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PYTHIA 8.3 Worksheet

1 Introduction

The Pythia 8.3 program is a standard particle physics tool for the generation of high-
energy collisions, comprising a coherent set of physics models for the evolution from a
few-body high-energy (“hard”) scattering process to a complex multihadronic final state.
The particles are produced in vacuum. Simulation of the interaction of the produced
particles with detector material is not included in Pythia but can, if needed, be done by
interfacing to external detector-simulation codes.

The Pythia 8.3 code package contains a library of hard interactions and models for
initial- and final-state parton showers, multiple parton-parton interactions, beam rem-
nants, string fragmentation and particle decays. It also has a set of utilities and interfaces
to external programs, notably to allow the input of a wider range of hard interactions.

The objective of this exercise is to teach you the basics of how to use the Pythia 8.3
event generator to study various physics aspects. As you become more familiar you will
better understand the tools at your disposal, and can develop your own style to use them.
Within this first exercise it is not possible to describe neither the physics models used in
the program nor the full range of methods and options.

Pythia 8 is, by today’s standards, a small package. It is completely self-contained, and
is therefore easy to install for standalone usage, e.g. if you want to have it on your own
laptop, or if you want to explore physics or debug code without any danger of destructive
interference between different libraries. Section 2 describes the installation procedure,
which is what we will need for this introductory session. It does presuppose a working
Unix-style environment with C++ compilers and the like; check Appendix D if in doubt.
This section also introduces the main sources of further information.

When you use Pythia you are expected to write the main program yourself, for maximal
flexibility and power. Several examples of such main programs are included with the
code, to illustrate common tasks and help getting started. Section 3 gives you a simple
step-by-step recipe how to write a minimal main program, that can then gradually be
expanded in different directions, e.g. as in Section 4.

In Section 5 you will see how the parameters of a run can be read in from a file, so that the
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main program can be kept fixed. Many of the provided main programs therefore allow you
to create executables that can be used for different physics studies without recompilation,
but potentially at the cost of some flexibility.

The final four sections provide suggestions for optional further studies, and can be ad-
dressed in any order. Section 6 studies Z′ production, with particular emphasis on jet
properties. Section 7 describes how you can explore various physics aspects of the Stan-
dard Model Higgs production and decay. Section 8 deals with the important topic of
merging of external matrix-element input of different orders, introducing the CKKW-L

scheme as a suitable starting point. Section 9, finally, collects suggestions for a few di-
verse studies.

While Pythia can be run standalone, it can also be interfaced with a set of other li-
braries. One example is HepMC, which is the standard format used by experimentalists
to store generated events. Since the HepMC library location is installation-dependent, it
is not possible to give a fool-proof linking procedure, but some hints are provided for the
interested in Appendix C. Further main programs included with the Pythia code provide
examples of linking, e.g. to MadGraph, PowHeg, LHAPDF, FastJet, Root, and
the Les Houches Accords LHEF and SLHA.

Appendix A contains a brief summary of the event-record structure, and Appendix B
some notes on simple histogramming and jet finding. Appendices C and D have already
been mentioned.

2 Installation and documentation

Denoting a generic Pythia 8 version pythia83xx (at the time of writing xx = 12), here
is how to install Pythia 8 on a Linux/Unix/macOS system as a standalone package
(assuming you have standard Unix-family tools installed, see Appendix D).

1. In a browser, go to
https://pythia.org

2. Download the (current) program package
pythia83xx.tgz

to a directory of your choice (e.g. by right-clicking on the link).

3. In a terminal window, cd to where pythia83xx.tgz was downloaded, and type
tar xvfz pythia83xx.tgz

This will create a new (sub)directory pythia83xx where all the Pythia source files
are now ready and unpacked.

4. Move to this directory (cd pythia83xx) and do a make. This will take ∼3–15
minutes on a single core, depending on your computer. If it has n cores you can use
make -jn to speed up the compilation accordingly. The Pythia 8 library is now
compiled and ready for physics.

