main483

Back to index.

// main483.cc is a part of the PYTHIA event generator.
// Copyright (C) 2025 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.

// Authors:
//            Marius Utheim
//            Torbjorn Sjostrand

// Keywords:
//            Cosmic ray cascade
//            Switch beam
//            Switch collision energy

// This example demonstrates the production of atmospheric showers.
// It is based on the model and studies in Eur. Phys. J. C82 (2022) 21
// (arXiv:2108.03481 [hep-ph]), notably for hadron-nitrogen collisions.
// Optionally it can now use Angantyr instead of the above model.
// Warning: Angantyr hadron-nucleus cross sections are not available
// on the fly, so the approach developed for PythiaCascade is used instead.
// There is a mismatch, however, in that Angantyr does not simulate elastic
// scatterings, while PythiaCascade does, so some fudge is involved.
// Also note that Angantyr cannot go as low in collision energy as
// PythiaCascade can, so for comparisons the former sets eCMMin.
// Reminder: for vertex Vec4 the components are labelled (px, py, pz, e),
// but actually represent (x, y, z, t) values.

#include "Pythia8/Pythia.h"
using namespace Pythia8;

//==========================================================================

// Note: when a hadron interacts with a medium particle, the latter is
// added to the event record. This program uses these additional
// status codes for target particles in the medium:
//  181: the first (or only) target nucleon in a collision.
//  182: nucleons from further subcollisions with the same target nucleus.

// Conversion factor between mm and km.
constexpr double KM2MM = 1.e6;

// Conversion factor for kg/m^3 to GeV/(c^2 mm mb)
constexpr double kg_m3_to_GeV_c2mm1mb1
  =  5.60958865e26 // kg to GeV/c2
    * 0.001         // m^-1 to mm^-1
    * 1e-31;        // m^-2 to mb^-1

// Medium parameters
constexpr double mAir = 0.9315;
constexpr double mediumDensity = 1.225 * kg_m3_to_GeV_c2mm1mb1 / mAir;
constexpr double rhoAir = 1.225e-4; // g cm^-2 mm^-1
constexpr double mediumHeight = 100 * KM2MM;
constexpr double H = 10.4 * KM2MM;

//==========================================================================

// Configuration of the atmospheric model.

struct Configuration {
  // Description of the configuration, to be used when plotting.
  string legend;
  // Whether the atmosphere should be exponentially attenuated, or uniform.
  bool doExponential;
  // Whether the medium particles are clustered into ions or a p/n gas.
  bool doHeavyIon;
  // The zenith angle of the primary particle.
  double zenithAngle;
  // Hadrons below the kinetic energy threshold cannot interact with medium.
  // Warning: note that eCMMin later on is a stricter cut by default.
  double eKinMin;

  // Get the height above ground of the primary particle when cascade begins.
  double initialHeight() {
    return doExponential ? mediumHeight : H;
  }

  // Get the medium depth of a particle at the specified height.
  double getDepth(double h) {
    return 1. / cos(zenithAngle)
        * ( doExponential ? rhoAir * H * exp(-h / H)
                          : rhoAir * (initialHeight() - h) );
  }
};

//==========================================================================

int main() {

  // Option to use Angantyr for hadron-nucleus collisions instead of default.
  bool useAngantyr = true;

  // Set up four different "atmospheres" to compare.
  constexpr int nCases = 4;
  vector<Configuration> configurations = {
    { "Uniform p/n atmosphere",                false, false, 0.,       0.2 },
    { "Uniform nitrogen",                      false, true,  0.,       0.2 },
    { "Exponential nitrogen",                  true,  true,  0.,       0.2 },
    { "Exponential nitrogen at 45$^{\\circ}$", true,  true,  M_PI / 4, 0.2 },
  };
  vector<string> col = { "r", "b", "k", "g" };

  // Energy of primary incident proton (in GeV).
  double pPri = 1e6;

  // Number of events per case. Only do a few since each shower is so big.
  int nEvent = 100;

  // Minimal hadron-hadron collision CM-frame energy allowed in the cascade.
  // Must be at least 10 GeV for Angantyr, or else it will not work properly.
  // For the default model one can go much lower, as given by eKinMin.
  bool matchAngantyr = true;
  double eCMMin = (useAngantyr || matchAngantyr) ? 10.5 : 0.;

