main362
Back to index.
// main362.cc is a part of the PYTHIA event generator.
// Copyright (C) 2025 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.
// Keywords:
// Colour reconnection
// Hadronization
// Top mass
// Omnibus version for colour reconnection (CR) effect studies.
// Links to two UserHooks that, along with the internal models,
// implement all the models used for the top mass study in
// S. Argyropoulos and T. Sjostrand,
// arXiv:1407.6653 [hep-ph] (LU TP 14-23, DESY 14-134, MCnet-14-15)
// Warning: some small modifications have been made when collecting
// the models, but nothing intended to change the behaviour.
// Note: the move model is also available with ColourReconnection:mode = 2,
// while the ColourReconnection:mode = 1 model has not been used here.
// Note: the new models tend to be slower than the default CR scenario,
// since they have to probe many more reconnection possibilities.
// Important: the top mass shift analysis encoded here is very primitive,
// does not perform well at all, and should not be taken seriously.
// The important part is that you see how the different scenarios
// should be set up to operate as intended.
#include "Pythia8/Pythia.h"
#include "Pythia8Plugins/ColourReconnectionHooks.h"
using namespace Pythia8;
//==========================================================================
int main() {
// Number of events to generate.
// Warning: much statistics is needed for significant results,
// so this is just an appetizer. Anyway, the reconstruction is
// pretty lousy, so not useful for real studies.
int nEvent = 250;
// Target t and W masses.
double mT = 173.3;
double mW = 80.385;
// Set up anti-kT jet finder.
double Rjet = 0.5;
double pTjetMin = 20.;
SlowJet sJet( -1, Rjet, pTjetMin);
// Loop over different reconnection scenarios.
for (int mLoop = 0; mLoop < 14; ++mLoop) {
cout << "\n\n ================================ Now begin mLoop = "
<< mLoop << " ================================\n" << endl;
// Generator at 8 TeV LHC.
Pythia pythia;
Event& event = pythia.event;
pythia.readString("Beams:eCM = 8000.");
// q qbar, g g -> t tbar.
pythia.readString("Top:qqbar2ttbar = on");
pythia.readString("Top:gg2ttbar = on");
// Colour reconnection setups.
shared_ptr<UserHooks> myUserHooks;
// Tuning parameters for CR scenarios have tune 4C as a starting point.
pythia.readString("Tune:pp = 5");
// No reconnection at all.
if (mLoop == 0) {
pythia.readString("ColourReconnection:reconnect = off");
pythia.readString("PartonLevel:earlyResDec = off");
pythia.readString("MultipartonInteractions:pT0Ref = 2.30");
// Standard reconnection, but top decay products unaffected.
} else if (mLoop == 1) {
pythia.readString("ColourReconnection:reconnect = on");
pythia.readString("PartonLevel:earlyResDec = off");
// Standard reconnection, including top decay products.
} else if (mLoop == 2) {
pythia.readString("ColourReconnection:reconnect = on");
pythia.readString("PartonLevel:earlyResDec = on");
// New gluon swap and move scenarios, including top decay products.
// (Note: the move scenario is also implemented internally.)
} else if (mLoop >= 3 && mLoop <= 8) {
pythia.readString("ColourReconnection:reconnect = off");
pythia.readString("PartonLevel:earlyResDec = off");
// Swap (mode = 1) or move (2), and flip (1, 2) or not (0).
int mode = (mLoop <= 5) ? 1 : 2;
int flip = ( mLoop - 3 * mode) % 3;
// Possibilities to vary effects by further parameters.
double dLamCut = 0.;
double fracGluon = 1.;
if ( mode == 1 ) {
if ( flip > 0 )
pythia.readString("MultipartonInteractions:pT0Ref = 2.20");
else pythia.readString("MultipartonInteractions:pT0Ref = 2.30");
}
else {
if ( flip > 0 )
pythia.readString("MultipartonInteractions:pT0Ref = 2.15");
else pythia.readString("MultipartonInteractions:pT0Ref = 2.25");
}
myUserHooks = make_shared<MBReconUserHooks>(mode, flip, dLamCut,
fracGluon);
pythia.setUserHooksPtr( myUserHooks);
// New scenaros that do top reconnections separately from normal one.
// = 9: reconnect with random background gluon;
// = 10: reconnect with nearest (smallest-mass) background gluon;
// = 11: reconnect with furthest (largest-mass) background gluon;
// = 12: reconnect with smallest (with sign) lambda measure shift;
// = 13: reconnect only if reduced lamda, and then to most reduction.
} else if (mLoop >= 9 && mLoop <= 13) {
pythia.readString("ColourReconnection:reconnect = on");
pythia.readString("PartonLevel:earlyResDec = off");
// Possibility with reduced reconnection strength.
double strength = ( mLoop == 13 ) ? 1. : 0.075;
myUserHooks = make_shared<TopReconUserHooks>(mLoop - 8, strength);
pythia.setUserHooksPtr( myUserHooks);
}
// Simplify generation. For tryout only.