5. For test runs, cd to the examples/ subdirectory. An ls reveals a list of programs,
mainNNN.cc. These example programs illustrate different aspects of Pythia 8.
For a list of what they do, see the “Sample Main Programs” page in the “Getting

2

https://pythia.org


Started” section of the online manual (see further below).
Initially only use one or two to check that the installation works, preferably among
the first few ones, since several higher-number ones require further program libraries
to be linked. Once you have worked your way through the introductory exercises in
the next sections, you can return and study more programs and their output.
To execute one of the test programs, do

make mainNNN

./mainNNN

The output is directed to the terminal, stdout. To save the output to a file instead,
do ./mainNNN > mainNNN.log, after which you can study the test output at leisure
by opening mainNNN.log. See Appendix A for an explanation of the event record
that is listed for the first event in almost all of the runs.

There are three main Pythia documentation sources.

• The online manual: if you use a web browser to open the file
pythia83xx/share/Pythia8/htmldoc/Welcome.html

you will gain access to the online manual, where all available methods and settings
are described. A setting can be a boolean, an integer or a real number, or a text
string, for which the user can set its value. Use the left-column index to navigate
among the topics, which are then displayed in the larger right-hand field. The
triangle symbols ▶ are used to expand a section.
While the effect of some settings is obvious, it is less so for others. A deeper
understanding then may require that you read the relevant sections of the physics
guide (see next), in conjunction with the points raised in the online manual itself.
It may be useful to note that the .html files are built from the corresponding .xml

ones. The latter are the ones read in at the beginning of a run to specify all settings,
including particle data, and their default values. This is intended to ensure that the
documentation is always in step with the default data used by the code.

• The physics guide: the article “A comprehensive guide to the physics and us-
age of Pythia 8.3” [1] provides a detailed presentation of the physics behind the
Pythia 8.3 code, plus an overview of more practical aspects. Given that the physics
description alone is around 200 pages, it contains more material than you can take
in one sitting, but it allows you to study up on areas of specific interest. The rele-
vant references to the original literature allows you to dive even deeper. The more
practical part has some overlap with the online manual, but does not go into the
details of all methods and settings.
The full text is linked to the online manual above, as the “Introduction” of the
“Separate Documents” section, but note that it has been submitted to arXiv and
published in SciPost [1]. This should always be your main reference when you use
Pythia 8 for an article of yours, but original literature of special relevance should
not be forgotten, whether written by Pythia authors or by others.

• A Doxygen representation of the code is also available, not as part of the distri-
bution but available at

https://pythia.org/latest-doxygen

The code proper does not contain any specific Doxygen instructions, so this rep-
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resentation is obtained by an automatic extraction of information on classes and
methods, including the comments for code sections. It provides less detailed infor-
mation than the other two, but may be a more convenient way to navigate the code
structure for experts.

3 A “Hello World” program

We will now generate a single gg → tt event at the LHC, using Pythia standalone.

Open a new file mymain01.cc in the examples subdirectory with a text editor, e.g. Emacs.
Then type the following lines (here interspersed with superfluous explanatory comments,
the // parts):

// Headers and Namespaces.

#include "Pythia8/Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main() { // Begin main program.

// Set up generation.

Pythia pythia; // Declare a Pythia object

pythia.readString("Top:gg2ttbar = on"); // Switch on process.

pythia.readString("Beams:eCM = 8000."); // 8 TeV CM energy.

pythia.init(); // Initialize; incoming pp beams is default.

// Generate event(s).

pythia.next(); // Generate an(other) event. Fill event record.

return 0;

} // End main program with error-free return.

The examples/Makefile has been set up to compile all mymainNN.cc, NN = 01− 99, and
link them to the lib/libpythia8.a library, just like the mainNNN.cc ones. Therefore
you can compile and run mymain01 as before:

make mymain01

./mymain01.exe > mymain01.log

If you want to pick another name, or if you need to link to more libraries, you have to
edit examples/Makefile appropriately.

Thereafter you can study mymain01.log, especially the example of a complete event
record (preceded by initialization information, and by kinematical-variable and hard-
process listing for the same event). At this point you need to turn to Appendix A for a
brief overview of the information stored in the event record.

An important part of the event record is that many copies of the same particle may exist,
but only those with a positive status code are still present in the final state. To exemplify,
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consider a top quark produced in the hard interaction, gg → tt, initially with positive
status code. When later a shower branching t → tg occurs, the new t and g are added at
the bottom of the then-current event record, but the old t is not removed. It is marked
as decayed, however, by negating its status code. At any stage of the shower there is
thus only one “current” copy of the top. After the shower, when the final top decays,
t → bW+, also that copy receives a negative status code. When you understand the basic
principles, see if you can find several copies of the top quarks, and check the status codes
to figure out why each new copy has been added. Also note how the mother/daughter
indices tie together the various copies.