  // Set maximum size on the event record, to limit runaway code.
  int maxSize = 2000000;

  // Main Pythia object for managing the cascade evolution and particle decays.
  Pythia pythiaMain;
  Event& eventMain = pythiaMain.event;
  Rndm& rndm = pythiaMain.rndm;
  double mp = pythiaMain.particleData.m0(2212);
  // Prepare to do decays but no hard processes.
  pythiaMain.readString("ProcessLevel:all = off");
  pythiaMain.readString("211:mayDecay = on");
  pythiaMain.readString("13:mayDecay  = on");
  pythiaMain.readString("321:mayDecay = on");
  pythiaMain.readString("130:mayDecay = on");

  // If pythiaMain fails to initialize, exit with error.
  if (!pythiaMain.init()) return 1;

  // Secondary Pythia object for performing individual collisions.
  Pythia pythiaColl;
  Event& eventColl = pythiaColl.event;
  // Variable incoming beam type and energy.
  pythiaColl.readString("Beams:allowVariableEnergy = on");
  pythiaColl.readString("Beams:allowIDAswitch = on");
  // Set up for fixed-target collisions.
  pythiaColl.readString("Beams:frameType = 3");
  pythiaColl.settings.parm("Beams:pzA", -pPri);
  pythiaColl.readString("Beams:pzB = 0.");
  // Decays to be done by pythiaMain.
  pythiaColl.readString("HadronLevel:Decay = off");
  // Reduce printout and relax energy-momentum conservation.
  pythiaColl.readString("Print:quiet = on");
  pythiaColl.readString("Check:epTolErr = 0.1");

  // Default cascade model, from the article cited at the top.
  if (!useAngantyr) {
    // Must use the soft and low-energy QCD processes.
    pythiaColl.readString("SoftQCD:all = on");
    pythiaColl.readString("LowEnergyQCD:all = on");
    // Reuse MPI initialization file if it exists; else create a new one.
    pythiaColl.readString("MultipartonInteractions:reuseInit = 3");
    pythiaColl.readString("MultipartonInteractions:initFile = main483.mpi");

  // Angantyr model, still not fully validated.
  } else {
    // Enable Angantyr.
    pythiaColl.readString("HeavyIon:mode = 2");
    // Unit weight needed in cascade.
    pythiaColl.readString("HeavyIon:forceUnitWeight = on");
    // Reuse MPI and cross sections initialization files.
    // If they don't exist, you can generate them by running main424.
    pythiaColl.readFile("main424.cmnd");
  }

  // If pythiaColl fails to initialize, exit with error.
  if (!pythiaColl.init()) return 1;

  // Book histograms and some other statistics..
  double depthMax = 1.5 * rhoAir * H;
  Hist nInt[nCases], diffHad[nCases], diffMuon[nCases], prodnue[nCases],
       prodnumu[nCases];
  for (int iCase = 0; iCase < nCases; ++iCase) {
    nInt[iCase].book("depth of interactions",            100, 0., depthMax);
    diffHad[iCase].book("hadron production-decay depth", 100, 0., depthMax);
    diffMuon[iCase].book("muon production-decay depth",  100, 0., depthMax);
    prodnue[iCase].book("nu_e production depth",         100, 0., depthMax);
    prodnumu[iCase].book("nu_mu production depth",       100, 0., depthMax);
  }
  int nAccCol[4] = {0,0,0,0}, nRejCol[4] = {0,0,0,0}, nErrCol[4] = {0,0,0,0};
  int nAccBeam[4] = {0,0,0,0}, nRejBeam[4] = {0,0,0,0};
  bool outcome;

  // Begin loops over configuration cases and events.
  for (int iCase = 0; iCase < nCases; ++iCase)
  for (int iEvent = 0; iEvent < nEvent; ++iEvent) {
    Configuration& config = configurations[iCase];

    // Four-momentum of incoming initiator.
    double pxPri = 0.;
    double pyPri = pPri * sin(config.zenithAngle);
    double pzPri = pPri * cos(config.zenithAngle);
    Vec4 p0(pxPri, pyPri, -pzPri, sqrt(pow2(pPri) + pow2(mp)));