//pythia.readString("ProcessLevel:resonanceDecays = off");
//pythia.readString("PartonLevel:ISR = off");
//pythia.readString("PartonLevel:FSR = off");
//pythia.readString("PartonLevel:MPI = off");
//pythia.readString("BeamRemnants:primordialKT = off");
//pythia.readString("HadronLevel:all = off");
// Top and W masses. Semileptonic top decay chosen by W decay.
// (One of two charge states, so properly ought to symmetrize.)
// Trick: only allow decay to stable tau, standing in for e and mu
// as well, but the tau is easy to remove before jet finding.
pythia.readString("6:m0 = 173.3");
pythia.readString("24:m0 = 80.385");
pythia.readString("24:onPosIfAny = 1 2 3 4 5");
pythia.readString("24:onNegIfAny = 15");
pythia.readString("24:offIfAny = 11 13");
pythia.readString("15:mayDecay = off");
// Reduce printout.
pythia.readString("Init:showChangedParticleData = off");
pythia.readString("Next:numberShowInfo = 0");
pythia.readString("Next:numberShowProcess = 0");
pythia.readString("Next:numberShowEvent = 0");
pythia.readString("Next:numberCount = 100000");
// If Pythia fails to initialize, exit with error.
if (!pythia.init()) return 1;
// Histograms for current scenario.
Hist nRecH( "number of top reconnections", 100, -0.5, 99.5);
Hist nchH( "charged multiplicity", 100, -1., 799.);
Hist nJetH( "jet multiplicity", 20, -0.5, 19.5);
Hist mWH( "reconstructed W mass", 100, 40., 140.);
Hist mTH( "reconstructed t mass", 100, 120., 220.);
Hist mWerrH( "reconstructed W mass error", 100, -10., 10.);
Hist mTerrH( "reconstructed t mass error", 100, -20., 20.);
Hist pTTH( "reconstructed pT_t", 11, 0., 275.);
Hist mTpTH( "reconstructed delta-m_t(pT_t)", 11, 0., 275.);
// Begin event loop. Generate event. Skip if error.
for (int iEvent = 0; iEvent < nEvent; ++iEvent) {
if (!pythia.next()) continue;
// Charged multiplicity.
int nch = 0;
for (int i = 0; i < event.size(); ++i)
if (event[i].isFinal() && event[i].isCharged()) ++nch;
nchH.fill(nch);
// Remove tau leptons. (Recall: they were put stable, so simple.)
for (int i = 0; i < event.size(); ++i)
if (event[i].idAbs() == 15) event[i].statusNeg();
// Find number of jets. At least four to keep going.
sJet.analyze(event);
int nJet = sJet.sizeJet();
nJetH.fill( nJet);
if (nJet < 4) continue;
// Find two jets that form mass closest to mW.
int i1min = 0;
int i2min = 0;
double m12min = 0.;
double diff = 1e10;
for (int i1 = 0; i1 < nJet - 1; ++i1)
for (int i2 = i1 + 1; i2 < nJet; ++i2) {
double m12 = (sJet.p(i1) + sJet.p(i2)).mCalc();
if (abs(m12 - mW) < diff) {
i1min = i1;
i2min = i2;
m12min = m12;
diff = abs(m12 - mW);
}
}
mWH.fill( m12min);
mWerrH.fill( m12min - mW);
// Only keep going if within +-5 GeV.
if (abs(m12min - mW) > 5.) continue;
// Find third jet that forms mass closest to mT.
int i3min = 0;
double m123min = 0.;
diff = 1e10;
for (int i3 = 0; i3 < nJet; ++i3)
if (i3 != i1min && i3 != i2min) {
double m123 = (sJet.p(i1min) + sJet.p(i2min) + sJet.p(i3)).mCalc();
if (abs(m123 - mT) < diff) {
i3min = i3;
m123min = m123;
diff = abs(m123 - mT);
}
}
mTH.fill( m123min);
mTerrH.fill( m123min - mT);
// Only keep going if within +-20 GeV.
if (abs(m123min - mT) > 20.) continue;
// Study top pT and dependence of top mass error.
double pTT = (sJet.p(i1min) + sJet.p(i2min) + sJet.p(i3min)).pT();
if (pTT > 250.) pTT = 260.;
pTTH.fill( pTT);
mTpTH.fill( pTT, m123min - mT);
// End of event loop. Statistics. Histograms.
}
pythia.stat();
mTpTH /= pTTH;
cout << nchH << nJetH << mWH << mTH << mWerrH
<< mTerrH << pTTH << mTpTH;
// End loop over top colour reconnection scenarios.
}
// Done.
return 0;
}