4 A first realistic analysis

We will now gradually expand the skeleton mymain01 program from above, towards what
would be needed for a more realistic analysis setup.

• Often, we wish to mix several processes together. To add the process qq → tt to
the above example, just include a second pythia.readString call

pythia.readString("Top:qqbar2ttbar = on");

• Now we wish to generate more than one event. To do this, introduce a loop around
pythia.next(), so the code reads

for (int iEvent = 0; iEvent < 5; ++iEvent) {
pythia.next();

}
Hereafter, we will call this the event loop. The program will generate 5 events. Each
call to pythia.next() resets the event record and fills it with a new event. To list
more of the events, you also need to add

pythia.readString("Next:numberShowEvent = 5");

along with the other pythia.readString commands.

• To obtain statistics on the number of events generated of the different kinds, and
the estimated cross sections, add a

pythia.stat();

just before the end of the program.

• During the run you may receive problem messages. These come in three kinds:

• a warning is a minor problem that is automatically fixed by the program, at
least approximately;

• an error is a bigger problem, that is normally still automatically fixed by the
program, by backing up and trying again;

• an abort is such a major problem that the current event could not be completed.
In such a rare case pythia.next() is false and the event should be skipped.

Thus the user need only be on the lookout for aborts. During event generation, a
problem message is printed only the first time it occurs (except for a few special
cases). The above-mentioned pythia.stat() will then tell you how many times
each problem was encountered over the entire run.
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• Studying the event listing for a few events at the beginning of each run is useful
to make sure you are generating the right kind of events, at the right energies, etc.
For real analyses, however, you need automated access to the event record. The
Pythia event record provides many utilities to make this as simple and efficient as
possible. To access all the particles in the event record, insert the following loop
after pythia.next() (but fully enclosed by the event loop)

for (int i = 0; i < pythia.event.size(); ++i) {
cout << "i = " << i << ", id = "

<< pythia.event[i].id() << endl;

}
which we will call the particle loop. Inside this loop, you can access the properties
of each particle pythia.event[i]. For instance, the method id() returns the PDG
identity code of a particle (see Appendix A.1). The cout statement, therefore, will
give a list of the PDG code of every particle in the event record.

• As mentioned above, the event listing contains all partons and particles, traced
through a number of intermediate steps. Eventually, the top will decay (t → Wb),
and by implication it is the last top copy in the event record that defines the defini-
tive top production kinematics, just before the decay. You can obtain the location
of this final top e.g. by inserting a line just before the particle loop

int iTop = 0;

and a line inside the particle loop
if (pythia.event[i].id() == 6) iTop = i;

The value of iTop will be set every time a top is found in the event record. When
the particle loop is complete, iTop will now point to the final top in the event record
(which can be accessed as pythia.event[iTop]).

• In addition to the particle properties in the event listing, there are also methods
that return many derived quantities for a particle, such as transverse momentum,
pythia.event[iTop].pT(), and pseudorapidity, pythia.event[iTop].eta(). Use
these methods to print out the values for the final top found above.

• We now want to generate more events, say 1000, to view the shape of these distri-
butions. Inside Pythia is a very simple histogramming class, see Appendix B.1,
that can be used for rapid check/debug purposes. To book the histograms, insert
before the event loop

Hist pT("top transverse momentum", 100, 0., 200.);

Hist eta("top pseudorapidity", 100, -5., 5.);

where the last three arguments are the number of bins, the lower edge and the up-
per edge of the histogram, respectively. Now we want to fill the histograms in each
event, so before the end of the event loop insert

pT.fill( pythia.event[iTop].pT() );

eta.fill( pythia.event[iTop].eta() );

Finally, to write out the histograms, after the event loop we need a line like
cout << pT << eta;

Do you understand why the η distribution looks the way it does? Propose and study
a related but alternative measure and compare.