    // Insert primary particle in cleared main event record.
    eventMain.clear();
    eventMain.append(90,  -11, 0, 0, 1, 1, 0, 0, p0, mp);
    eventMain.append(2212, 12, 0, 0, 0, 0, 0, 0, p0, mp);

    // Set initial location of initiator, where z is distance above ground.
    double heightNow = config.initialHeight();
    eventMain[0].yProd(-heightNow * tan(config.zenithAngle));
    eventMain[0].zProd(heightNow);
    eventMain[1].yProd(-heightNow * tan(config.zenithAngle));
    eventMain[1].zProd(heightNow);

    // Loop over particles (usually hadrons) in the main event record.
    for (int iHad = 1; iHad < eventMain.size(); ++iHad) {
      Particle& hadNow = eventMain[iHad];

      // Skip already fragmented/decayed or upwards-moving particles.
      if (!hadNow.isFinal() || hadNow.pz() > 0.) continue;

      //  Projectile properties. Invariant mass  with a p/n nucleon at rest.
      int idNow         = hadNow.id();
      Vec4 pNow         = hadNow.p();
      double mNow       = hadNow.m();
      double eNow       = hadNow.e();
      bool mustDecayNow = false;
      double eCMNow     = (pNow + Vec4(0, 0, 0, mp)).mCalc();

      // Find decay vertex for unstable hadrons. (Below ground if no decay.)
      Vec4 vDec = hadNow.canDecay() ? hadNow.vDec() : Vec4( 0., 0., -1., 0.);
      bool canDecayNow = hadNow.canDecay() && vDec.pz() > 0.;

      // Low energy hadrons should not interact with medium.
      // Decay non-hadrons or low-energy ones if decay happens above ground.
      if (!hadNow.isHadron() || eNow - mNow < config.eKinMin
        || eCMNow < eCMMin) {
        if (canDecayNow) mustDecayNow = true;
        else continue;
      }

      // Get hadron-nucleon cross section.
      double sigmaNow = pythiaColl.getSigmaTotal(
        idNow, 2212, eCMNow, mNow, mp);

      // If the cross section vanishes, decay is the only option.
      if (sigmaNow <= 0.) {
        if (canDecayNow) mustDecayNow = true;
        else continue;
      }

      // Average number of hadron-nucleon collisions in a
      // hadron-nitrogen one. Slightly updated relative to article.
      double nCollAvg  = (sigmaNow < 20.) ? 1. + 0.0205 * sigmaNow
                        : 1.20 + 0.0105 * sigmaNow;
      double probMore = 1. - 1. / nCollAvg;

      // Medium density is in terms of nucleons per volume,  so if collisions
      // are clustered to nuclei then sigma must be corrected.
      if (config.doHeavyIon) sigmaNow /= nCollAvg;

      // Ad hoc cross section reduction from excluding elastic collisions,
      // since Angantyr does not handle these.
      if (useAngantyr) sigmaNow *= 0.9;

      // Calculate potential interaction vertex, depending on medium.
      Vec4 vInt( 0., 0., -1., 0.);
      Vec4 dirNow = pNow / pNow.pAbs();
      if (!mustDecayNow) {
        // Exponential atmosphere.
        if (config.doExponential) {
          double zNow  = hadNow.zProd();
          double dzds  = hadNow.pz() / hadNow.pAbs();
          double logR  = log(rndm.flat());
          double zNext = -H * log( exp(-zNow / H)
                       + dzds / (H * sigmaNow * mediumDensity) * logR );
          vInt = hadNow.vProd() + (zNext - zNow) * dirNow / dzds;
        // Homogeneous atmosphere.
        } else {
          double freePath = rndm.exp() / (mediumDensity * sigmaNow);
          vInt = hadNow.vProd() + freePath * dirNow;
        }

        // Done if hadron reaches surface before both interaction and decay.
        if (vInt.pz() < 0. && !canDecayNow) continue;

        // Do decay if it happens first.
        if (vDec.pz() > vInt.pz()) mustDecayNow = true;
      }

      // Perform the decay if it happens first, and then done.
      // A failed decay could cause an unintended punch-through.
      if (mustDecayNow) {
         pythiaMain.moreDecays(iHad);
         continue;
      }

