector of doubles.
Definition: HINucleusModel.h:41
bool gaussHardCore
Use a Gaussian hard core.
Definition: HINucleusModel.h:319
virtual ~HOShellModel()
Destructor.
Definition: HINucleusModel.h:411
const Vec4 & bPos() const
The absolute position in impact parameter space.
Definition: HINucleusModel.h:61
Definition: HINucleusModel.h:28
Definition: HINucleusModel.h:187
const Vec4 & nPos() const
The position of this nucleon relative to the nucleus center.
Definition: HINucleusModel.h:58
GaussianModel()
Default constructor.
Definition: HINucleusModel.h:489
int index() const
The index of the nucleon in the nucleus.
Definition: HINucleusModel.h:55
Definition: Logger.h:23
double protonChR
Nucleon charge radius.
Definition: HINucleusModel.h:436
virtual void setPN(const Vec4 &pNIn)
Set (new) nucleon momentum.
Definition: HINucleusModel.h:207
const State & altState(int i=0)
Return an alternative state.
Definition: HINucleusModel.h:79
EventInfo * event() const
The event this nucleon is assigned to.
Definition: HINucleusModel.h:73
Definition: HINucleusModel.h:384
Nucleus(vector< Nucleon > nucleons, Vec4 bPos)
Constructor with nucleons and impact parameter.
Definition: HINucleusModel.h:160
HOShellModel()
Default constructor.
Definition: HINucleusModel.h:408
bool useHardCore
Use the hard core or not.
Definition: HINucleusModel.h:316
A Gaussian distribution for light nuclei.
Definition: HINucleusModel.h:484
Definition: Basics.h:385
The nucleon is not wounded.
Definition: HINucleusModel.h:35
bool isProj
Projectile or target.
Definition: HINucleusModel.h:227
A Harmonic-Oscillator Shell model for light nuclei.
Definition: HINucleusModel.h:403
double rho(double r) const
The density function.
Definition: HINucleusModel.h:427
The nucleon is diffractively wounded.
Definition: HINucleusModel.h:37
double aSave
The nucleus radius, skin depth parameter, and hard core nucleon radius.
Definition: HINucleusModel.h:368
The nucleon is elastically scattered.
Definition: HINucleusModel.h:36
double hardCoreRadius
The radius or width of the hard core.
Definition: HINucleusModel.h:322
Info * infoPtr
Pointers to useful objects.
Definition: HINucleusModel.h:245
int idSave
The nucleus.
Definition: HINucleusModel.h:230
int id() const
Accessor functions:
Definition: HINucleusModel.h:52
Definition: Event.h:32
ExternalNucleusModel()
Default constructor.
Definition: HINucleusModel.h:262
void debug()
Print out debugging information.
Definition: HINucleusModel.cc:23
int ISave
Cache information about the nucleus.
Definition: HINucleusModel.h:233
void state(State s)
Set the physical state.
Definition: HINucleusModel.h:90
virtual ~GaussianModel()
Destructor.
Definition: HINucleusModel.h:492
void select()
Select this nucleon to be assigned to an event.
Definition: HINucleusModel.h:103
Status
Enum for specifying the status of a nucleon.
Definition: HINucleusModel.h:33
Class for storing Events and Info objects.
Definition: HIBasics.h:47
int id() const
Accessor functions.
Definition: HINucleusModel.h:217
void select(EventInfo &evp, Nucleon::Status s)
Select an event for this nucleon.
Definition: HINucleusModel.h:96
virtual ~NucleusModel()
Virtual destructor.
Definition: HINucleusModel.h:198
Definition: HINucleusModel.h:257
double rSample() const
Definition: HINucleusModel.h:309
void addAltState(State s)
Add an alternative state.
Definition: HINucleusModel.h:93
Nucleon::Status status() const
The status of the nucleon.
Definition: HINucleusModel.h:67
WoodsSaxonModel()
Definition: HINucleusModel.h:339
void bShift(const Vec4 &bvec)
Shift the absolute position in impact parameter space.
Definition: HINucleusModel.h:64
NucleusModel()
Definition: HINucleusModel.h:193
HulthenModel()
Default constructor.
Definition: HINucleusModel.h:455
double rhoMax
Maximum rho for these parameters.
Definition: HINucleusModel.h:442
Header for classes to set beam momentum and interaction vertex spread.
Definition: Analysis.h:20
const State & state() const
The physical state of the incoming nucleon.
Definition: HINucleusModel.h:76
void status(Nucleon::Status s)
Manipulating functions:
Definition: HINucleusModel.h:87
Nucleon(int idIn=0, int indexIn=0, const Vec4 &pos=Vec4())
Definition: HINucleusModel.h:45
virtual ~HulthenModel()
Virtual destructor.
Definition: HINucleusModel.h:458
double nucleusChR
Nucleus charge radius.
Definition: HINucleusModel.h:507
A model for nuclei clustered in smaller nuclei.
Definition: HINucleusModel.h:515
double C2
C2 parameter.
Definition: HINucleusModel.h:439
Definition: HINucleusModel.h:293
virtual ~GLISSANDOModel()
Virtual destructor.
Definition: HINucleusModel.h:392
Definition: Basics.h:32
virtual ~WoodsSaxonModel()
Virtual destructor.
Definition: HINucleusModel.h:335
virtual ~ClusterModel()
Virtual destructor.
Definition: HINucleusModel.h:523
Definition: Settings.h:195
ClusterModel()
Contructor.
Definition: HINucleusModel.h:520