• As a final standalone exercise, consider plotting the charged multiplicity of events.
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You then need to have a counter set to zero for each new event. Inside the particle
loop this counter should be incremented whenever the particle isCharged() and
isFinal(). For the histogram, note that it can be treacherous to have bin limits
at integers, where roundoff errors decide whichever way they go. In this particular
case only even numbers are possible, so 100 bins from −1 to 399 would still be
acceptable.

5 Input files

With the mymain01.cc structure developed above it is necessary to recompile the main
program for each minor change, e.g. if you want to rerun with more statistics. This is
not time-consuming for a simple standalone run, but may become so for more realistic
applications. Therefore, parameters can be put in special input “card” files that are read
by the main program.

We will now create such a file, with the same settings used in the mymain01.cc example
program. Open a new file, mymain01.cmnd, and input the following

! t tbar production at the LHC

Beams:idA = 2212 ! first incoming beam is a 2212, i.e. a proton.

Beams:idB = 2212 ! second beam is also a proton.

Beams:eCM = 8000. ! the cm energy of collisions.

Top:gg2ttbar = on ! switch on the process g g -> t tbar.

Top:qqbar2ttbar = on ! switch on the process q qbar -> t tbar.

The mymain01.cmnd file can contain one command per line, of the type
variable = value

All variable names are case-insensitive (the mixing of cases has been chosen purely to
improve readability) and non-alphanumeric characters (such as !, # or $) will be inter-
preted as the start of a comment. All valid variables are listed in the online manual.
Cut-and-paste of variable names can be used to avoid spelling mistakes.

Any command that begins with a number is for changes in the ParticleData database,
where the initial number is the PDG identity code of the particle. An initial letter instead
is for changes in the Settings database, which contains everything else.

The final step is to modify our program to use this input file. Its name can be hardcoded
in the main program, but it can also be provided as a command-line argument for more
flexibility. To do this, replace the int main() { line by

int main(int argc, char* argv[]) {
and replace all pythia.readString(...) commands with the single command

pythia.readFile(argv[1]);

The executable mymain01 is then run with a command line like
./mymain01 mymain01.cmnd > mymain01.log

and should give the same output as before.

In addition to all the internal Pythia variables there exist a few defined in the database

7



but not actually used. These are intended to be useful in the main program, and thus
begin with Main:. The most basic of those is Main:numberOfEvents, which you can use
to specify how many events you want to generate. To make this have any effect, you need
to read it in the main program, after the pythia.readFile(...) command, by a line
like

int nEvent = pythia.mode("Main:numberOfEvents");

and set up the event loop like
for (int iEvent = 0; iEvent < nEvent; ++iEvent) {

You are now free to play with further options in the input file, such as:

• 6:m0 = 175.

change the top mass, which by default is 173 GeV.

• PartonLevel:FSR = off

switch off final-state radiation.

• PartonLevel:ISR = off

switch off initial-state radiation.

• PartonLevel:MPI = off

switch off multiparton interactions.

• Tune:pp = 20 (or other values between 1 and 32)
different combined tunes, in particular to radiation and multiparton interactions
parameters. In part this reflects that no generator is perfect, and also not all data
is perfect, so different emphasis will result in different optima.

• Random:setSeed = on

Random:seed = 123456789

all runs by default use the same random-number sequence, for reproducibility, espe-
cially useful during development and debug, but you can pick any number between
1 and 900,000,000 to obtain a unique sequence.

For instance, check the importance of FSR, ISR and MPI on the charged multiplicity of
events by switching off one component at a time.

The possibility to use command-line input files is further illustrated in many of the
mainNNN.cc programs, e.g. main111.cc, main132.cc and main231.cc.

You have now completed the core part of the worksheet — congratulations! From now
on you should be able to take off in different directions, depending on your interests. The
following four sections contain examples of further possible studies, and can be addressed
in any order.

6 Jets and other event properties

The purpose of this exercise is to study further how different physics aspects affect event
properties, notably jet production. As a simple example, assume that we want to study
the properties of a Z′ gauge boson, i.e. more-or-less a heavier copy of the normal Z0 one.
Such particles have been proposed in various scenarios for physics beyond the Standard
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Model. The case of a 1 TeV mass has already been ruled out at the LHC, but it offers
a good way to illustrate the importance of parton showers, multiparton interactions and
hadronization.