      // Common variables.
      int sizeOld = 0;
      int sizeNew = 0;

      // Use default model to perform an interaction if it happens first.
      if (!useAngantyr) {

        // Set up for collisions on a p or a nucleus.
        int np = 7;
        int nn = 7;
        double probSD = 0.3;

        // Loop over varying number of hit nucleons in target nucleus.
        for (int iColl = 1; iColl < 10; ++iColl) {
          if (!config.doHeavyIon && iColl == 2) break;
          if (iColl > 1 && rndm.flat() > probMore) break;

          // Pick incoming projectile: trivial for first subcollision, else ...
          int iProj = iHad;
          int procType = 0;

          // ... find highest-pLongitudinal particle from latest subcollision.
          if (iColl > 1) {
            iProj = 0;
            double pMax = 0.;
            for (int i = sizeOld; i < sizeNew; ++i)
            if ( eventMain[i].isFinal() && eventMain[i].isHadron()) {
              double pp = dot3(dirNow, eventMain[i].p());
              if (pp > pMax) {
                iProj = i;
                pMax  = pp;
              }
            }

            // No further subcollision if no particle with enough energy.
            if ( iProj == 0 || eventMain[iProj].e() - eventMain[iProj].m()
              < config.eKinMin) break;

            // Choose process; only SD or ND at perturbative energies.
            double eCMSub = (eventMain[iProj].p() + Vec4(0, 0, 0, mp)).mCalc();
            if (eCMSub > 10.) procType = (rndm.flat() < probSD) ? 4 : 1;
          }

          // Pick one p or n from target.
          int idProj = eventMain[iProj].id();
          bool doProton = rndm.flat() < (np / double(np + nn));
          if (doProton) np -= 1;
          else          nn -= 1;
          int idNuc = (doProton) ? 2212 : 2112;

          // Perform the projectile-nucleon subcollision.
          if ( pythiaColl.setBeamIDs(idProj, idNuc) &&
               pythiaColl.setKinematics(eventMain[iProj].p(), Vec4()) ) {
            ++nAccBeam[iCase];
          } else {
            ++nRejBeam[iCase];
            continue;
          }
          outcome = pythiaColl.next(procType);
          if (outcome) ++nAccCol[iCase];
          else         ++nRejCol[iCase];

          // Insert target nucleon. Mothers are (0,iProj) to mark who it
          // interacted with. Always use proton mass for simplicity.
          int statusNuc = (iColl == 1) ? -181 : -182;
          int iNuc = eventMain.append( idNuc, statusNuc, 0, iProj, 0, 0, 0, 0,
            0., 0., 0., mp, mp);
          eventMain[iNuc].vProdAdd(vInt);

          // Insert secondary produced particles (but skip intermediate
          // partons) into main event record and shift to correct
          // production vertex.
          sizeOld = eventMain.size();
          for (int iSub = 3; iSub < eventColl.size(); ++iSub)
          if (eventColl[iSub].isFinal()) {
            int iNew = eventMain.append(eventColl[iSub]);
            eventMain[iNew].mothers(iNuc, iProj);
            eventMain[iNew].vProdAdd(vInt);
          }
          sizeNew = eventMain.size();

          // Update daughters of colliding hadrons and other history.
          eventMain[iProj].daughters(sizeOld, sizeNew - 1);
          eventMain[iNuc].daughters(sizeOld, sizeNew - 1);
          eventMain[iProj].statusNeg();
          double dTau = (iColl == 1) ? (vInt.e() - eventMain[iHad].tProd())
            * eventMain[iHad].m() / eventMain[iHad].e() : 0.;
          eventMain[iProj].tau(dTau);

        // End of loop over interactions in a nucleus.
        }

      // Use the Angantyr model to perform an interaction if it happens first.
      } else {

        // Set up for collisions on a p or a nucleus.
        int idTarg = (iCase == 0) ? 2212 : 1000070140;
        if ( pythiaColl.setBeamIDs(idNow, idTarg) &&
             pythiaColl.setKinematics(pNow, Vec4(0., 0., 0., 0.938)) ) {
            ++nAccBeam[iCase];
        } else {
          ++nRejBeam[iCase];
          continue;
        }

