main484
Back to index.
// main484.cc is a part of the PYTHIA event generator.
// Copyright (C) 2025 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.
// Authors:
// Marius Utheim
// Torbjorn Sjostrand
// Keywords:
// Cosmic ray cascade
// Switch beam
// Switch collision energy
// This example demonstrates the production of atmospheric showers.
// It is based on the model and studies in Eur. Phys. J. C82 (2022) 21
// (arXiv:2108.03481 [hep-ph]), notably for hadron-nitrogen collisions.
// It should be equivalent with main483, but with collisions and decays
// handled by the PythiaCascade class, which streamlines the main program.
// The stepwise addition to the event record is also more transparent.
// Reminder: for vertex Vec4 the components are labelled (px, py, pz, e),
// but actually represent (x, y, z, t) values.
#include "Pythia8/Pythia.h"
#include "Pythia8Plugins/PythiaCascade.h"
using namespace Pythia8;
//==========================================================================
// Note: when a hadron interacts with a medium particle, the latter is added
// to the event record. This program uses these additional status codes for
// target particles in the medium:
// 181: the first (or only) target nucleon in a collision.
// 182: nucleons from further subcollisions with the same target nucleus.
// Conversion factor between mm and km.
constexpr double KM2MM = 1.e6;
// Conversion factor for kg/m^3 to GeV/(c^2 mm mb)
constexpr double kg_m3_to_GeV_c2mm1mb1
= 5.60958865e26 // kg to GeV/c2
* 0.001 // m^-1 to mm^-1
* 1e-31; // m^-2 to mb^-1
// Medium parameters
constexpr double mAir = 0.9315;
constexpr double mediumDensity = 1.225 * kg_m3_to_GeV_c2mm1mb1 / mAir;
constexpr double rhoAir = 1.225e-4; // g cm^-2 mm^-1
constexpr double mediumHeight = 100 * KM2MM;
constexpr double H = 10.4 * KM2MM;
//==========================================================================
// Configuration of the atmospheric model.
struct Configuration {
// Description of the configuration, to be used when plotting.
string legend;
// Whether the atmosphere should be exponentially attenuated, or uniform.
bool doExponential;
// Whether the medium particles are clustered into ions or a p/n gas.
bool doHeavyIon;
// The zenith angle of the primary particle.
double zenithAngle;
// Hadrons below the kinetic energy threshold cannot interact with medium.
double eKinMin;
// Get the height above ground of the primary particle when cascade begins.
double initialHeight() {
return doExponential ? mediumHeight : H;
}
// Get the medium depth of a particle at the specified height.
double getDepth(double h) {
return 1. / cos(zenithAngle)
* ( doExponential ? rhoAir * H * exp(-h / H)
: rhoAir * (initialHeight() - h) );
}
};
//==========================================================================
int main() {
// Set up four different "atmospheres" to compare.
constexpr int nCases = 4;
vector<Configuration> configurations = {
{ "Uniform p/n atmosphere", false, false, 0., 0.2 },
{ "Uniform nitrogen", false, true, 0., 0.2 },
{ "Exponential nitrogen", true, true, 0., 0.2 },
{ "Exponential nitrogen at 45$^{\\circ}$", true, true, M_PI / 4, 0.2 },
};
vector<string> col = { "r", "b", "k", "g" };
// Energy of primary incident proton (in GeV).
double pPri = 1e6;
// Number of events per case. Only do a few since each shower is so big.
int nEvent = 100;
// Minimal hadron-hadron collision CM-frame energy allowed in the cascade.
// Is not needed for PythiaCascade on its own, but is for comparisons
// with Angantyr in main483.cc, since Angantyr cannot go below 10 GeV.
bool matchAngantyr = false;
double eCMMin = (matchAngantyr) ? 10.5 : 0.;
// Set maximum size on the event record, to limit runaway code.
int maxSize = 2000000;
// Pythia wrapper for managing the cascade evolution and particle decays.