To begin, open the main216.cc file in your examples directory. Have a look at it, to check
that you understand the overall flow of the code. The process used is qq → γ∗/Z0/Z′0 →
q′q′, with full γ∗/Z0/Z′0 interference, but you can concentrate on the Z′ peak region by
restricting the generated mass window. The Z′ identity code is 32, and its allowed decay
channels apply for this process at all mass scales. By switching off all its decay modes,
and then switching back on those that contain a d, u, s, c or b one, decays are restricted
to “light” quarks, as viewed in relation to the Z′ mass scale.

Compile and run the program as before. Study main216.log output, notably the his-
tograms at the end (see Appendix B.1). Identify average number and spread, and note
other properties, such as how often two jets are (not) found. Do you understand roughly
what is going on?

If you have Python 3 and Matplotlib (see beginning of Appendix D) installed, you can
also do

python3 plot216.py

and open fig216.pdf for a nicer representation of the histograms, but without the statis-
tics information explicit.

Once you are familiar with the basic setup, we can start to do variations around it, to
study various effects. You may not have time for all of them, and do not need to do
them in the order listed below. On the contrary, if you do this together with others, it
would be useful if you branch out in different directions, using the various suggestions
as inspiration. Then compare results and reason whether they make sense, notably that
effects go in the expected direction.

Bookkeep key results, at least by tabulating the average and spread of the two-jet mass
for each run, and optionally by (re)naming the PDF files so that they are not overwritten.
Consider the statistical significance of the difference between scenarios. You may want to
increase the number of events generated, but for this exercise not so much that it becomes
the limiting factor for the studies.

• Make use of further pythia.readString("..."); commands to switch off one or
more aspects of the full event generation, notably
PartonLevel:ISR = off for no initial-state radiation,
PartonLevel:FSR = off for no final-state radiation,
PartonLevel:MPI = off for no multiparton interactions, and
HadronLevel:all = off for no hadronization.
How does each of these affect the average reconstructed mass?

• Instead switch all off as a starting point and then add back on one component at a
time, and again quantify results.

• How would matters change for a different Z′ mass? Use e.g. 200 GeV and 5 TeV as
two extremes. Remember also to modify the Z′ mass limits, the histogram upper
limit, and the jetpTmin scale in proportion (more or less).

• How would properties change if the jets were made narrower or broader, say
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jetRadius 0.4 or 1.0? Similarly if their minimal transverse momentum jetpTmin

is modified? You could even switch from the anti-k⊥ algorithm to the k⊥ one,
jetPower = 1, or the Cambridge/Aachen one, ditto = 0.

• Histogram the number of found jets. What would the effect be if all found jets are
included in the invariant mass calculation for all events with at least two jets?

• The decay to top is not included above, since event topologies are much more com-
plicated there. Nevertheless, do a run with t = 6 as the only 32:onIfAny decay
product.

• Study other event properties. For instance, you can plot the charged multiplicity of
events, cf. main101.cc, and how it varies when different components are switched
on/off. Or similarly the Z′ p⊥, but then for the last Z′ copy in the event, after all
effects have been added to it, cf. main102.cc.

• If you want to overlay curves from different conditions, it is feasible to have a big
for loop, within which a new Pythia instance is created and destroyed with new
settings each time. Preferably the booking of histograms would come before this
big loop, and the plotting code after it.

Most of the variations above can be combined, e.g. to study a narrow/broad jet radius at
a low Z′ mass.

A good reference to learn more about the theory of jet algorithms is [10].

7 Some studies of Higgs production

The discovery of the Higgs boson has been the main accomplishment of the LHC to date.
Generators have been part of that story, right from the early days when the ATLAS and
CMS detectors were designed in such a way as to permit that discovery. This section
offers exercises intended to explore the physics of Higgs production from various aspects,
with Pythia as guide.

7.1 Production kinematics

The dominant production channel is gg → H0. To study the kinematics distribution of the
Higgs, the existing top production program could easily be modified. Instead of switching
on top production, use

HiggsSM:gg2H = on

And instead of looking for the last top copy before decay, look for the last Higgs copy
iH, ie. the last particle with id() == 25. Once found the pythia.event[iH] methods
can be used to extract and histogram Higgs kinematics distributions, like for the top. In
addition to the transverse momentum pT() you can compare the distributions for true
rapidity y() and for pseudorapidity eta().
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7.2 Production processes

While gg → H0 is the main Higgs production channel, it is not the only one. Do a run
with HiggsSM:all = on to check which are implemented and their relative importance.
Also figure out how you could generate one of the less frequent processes on its own, either
from the online manual or by making some deductions from the output with all processes.