        // Simulate interaction. Skip particle if failure, which
        // could lead to unintended punch-through of a particle.
        outcome = pythiaColl.next();
        if (outcome) ++nAccCol[iCase];
        else         ++nRejCol[iCase];
        if (!outcome) continue;

        // Append target.
        int iTarg = eventMain.append(idTarg, -181, iHad, iHad, 0, 0, 0, 0,
            0., 0., 0., mp, mp);
        eventMain[iTarg].vProdAdd(vInt);

        // Copy final-state particles.
        sizeOld = eventMain.size();
        for (int iSub = 3; iSub < eventColl.size(); ++iSub)
        if (eventColl[iSub].isFinal()) {
          int iNew = eventMain.append(eventColl[iSub]);
          eventMain[iNew].mothers(iHad, iTarg);
          eventMain[iNew].vProdAdd(vInt);
        }
        sizeNew = eventMain.size();

        // Update daughters of the interacting particles.
        eventMain[iTarg].daughters(sizeOld, sizeNew - 1);
        eventMain[iHad].daughters(sizeOld, sizeNew - 1);
        eventMain[iHad].statusNeg();
        double dTau = ( vInt.e() - eventMain[iHad].tProd() ) * mNow / eNow;
        eventMain[iHad].tau( dTau);

      // End of default or Angantyr model for a hadron-nucleus interaction.
      }

      // Stop generation if the event record is extremely long.
      if (eventMain.size() > maxSize) {
        cout << " Error: maximum event size exceeded for iCase = "
             << iCase << " and iEvent = " << iEvent << endl;
        break;
      }

    // End of loop over interactions + decays inside a single cascade.
    }

    // Begin analysis. Loop over all particles to find interaction depths.
    Vec4 pSumFinal;
    for (Particle& h : eventMain) {
      if (h.isFinal()) pSumFinal += h.p();
      if (h.status() == -12) continue;
      double depthProd = config.getDepth(h.zProd());
      double depthDec  = config.getDepth(h.isFinal() ? 0. : h.zDec());

      // If particle came from the medium, record the interaction depth.
      if (h.status() == -181 || h.status() == -182) {
        nInt[iCase].fill(depthProd);
      }
      // Otherwise, track depths where particles are created/destroyed.
      else if (h.e() - h.m() > config.eKinMin) {
        if (h.isHadron()) {
          if (h.isFinal())
            diffHad[iCase].fill(depthProd, 1.);
          else {
            diffHad[iCase].fill(min(depthProd, depthDec), 1.);
            diffHad[iCase].fill(max(depthProd, depthDec), -1.);
          }
        }
        else if (h.idAbs() == 13) {
          if (h.isFinal())
            diffMuon[iCase].fill(depthProd, 1.);
          else {
            diffMuon[iCase].fill(min(depthProd, depthDec), 1.);
            diffMuon[iCase].fill(max(depthProd, depthDec), -1.);
          }
        }
        else if (h.idAbs() == 12)
          prodnue[iCase].fill(depthProd, 1.);
        else if (h.idAbs() == 14)
          prodnumu[iCase].fill(depthProd, 1.);
      }
    }

    // Check for three-momentum conservation (but energy broken by atmosphere).
    double pxyzErr = abs(pSumFinal[1] - pxPri) + abs(pSumFinal[2] - pyPri)
      + abs(pSumFinal[3] + pzPri);
    if (pxyzErr > 1e-4 * pPri) ++nErrCol[iCase];

  // End loops over events and cases.
  }

  // Print statistics, mainly for errors.
  cout << "\n Statistics from PythiaMain: " << endl;
  pythiaMain.stat();
  cout << "\n Statistics from PythiaColl: " << endl;
  pythiaColl.stat();
  cout << "\n Number of accepted beam/target id/energy: " << nAccCol[0] << " "
       << nAccCol[1] << " " << nAccCol[2] << " " << nAccCol[3] ;
  cout << "\n Number of rejected beam/target id/energy: " << nRejCol[0] << " "
       << nRejCol[1] << " " << nRejCol[2] << " " << nRejCol[3] ;
  cout << "\n Number of accepted subcollisions        : " << nAccCol[0] << " "
       << nAccCol[1] << " " << nAccCol[2] << " " << nAccCol[3] ;
  cout << "\n Number of rejected subcollisions        : " << nRejCol[0] << " "
       << nRejCol[1] << " " << nRejCol[2] << " " << nRejCol[3] ;
  cout << "\n Number of non-conserving events         : " << nErrCol[0] << " "
       << nErrCol[1] << " " << nErrCol[2] << " " << nErrCol[3] << endl;