// See the PythiaCascade.h file for documentation, such as init() arguments,
// notably whether a previous *.mpi file can and should be reused.
PythiaCascade pythiaCascade;
Rndm& rndm = pythiaCascade.rndm();
double mp = pythiaCascade.particleData().m0(2212);
// If any of the underlying Pythia objects failed to initialize,
// exit with error.
if (!pythiaCascade.init(pPri + mp)) return 1;
// Event record for full cascade evolution.
Event eventMain;
eventMain.init( "Full cascade event", &pythiaCascade.particleData());
// Book histograms.
double depthMax = 1.5 * rhoAir * H;
Hist nInt[nCases], diffHad[nCases], diffMuon[nCases], prodnue[nCases],
prodnumu[nCases];
for (int iCase = 0; iCase < nCases; ++iCase) {
nInt[iCase].book("depth of interactions", 100, 0., depthMax);
diffHad[iCase].book("hadron production-decay depth", 100, 0., depthMax);
diffMuon[iCase].book("muon production-decay depth", 100, 0., depthMax);
prodnue[iCase].book("nu_e production depth", 100, 0., depthMax);
prodnumu[iCase].book("nu_mu production depth", 100, 0., depthMax);
}
// Begin loops over cases and events.
for (int iCase = 0; iCase < nCases; ++iCase)
for (int iEvent = 0; iEvent < nEvent; ++iEvent) {
Configuration& config = configurations[iCase];
// Four-momentum of incoming initiator.
double pxPri = 0.;
double pyPri = pPri * sin(config.zenithAngle);
double pzPri = pPri * cos(config.zenithAngle);
Vec4 p0(pxPri, pyPri, -pzPri, sqrt(pow2(pPri) + pow2(mp)));
// Insert primary particle in cleared main event record.
eventMain.clear();
eventMain.append(90, -11, 0, 0, 1, 1, 0, 0, p0, mp);
eventMain.append(2212, 12, 0, 0, 0, 0, 0, 0, p0, mp);
// Set initial location of initiator, where z is distance above ground.
double heightNow = config.initialHeight();
eventMain[0].yProd(-heightNow * tan(config.zenithAngle));
eventMain[0].zProd(heightNow);
eventMain[1].yProd(-heightNow * tan(config.zenithAngle));
eventMain[1].zProd(heightNow);
// Loop over particles (usually hadrons) in the main event record.
for (int iHad = 1; iHad < eventMain.size(); ++iHad) {
Particle& hadNow = eventMain[iHad];
// Skip already fragmented/decayed or upwards-moving particles.
if (!hadNow.isFinal() || hadNow.pz() > 0.) continue;
// Projectile properties.
int idNow = hadNow.id();
Vec4 pNow = hadNow.p();
double mNow = hadNow.m();
double eNow = hadNow.e();
bool mustDecayNow = false;
double eCMNow = (pNow + Vec4(0, 0, 0, mp)).mCalc();
// Find decay vertex for unstable hadrons. (Below ground if no decay.)
Vec4 vDec = hadNow.canDecay() ? hadNow.vDec() : Vec4( 0., 0., -1., 0.);
bool canDecayNow = hadNow.canDecay() && vDec.pz() > 0.;
// Low energy hadrons should not interact with medium.
// Decay non-hadrons or low-energy ones if decay happens above ground.
if (!hadNow.isHadron() || eNow - mNow < config.eKinMin
|| eCMNow < eCMMin) {
if (canDecayNow) mustDecayNow = true;
else continue;
}
// Get hadron-nucleon cross section for hydrogen or nitrogen atmosphere.
int Znow = (config.doHeavyIon) ? 7 : 1;
int Anow = (config.doHeavyIon) ? 14 : 1;
double sigmaNow = 0.;
if (!mustDecayNow) {
// Set up hadron-nucleon cross sections for the current hadron.