In order to get decent cross-section statistics faster, you can use PartonLevel:all = off

to switch off everything except the hard-process generation itself. One price to pay is that
the kinematics distributions for the Higgs are not meaningful.

If instead complete events are generated you can study how the transverse-momentum
distribution varies between processes. What are the reasons behind the significant differ-
ences?

7.3 Decay channels

Also the decay channels and branching ratios in the Higgs decay are of interest. Here no
ready-made statistics routines exist, so you have to do it yourself. You already have the
location iH of the decaying Higgs. Since the standard decay modes are two-body, their
locations are stored in

int iDau1 = pythia.event[iH].daughter1();

int iDau2 = pythia.event[iH].daughter2();

and from that you can get the identities of the daughters. Introduce counters for all the
decay modes you come to think of, that you use to derive and print branching ratios. Print
the daughter identities in the leftover decays, where you did not yet have any counters,
and iterate until you catch it all.

In this case, PartonLevel:all = off cannot be used, since then one does not get to the
decays, at least not with the information in pythia.event. But you can combine

PartonLevel:ISR = off to switch off initial-state radiation,
PartonLevel:FSR = off to switch off final-state radiation,
PartonLevel:MPI = off to switch off multiparton interactions, and
HadronLevel:all = off to switch off hadronization and decays,

to get almost the same net time saving.

7.4 Mass distribution

By now the Higgs mass is pretty well pinned down, but you can check what the branching
ratios would have been with another mass, e.g. by 25:m0 = 150. for a 150 GeV Higgs.

On a related note, the Higgs mass is generated according to a Breit-Wigner distribution,
convoluted with parton densities. Can you resolve this shape for the default Higgs mass?
How does it change had the Higgs been heavier, say at 400 GeV?
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7.5 Associated jets

Let us return to the different production channels, which give different event character-
istics. Well-known is that the qq → qqH0 processes give rise to jets at large rapidities,
that can be used for tagging purposes. This can be studied as follows.

The two relevant processes are HiggsSM:ff2Hff(t:ZZ) and HiggsSM:ff2Hff(t:WW) for
Z0Z0 and W+W− fusion (f here denotes a fermion; the same processes also exist e.g. at
e+e− colliders), that are to be compared with the standard gg → H0 one.

Find jets using the SlowJet class, see Appendix B.2, e.g. using the anti-k⊥ algorithm
with R = 0.7, p⊥min = 30 GeV and ηmax = 5.

One problem is that also the Higgs decay products can give jets, which we are not inter-
ested in here. To avoid this, we can switch off Higgs decays by 25:mayDecay = off. This
still leaves the Higgs itself in the event record. A call pythia.event[iH].statusNeg()
will negate its status code, and since slowJet.analyze(...) only considers the final
particles, i.e. those with positive status, the Higgs is thus eliminated.

Now study the p⊥ and rapidity spectrum of the hardest jets, and compare those distribu-
tions for the two processes. Also study how many jets are produced in the two cases.

7.6 Underlying event

Several mechanisms contribute to the overall particle production in Higgs events. This
can be studied e.g. by histogramming the charged particle distribution.

You then need to have a counter set to zero for each new event. Inside the particle loop
this counter should be incremented whenever the particle isFinal() and isCharged().
For the histogram, note that it can be treacherous to have bin limits at integers, where
roundoff errors decide whichever way they go. In this particular case only even numbers
are possible, so 100 bins from −1 to 399 would still be acceptable, for instance.

Once you have the distribution down for normal events, study what happens if you remove
ISR, FSR and MPI one by one or all together. Also study the contribution of the Higgs
decay itself to the multiplicity, e.g. by setting the Higgs stable. Reflect on why different
combinations give the pattern they do, e.g. why ISR on/off makes a bigger difference
when MPI is on than off.

