main485
Back to index.
// main485.cc is a part of the PYTHIA event generator.
// Copyright (C) 2025 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.
// Authors:
// Marius Utheim
// Torbjorn Sjostrand
// Keywords:
// Cosmic ray cascade
// Switch beam
// Switch collision energy
// This example is based on work from Eur. Phys. J. C82 (2022) 21 and
// arXiv:2108.03481 [hep-ph]. This program illustrates how the
// PythiaCascade class can be called for an interaction or a decay,
// with properties as provided by the user.
#include "Pythia8/Pythia.h"
#include "Pythia8Plugins/PythiaCascade.h"
using namespace Pythia8;
//==========================================================================
// The main program tests both the collision and decay possibilities,
// using four slightly different setups to illustrate variability.
int main() {
// Basic parameter choices. Includes beam, target and decaying particle.
double eMax = 1e8;
double smallTau0 = 1e-10;
int nEvent = 1000;
int nList = 1;
int idHad = 321;
int Ztarg = 18;
int Atarg = 40;
int idDec = 4122;
// Histograms for number of subcollisions or final particles.
Hist nhA( "number of subcollisions", 40, 0.5, 40.5);
Hist nFin("number of final decay particles", 20, 0.5, 20.5);
// Main features of four subruns, illustrating variability.
for (int subrun = 0; subrun < 4; ++subrun) {
bool listFinal = (subrun > 1);
bool rapidDecays = (subrun%2 == 1);
// Set up Pythia wrapper.
// Reuse of MPI data is here implicitly accepted.
PythiaCascade pythiaCascade;
// If any of the underlying Pythia objects fail to initialize,
// return with error.
if (!pythiaCascade.init( eMax, listFinal, rapidDecays, smallTau0))
return 1;
// Event loop.
for (int iEvent = 0; iEvent < nEvent; ++iEvent) {
// Test 1 : collision with fixed-target nucleus.
// Set up incoming particle.
double mHad = pythiaCascade.particleData().m0(idHad);
double pzHad = eMax * pythiaCascade.rndm().flat();
double eHad = sqrt( mHad * mHad + pzHad * pzHad);
Vec4 pHad( 0., 0., pzHad, eHad);
// Cross section for various target nucleons. Print for first event.
pythiaCascade.sigmaSetuphN( idHad, pHad, mHad);
if (subrun == 0 && iEvent < nList) {
cout << " Cross sections for incoming K+ on various targets for E = "
<< scientific << setprecision(3) << eHad << fixed << endl;
cout << " p : " << setw(8) << pythiaCascade.sigmahA( 1) << endl;
cout << " N : " << setw(8) << pythiaCascade.sigmahA(14) << endl;
cout << " O : " << setw(8) << pythiaCascade.sigmahA(16) << endl;
cout << " Ar: " << setw(8) << pythiaCascade.sigmahA(40) << endl;
}
// Generate event. Skip empty = aborted event. List first event.
Event& eventColl = pythiaCascade.nextColl( Ztarg, Atarg);
if (eventColl.size() == 0) continue;
if (iEvent < nList) eventColl.list();
// Count number of subcollisions. Only meaningful if history remains.
if (!listFinal) {
int nSub = 0;
for (int i = 1; i < eventColl.size(); ++i)
if (eventColl[i].status() == -181 || eventColl[i].status() == -182)
++nSub;
nhA.fill( nSub);
}
// Test 2: decay of given particle.
// Set up decaying particle. Random momentum and decay vertex.
double mDec = pythiaCascade.particleData().m0(idDec);
double pxDec = 10. * pythiaCascade.rndm().flat() - 5.;
double pyDec = 10. * pythiaCascade.rndm().flat() - 5.;
double pzDec = 1000. * pythiaCascade.rndm().flat();
double eDec = sqrt(pxDec*pxDec + pyDec*pyDec + pzDec*pzDec + mDec*mDec);
Vec4 pDec( pxDec, pyDec, pzDec, eDec);
Vec4 vDec( pythiaCascade.rndm().flat(), pythiaCascade.rndm().flat(),
pythiaCascade.rndm().flat(), pythiaCascade.rndm().flat());
// Generate decay. List first event, including production vertices.
Event& eventDec = pythiaCascade.nextDecay( idDec, pDec, mDec, vDec);
if (eventDec.size() == 0) continue;
if (iEvent < nList) eventDec.list( true);
// Count final multiplicity. Only done when secondary decays included.
if (rapidDecays) {
int nFinal = 0;
for (int i = 1; i < eventDec.size(); ++i)
if (eventDec[i].isFinal()) ++nFinal;
nFin.fill( nFinal);
}
// End event loop. Error statistics. End subrun loop.
}
pythiaCascade.stat();
}
// Histogram printout. Done.
cout << nhA << nFin;
}