  // Book histograms.
  Hist nHad[nCases], nMuon[nCases], nnue[nCases], nnumu[nCases];
  for (int iCase = 0; iCase < nCases; ++iCase) {
    nHad[iCase] .book("", 100, 0., depthMax);
    nMuon[iCase].book("", 100, 0., depthMax);
    nnue[iCase] .book("", 100, 0., depthMax);
    nnumu[iCase].book("", 100, 0., depthMax);

    // Integrate production minus depletion to find particle number by depth.
    double nHadSum = 0., nMuonSum = 0., nnueSum = 0., nnumuSum = 0.;
    for (int i = 1; i <= 100; ++i) {
      double depthNow = depthMax * (i - 0.5) / 100.;
      if (depthNow > configurations[iCase].getDepth(0.)) break;
      nHadSum  += diffHad[iCase] .getBinContent(i);
      nMuonSum += diffMuon[iCase].getBinContent(i);
      nnueSum  += prodnue[iCase] .getBinContent(i);
      nnumuSum += prodnumu[iCase].getBinContent(i);
      nHad[iCase] .fill(depthNow, nHadSum );
      nMuon[iCase].fill(depthNow, nMuonSum);
      nnue[iCase] .fill(depthNow, nnueSum );
      nnumu[iCase].fill(depthNow, nnumuSum);
    }

    // Normalize histograms.
    nInt[iCase].normalizeSpectrum(nEvent);
    nHad[iCase]  /= nEvent;
    nMuon[iCase] /= nEvent;
    nnue[iCase]  /= nEvent;
    nnumu[iCase] /= nEvent;
  }

  // Normalize and plot histograms.
  HistPlot plt("plot483");
  plt.frame("fig483", "Atmospheric depth of p/n interactions",
    "$X$ (g/cm$^2$)", "$(1/n_{ev}) dn_{int}/dX$", 6.4, 4.8);
  for (int iCase = 0; iCase < nCases; ++iCase)
    plt.add(nInt[iCase], "-,"+col[iCase], configurations[iCase].legend);
  plt.plot( 0., depthMax, 0.01, 1e3, true);
  plt.frame("", "Number of hadrons at depth",
    "$X$ (g/cm$^2$)", "$(1/n_{ev}) \\int_0^{X} dn_{had}$", 6.4, 4.8);
  for (int iCase = 0; iCase < nCases; ++iCase)
    plt.add(nHad[iCase], "-,"+col[iCase], configurations[iCase].legend);
  plt.plot( 0., depthMax, 10., 2e4, true);
  plt.frame("", "Number of muons at depth",
    "$X$ (g/cm$^2$)", "$(1/n_{ev}) \\int_0^{X} dn_{\\mu}$", 6.4, 4.8);
  for (int iCase = 0; iCase < nCases; ++iCase)
    plt.add(nMuon[iCase], "-,"+col[iCase], configurations[iCase].legend);
  plt.plot( 0., depthMax, 1., 1e5, true);
  plt.frame("", "Number of e neutrinos at depth",
    "$X$ (g/cm$^2$)", "$(1/n_{ev}) \\int_0^{X} dn_{\\nu_e}$", 6.4, 4.8);
  for (int iCase = 0; iCase < nCases; ++iCase)
    plt.add(nnue[iCase], "-,"+col[iCase], configurations[iCase].legend);
  plt.plot( 0., depthMax, 1., 1e5, true);
  plt.frame("", "Number of mu neutrinos at depth",
    "$X$ (g/cm$^2$)", "$(1/n_{ev}) \\int_0^{X} dn_{\\nu_\\mu}$", 6.4, 4.8);
  for (int iCase = 0; iCase < nCases; ++iCase)
    plt.add(nnumu[iCase], "-,"+col[iCase], configurations[iCase].legend);
  plt.plot( 0., depthMax, 1., 1e5, true);

}