7.7 Decay properties

The decay mode H0 → Z0Z0 → ℓ+ℓ−ℓ′+ℓ′−, ℓ, ℓ′ = e, µ, is called the gold-plated one, since
it stands out so well from backgrounds. It also offers angular correlations that probe the
spin of a Higgs candidate.

For now consider a simpler, but still interesting, pair of distributions: the mass spectra of
the two Z0 decay products. Plot them for the lighter and the heavier of the two separately,
and compare shapes and average values. To improve statistics, you can use 25:onMode =

off to switch off all decay channels, and then 25:onIfMatch = 23 23 to switch back on

12



the decay to Z0Z0 (and nothing else). Further, neither ISR, FSR, MPI nor hadronization
affect the mass distributions, so this allows some speedup.

How can one qualitatively understand why the two masses tend to be so far apart, rather
than roughly comparable?

7.8 Comparison with Z production

One of the key reference processes at hadron colliders is Z0 production. To lowest order it
only involves one process, qq → γ∗/Z0, accessible with WeakSingleBoson:ffbar2gmZ =

on. One complication is that the process involves γ∗/Z0 interference, and so a significant
enhancement at low masses, even if the combined particle always is classified with code
23, however.

Compare the two processes gg → H0 and qq → γ∗/Z0, with respect to the p⊥ distribu-
tion of the boson and the total charged multiplicity of the events. So as to remove the
dependence on the difference in mass, you can set a specific mass range in the γ∗/Z0

generation with PhaseSpace:mHatMin = 124 and PhaseSpace:mHatMax = 126, to agree
with the H0 mass to ± 1 GeV.

Can you explain what is driving the differences in the p⊥ and nchg distributions between
the two processes?

8 CKKW-L merging

The main programs we have constructed and studied in the previous sections have one
common drawback: all start from the Pythia 8 internal library of lowest-order processes,
and then add higher-order corrections entirely by the internal parton-shower machinery.
This will give reliable results for soft and collinear configurations, but less so for multiple
hard, well-separated jets. To model the latter similarly well we need to include external
input from higher-order calculations, at least at tree level, but where feasible also at one-
loop level. A number of different external programs can provide such input, using the
LHA/LHEF standard format [2, 3, 4] to transfer information, usually as LHE files. The
hard-process events stored in these files will be accepted or rejected in such a way that
double counting between different parton multiplicities is removed, resulting in a smooth
transition between the multiplicities, and between the external input and the internal
handling of parton showers. These two tasks usually go hand in hand.

Many different schemes have been proposed for matrix element + parton shower merging
(MEPS), and a comprehensive selection of such schemes is available with the Pythia 8
distribution, including

• leading-order merging: MLM jet matching [5] (MadGraph- or AlpGen-style),
CKKW-L merging [6], and unitarised ME+PS merging (UMEPS) [7]; and

• next-to-leading order merging: NL3 merging and unitarised NLO+PS merging
(UNLOPS) [8].
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The setup of such merging schemes is documented in the online manual on the page
“Matching and Merging” with further subpages, and is illustrated in several of the example
main programs.

Here we will experiment with the CKKW-L scheme, which was the first merging scheme
available in Pythia 8, and also is among the simpler to work with. We will take the
main162 example main program with the main162ckkwl.cmnd input file as a starting
point for our studies. In its general structure main162.cc closely resembles the main
program(s) we already constructed step by step, so we will only need to comment on
aspects that are new for the merging game. The process W±+ ≤ 2 jets will be taken as
an example. It uses the LHE files

w production tree 0.lhe for W± + 0 partons
w production tree 1.lhe for W± + 1 parton
w production tree 2.lhe for W± + 2 partons

in the examples directory to produce a result that simultaneously describes W± + 0, 1, 2
jet observables with leading-order matrix elements while also including arbitrarily many
shower emissions. Jets are here defined by a clustering procedure on the partons thus
generated. (We omit other effects from consideration, such as MPIs or hadronization.)

Say we want to study a one-jet observable, e.g. the transverse momentum of the jet
j in events with exactly one jet. In this case, we want to take “hard” jets from the
pp → Wj matrix element (ME), while “soft” jets should be modelled by parton-shower
(PS) emissions off the pp → W states. In order to smoothly merge these two samples,
we have to know in which measure “hard” is defined, and which value of this measure
separates the hard and soft regions. In main162ckkwl.cmnd, these definitions are

Merging:doPTLundMerging = on

Merging:TMS = 15.