if (!pythiaCascade.sigmaSetuphN( idNow, pNow, mNow)) {
if (canDecayNow) mustDecayNow = true;
else continue;
}
else {
// Get hadron-ion cross section. For media consisting of several
// different atom types, this should be called once for each type.
sigmaNow = pythiaCascade.sigmahA(Anow);
// In this run density is nucleons per volume, not nuclei.
sigmaNow /= Anow;
// If the cross section vanishes, decay is the only option.
if (sigmaNow <= 0.) {
if (canDecayNow) mustDecayNow = true;
else continue;
}
}
}
// Calculate potential interaction vertex, depending on medium.
Vec4 vInt( 0., 0., -1., 0.);
Vec4 dirNow = pNow / pNow.pAbs();
if (!mustDecayNow) {
// Exponential atmosphere.
if (config.doExponential) {
double zNow = hadNow.zProd();
double dzds = hadNow.pz() / hadNow.pAbs();
double logR = log(rndm.flat());
double zNext = -H * log( exp(-zNow / H)
+ dzds / (H * sigmaNow * mediumDensity) * logR );
vInt = hadNow.vProd() + (zNext - zNow) * dirNow / dzds;
// Homogeneous atmosphere.
} else {
double freePath = rndm.exp() / (mediumDensity * sigmaNow);
vInt = hadNow.vProd() + freePath * dirNow;
}
// Done if hadron reaches surface before both interaction and decay.
if (vInt.pz() < 0. && !canDecayNow) continue;
// Do decay if it happens first.
if (vDec.pz() > vInt.pz()) mustDecayNow = true;
}
// Do decay or collision. Empty event means failure, so skip,
// which could lead to unintended punch-through of a particle.
int sizeSave = eventMain.size();
Event& eventTmp = (mustDecayNow)
? pythiaCascade.nextDecay(idNow, pNow, mNow, vDec)
: pythiaCascade.nextColl( Znow, Anow, vInt);
if (eventTmp.size() == 0) continue;
// Update properties of incoming hadron.
hadNow.statusNeg();
hadNow.daughters( sizeSave, sizeSave);
double dTau = ( (mustDecayNow ? vDec.e() : vInt.e())
- hadNow.tProd() ) * mNow / eNow;
hadNow.tau( dTau);
// Append new event to existing and link history.
eventMain += eventTmp;
eventMain[sizeSave].mothers( iHad, iHad);
// Stop generation if event record extremely long.
if (eventMain.size() > maxSize) {
cout << " Error: maximum event size exceeded for iCase = "
<< iCase << " and iEvent = " << iEvent << endl;
break;
}
// End of loop over interactions + decays inside a single cascade.
}
// Begin analysis. Loop over all particles to find interaction depths.
for (Particle& h : eventMain) {
if (h.status() == -12) continue;
double depthProd = config.getDepth(h.zProd());
double depthDec = config.getDepth(h.isFinal() ? 0. : h.zDec());
// If particle came from the medium, record the interaction depth.
if (h.status() == -181 || h.status() == -182) {
nInt[iCase].fill(depthProd);
}
// Otherwise, track depths where particles are created/destroyed.
else if (h.e() - h.m() > config.eKinMin) {
if (h.isHadron()) {
if (h.isFinal())
diffHad[iCase].fill(depthProd, 1.);
else {
diffHad[iCase].fill(min(depthProd, depthDec), 1.);
diffHad[iCase].fill(max(depthProd, depthDec), -1.);
}
}
else if (h.idAbs() == 13) {
if (h.isFinal())
diffMuon[iCase].fill(depthProd, 1.);
else {
diffMuon[iCase].fill(min(depthProd, depthDec), 1.);
diffMuon[iCase].fill(max(depthProd, depthDec), -1.);
}
}
else if (h.idAbs() == 12)
prodnue[iCase].fill(depthProd, 1.);
else if (h.idAbs() == 14)
prodnumu[iCase].fill(depthProd, 1.);
}
}
// End loops over events and cases.
