main328
Back to index.
// main328.cc is a part of the PYTHIA event generator.
// Copyright (C) 2025 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.
// Keywords:
// Total cross section
// Partial cross sections
// Authors:
// Torbjörn Sjostrand
// Study total, elastic and diffractive cross sections in several models.
// Most only available for pp and p pbar; and RPP only for total and elastic.
// ABMST has been modified for diffraction, see html manual for details.
// Note: This main program circumvents the need to generate loads of events
// to just output total cross sections, by creating a free standing object
// of type SigmaTotal, and copy relevant information from the Pythia object.
// See main486.cc for example how to use the public cross section methods.
#include "Pythia8/Pythia.h"
#include "Pythia8/SigmaTotal.h"
using namespace Pythia8;
//==========================================================================
int main() {
// Basic parameters and histogram binning.
int idA = 2212;
int idB = 2212;
double eCMmin = 10.;
double eCMmax = 100000.;
int nECM = 40;
// Histograms.
Hist sigTot[5], sigEl[5], sigND[5], sigSD[5], sigDD[5], sigCD[5];
for (int i = 0; i < 5; ++i) {
sigTot[i].book("Total cross section", nECM, eCMmin, eCMmax, true);
sigEl[i].book("Elastic cross section", nECM, eCMmin, eCMmax, true);
sigND[i].book("Non-diff cross section", nECM, eCMmin, eCMmax, true);
sigSD[i].book("Single diff cross section", nECM, eCMmin, eCMmax, true);
sigDD[i].book("Double diff cross section", nECM, eCMmin, eCMmax, true);
sigCD[i].book("Central diff cross section", nECM, eCMmin, eCMmax, true);
}
double eCM, sigT,sigE, sigN, sigS, sigD, sigC;
// Loop over parametrizations.
for (int iSig = 0; iSig < 4; ++iSig) {
int modeSig = iSig + 1;
// A SigmaTotal object, which will be used to calculate the cross
// sections.
SigmaTotal st;
// Generator. Cross section model choice.
Pythia pythia;
pythia.settings.mode("Beams:idA", idA);
pythia.settings.mode("Beams:idB", idB);
pythia.settings.mode("SigmaTotal:mode", modeSig);
pythia.settings.mode("SigmaDiffractive:mode", modeSig);
// Switch off most of event generation and initialize.
pythia.readString("SoftQCD:elastic = on");
pythia.readString("PartonLevel:all = off");
pythia.readString("HadronLevel:all = off");
// If Pythia fails to initialize, exit with error.
if (!pythia.init()) return 1;
// Make a copy of the Pythia info object to initialize
// pointers in SigmaTotal.
Info pythiaInfo(pythia.info);
// Initialize the pointers.
st.initInfoPtr(pythiaInfo);
// Initialize the SigmaTotal instance.
st.init();
// Loop through logarithmic grid of collision energies.
for (int iECM = 0; iECM < nECM; ++iECM) {
eCM = eCMmin * pow( eCMmax / eCMmin, (iECM + 0.5) / double(nECM) );
// Calculate cross sections.
st.calc( idA, idB, eCM);
sigT = st.sigmaTot();
sigE = st.sigmaEl();
if (iSig < 3) {
sigN = st.sigmaND();
sigS = st.sigmaXB() + st.sigmaAX();
sigD = st.sigmaXX();
sigC = st.sigmaAXB();
}
// Fill histograms.
sigTot[iSig].fill( eCM, sigT);
sigEl[iSig].fill( eCM, sigE);
if (iSig < 3) {
sigND[iSig].fill( eCM, sigN);
sigSD[iSig].fill( eCM, sigS);
sigDD[iSig].fill( eCM, sigD);
sigCD[iSig].fill( eCM, sigC);
}
}
// End loop over parametrizations.
}
// Plot histograms.
HistPlot hpl("plot328");
hpl.frame("fig328", "Total cross section in pp collisions",
"$E_{\\mathrm{CM}}$ (GeV)", "$\\sigma$ (mb)", 8.0, 5.4);
hpl.add( sigTot[0], "-,black", "SaS/DL");
hpl.add( sigTot[1], "-,red", "MBR");
hpl.add( sigTot[2], "-,blue", "ABMST");
hpl.add( sigTot[3], "-,green", "RPP2016");
hpl.plot();
hpl.frame("", "Elastic cross section in pp collisions",
"$E_{\\mathrm{CM}}$ (GeV)", "$\\sigma$ (mb)", 8.0, 5.4);
hpl.add( sigEl[0], "-,black", "SaS/DL");
hpl.add( sigEl[1], "-,red", "MBR");
hpl.add( sigEl[2], "-,blue", "ABMST");
hpl.add( sigEl[3], "-,green", "RPP2016");
hpl.plot();
hpl.frame("", "Nondiffractive cross section in pp collisions",
"$E_{\\mathrm{CM}}$ (GeV)", "$\\sigma$ (mb)", 8.0, 5.4);
hpl.add( sigND[0], "-,black", "SaS/DL");
hpl.add( sigND[1], "-,red", "MBR");
hpl.add( sigND[2], "-,blue", "ABMST mod");
hpl.plot();
hpl.frame("", "Single diffractive cross section in pp collisions",
"$E_{\\mathrm{CM}}$ (GeV)", "$\\sigma$ (mb)", 8.0, 5.4);
hpl.add( sigSD[0], "-,black", "SaS/DL");
hpl.add( sigSD[1], "-,red", "MBR");
hpl.add( sigSD[2], "-,blue", "ABMST mod");
hpl.plot();
hpl.frame("", "Double diffractive cross section in pp collisions",
"$E_{\\mathrm{CM}}$ (GeV)", "$\\sigma$ (mb)", 8.0, 5.4);
hpl.add( sigDD[0], "-,black", "SaS/DL");
hpl.add( sigDD[1], "-,red", "MBR");
hpl.add( sigDD[2], "-,blue", "ABMST mod");
hpl.plot();
hpl.frame("", "Central diffractive cross section in pp collisions",
"$E_{\\mathrm{CM}}$ (GeV)", "$\\sigma$ (mb)", 8.0, 5.4);
hpl.add( sigCD[0], "-,black", "SaS/DL");
hpl.add( sigCD[1], "-,red", "MBR");
hpl.add( sigCD[2], "-,blue", "ABMST mod");
hpl.plot();
// Done.
return 0;
}