main441
Back to index.
// main441.cc is a part of the PYTHIA event generator.
// Copyright (C) 2025 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.
// Authors:
// Christian Bierlich
// Keywords:
// Hadronization
// Colour reconnection
// String shoving
// This program provides a demonstration of the string shoving model supplied
// in the Rope Hadronization framework. It produces four histograms
// showing the emergence of a "ridge" in two-particle correlations at high
// event multiplicity.
// No kind of background subtraction, event mixing, triggering or similar
// is done is this simple demonstration analysis. It should therefore not be
// taken as anything but a proof of concept.
#include "Pythia8/Pythia.h"
using namespace Pythia8;
//==========================================================================
int main() {
// Generator. Process selection.
Pythia pythia;
pythia.readString("Beams:eCM = 7000.");
pythia.readString("SoftQCD:nonDiffractive = on");
pythia.readString("Next:numberShowEvent = 0");
// Enabling string shoving, setting model parameters.
// The model is still untuned. These parameter values
// are chosen for illustrative purposes.
pythia.readString("Ropewalk:RopeHadronization = on");
pythia.readString("Ropewalk:doShoving = on");
pythia.readString("Ropewalk:doFlavour = off");
pythia.readString("Ropewalk:rCutOff = 10.0");
pythia.readString("Ropewalk:limitMom = on");
pythia.readString("Ropewalk:pTcut = 2.0");
pythia.readString("Ropewalk:r0 = 0.41");
pythia.readString("Ropewalk:m0 = 0.2");
pythia.readString("Ropewalk:gAmplitude = 10.0");
pythia.readString("Ropewalk:gExponent = 1.0");
pythia.readString("Ropewalk:deltat = 0.1");
pythia.readString("Ropewalk:tShove = 1.");
pythia.readString("Ropewalk:deltay = 0.1");
pythia.readString("Ropewalk:tInit = 1.5");
// Enabling setting of vertex information.
pythia.readString("PartonVertex:setVertex = on");
pythia.readString("PartonVertex:protonRadius = 0.7");
pythia.readString("PartonVertex:emissionWidth = 0.1");
// If Pythia fails to initialize, exit with error.
if (!pythia.init()) return 1;
// Histograms.
Hist deltaPhi1("dPhi, 0 < Nch < 20", 16, -M_PI/2., 3.);
Hist deltaPhi2("dPhi, 20 < Nch < 40", 16, -M_PI/2., 3.);
Hist deltaPhi3("dPhi, 40 < Nch < 60", 16, -M_PI/2., 3.);
Hist deltaPhi4("dPhi, 60 < Nch < 120", 16, -M_PI/2., 3.);
// Note: High statistics is needed to fill the high multiplicity
// histogram.
const int nEvent = 10000;
// Begin event loop. Generate event. Skip if error. List first one.
for (int iEvent = 0; iEvent < nEvent; ++iEvent) {
if (!pythia.next()) continue;
// Event short notation.
Event& event = pythia.event;
// First we find the particles we need for the analysis,
// as well as event multiplicity.
vector<Particle*> parts;
int mult = 0;
for (int i = 0; i < event.size(); ++i){
// Particle short notation
Particle& p = event[i];
// Apply simple, particle level, cuts.
if(p.isFinal() && p.isCharged() && abs(p.eta()) < 2.5 &&
p.pT() > 0.5){
++mult;
if(p.pT() > 1.0 && p.pT() < 3.0)
parts.push_back(&p);
}
}
// We discard events outside multiplicity bounds.
int np = parts.size();
if(mult < 2) continue;
// We loop over all particle pairs.
for (int i = 0; i < np; ++i)
for(int j = 0; j < np; ++j) {
// Skip if same particle.
if( i == j) continue;
// The distance in eta between the pair.
double dEta = abs(parts[i]->eta() - parts[j]->eta());
if(dEta < 4 && dEta > 2){
// Calculate the phase difference.
double dPhi = parts[i]->phi() - parts[j]->phi();
while (dPhi < -M_PI/2) dPhi += 2*M_PI;
while (dPhi > 3*M_PI/2) dPhi -= 2*M_PI;
if(mult <= 20)
deltaPhi1.fill(dPhi);
else if(mult <= 40)
deltaPhi2.fill(dPhi);
else if(mult <= 60)
deltaPhi3.fill(dPhi);
else
deltaPhi4.fill(dPhi);
}
}
// End of event loop. Statistics. Histogram. Done.
}
pythia.stat();
cout << deltaPhi1 << deltaPhi2 << deltaPhi3 << deltaPhi4;
return 0;
}