}
// Print statistics, mainly for errors.
pythiaCascade.stat();
// Book histograms.
Hist nHad[nCases], nMuon[nCases], nnue[nCases], nnumu[nCases];
for (int iCase = 0; iCase < nCases; ++iCase) {
nHad[iCase] .book("", 100, 0., depthMax);
nMuon[iCase].book("", 100, 0., depthMax);
nnue[iCase] .book("", 100, 0., depthMax);
nnumu[iCase].book("", 100, 0., depthMax);
// Integrate production minus depletion to find particle number by depth.
double nHadSum = 0., nMuonSum = 0., nnueSum = 0., nnumuSum = 0.;
for (int i = 1; i <= 100; ++i) {
double depthNow = depthMax * (i - 0.5) / 100.;
if (depthNow > configurations[iCase].getDepth(0.)) break;
nHadSum += diffHad[iCase] .getBinContent(i);
nMuonSum += diffMuon[iCase].getBinContent(i);
nnueSum += prodnue[iCase] .getBinContent(i);
nnumuSum += prodnumu[iCase].getBinContent(i);
nHad[iCase] .fill(depthNow, nHadSum );
nMuon[iCase].fill(depthNow, nMuonSum);
nnue[iCase] .fill(depthNow, nnueSum );
nnumu[iCase].fill(depthNow, nnumuSum);
}
// Normalize histograms.
nInt[iCase].normalizeSpectrum(nEvent);
nHad[iCase] /= nEvent;
nMuon[iCase] /= nEvent;
nnue[iCase] /= nEvent;
nnumu[iCase] /= nEvent;
}
// Normalize and plot histograms.
HistPlot plt("plot484");
plt.frame("fig484", "Atmospheric depth of p/n interactions",
"$X$ (g/cm$^2$)", "$(1/n_{ev}) dn_{int}/dX$", 6.4, 4.8);
for (int iCase = 0; iCase < nCases; ++iCase)
plt.add(nInt[iCase], "-,"+col[iCase], configurations[iCase].legend);
plt.plot( 0., depthMax, 0.1, 1e3, true);
plt.frame("", "Number of hadrons at depth",
"$X$ (g/cm$^2$)", "$(1/n_{ev}) \\int_0^{X} dn_{had}$", 6.4, 4.8);
for (int iCase = 0; iCase < nCases; ++iCase)
plt.add(nHad[iCase], "-,"+col[iCase], configurations[iCase].legend);
plt.plot( 0., depthMax, 10., 2e4, true);
plt.frame("", "Number of muons at depth",
"$X$ (g/cm$^2$)", "$(1/n_{ev}) \\int_0^{X} dn_{\\mu}$", 6.4, 4.8);
for (int iCase = 0; iCase < nCases; ++iCase)
plt.add(nMuon[iCase], "-,"+col[iCase], configurations[iCase].legend);
plt.plot( 0., depthMax, 1., 1e5, true);
plt.frame("", "Number of e neutrinos at depth",
"$X$ (g/cm$^2$)", "$(1/n_{ev}) \\int_0^{X} dn_{\\nu_e}$", 6.4, 4.8);
for (int iCase = 0; iCase < nCases; ++iCase)
plt.add(nnue[iCase], "-,"+col[iCase], configurations[iCase].legend);
plt.plot( 0., depthMax, 1., 1e5, true);
plt.frame("", "Number of mu neutrinos at depth",
"$X$ (g/cm$^2$)", "$(1/n_{ev}) \\int_0^{X} dn_{\\nu_\\mu}$", 6.4, 4.8);
for (int iCase = 0; iCase < nCases; ++iCase)
plt.add(nnumu[iCase], "-,"+col[iCase], configurations[iCase].legend);
plt.plot( 0., depthMax, 1., 1e5, true);
}