This will enable the merging procedure, with the merging scale defined by the shower
evolution variable p⊥ (called pTLund in the merging framework and in MadGraph5) with
a merging scale tMS = 15 GeV. This definition fixes what we mean when we talk about
“hard” and “soft” jets:

Hard jets: min{any p⊥ between sets of partons} > tMS

Soft jets: min{any p⊥ between sets of partons} < tMS

Thus, in order for the merging prescription to work, we need to remove phase space regions
with min{any p⊥} < tMS from the W + 1-parton matrix element calculation. Otherwise,
there would be an overlap between the “soft jet” and “hard jet” samples.

This requirement means that the merging-scale definition should be implemented as a cut
in the matrix element generator. Alternatively, it is possible to enforce the cut inPythia 8
internally, assuming that the ME is calculated with more inclusive (i.e. loose) cuts. This
is illustrated in Figure 1, in which the triangle depicts the whole phase space, with soft
or collinear divergences located on the edges. The yellow area symbolises the phase-space
region used for the generation of the LHEF events, while the green area represents the
phase space after Pythia 8 has enforced the merging-scale cut on the input events. In
order to correctly apply the merging-scale cut, the green area has to be fully contained
inside the yellow one, i.e. the cut in the ME generator has to be more inclusive than the
tMS-cut. For optimal efficiency, the yellow and green areas should be identical. This can be

14



Figure 1: Schematic illustration of how the phase space covered by the external matrix-
element generator, yellow region, has to enclose the region passing the Pythia 8 cuts,
green region.

the case in MadGraph5 [9], when using the generation cuts ktdurham (corresponding to
Merging:doKTMerging = on) and ptlund (corresponding to Merging:doPTLundMerging

= on).

After the merging-scale definition, we define the underlying process. To tell Pythia 8
that we want to merge additional jets in W-boson production, we specify which is the
core process, using MadGraph5 notation without spaces, where the final state is defined
by the W± decay products rather than by the W±:

Merging:Process = pp>LEPTONS,NEUTRINOS

in main162ckkwl.cmnd. Since we include both W+ and W− in the LHE files, we use the
wildcards LEPTONS and NEUTRINOS to mean leptons and antileptons as well as neutrinos
and antineutrinos, respectively. Finally, the setting

Merging:nJetMax = 2

tells the program to include the pre-generated ME events for up to two additional jets.

In main162.cc, the CKKW-L input file main162cckwl.cmnd is read early on by the
pythia.readFile(...) command. This gives access to the number of events to be read
from each LHE file through Main:numberOfEvents and the number of LHE files to be
processed via Main:numberOfSubruns. The subrun loop then handles each LHE file, one
at a time. Specifically, the

pythia.readFile(cmndFile, iMerge);

uses the iMerge argument when reading the main162ckkwl.cmnd file, so that only those
commands following the respective Main:subrun = iMerge label are read. (Plus that
everything before the first Main:subrun is re-read, but that does not matter since it stays
the same.) Thus the proper LHE file is picked up for each jet multiplicity. The

Beams:frameType = 4

also informs Pythia that beam parameters should be read from the header section of the
LHE file, and not set by the user.

Then we enter the event loop. The already-discussed difference in phase-space coverage
can lead to a fair fraction of all input events being rejected. Thus the number of produced
events can be lower than the requested Main:numberOfEvents one if the file is not large
enough. (When no further events can be read the pythia.next() command will return
false, so that the event loop can be exited at the end of the LHE file.) Those events
that survive come with a weight

double weightMerging = pythia.info.mergingWeight();

15



which contains Sudakov factors (to remove the double counting between samples of differ-
ent multiplicity), αs ratios (to incorporate the αs running not available in matrix element
generators), and ratios of parton distributions (to include variable factorization scales).
If the flag Merging:includeWeightInXsection is set, the weight is instead found in

double weight = pythia.info.weight();

In order to always get the weight, it is recommended to use the product of weight() and
mergingWeight(). This weight must be used when filling histogram bins, as is e.g. done
by

pTWnow.fill(pTW, weight);

for the p⊥ of the W boson. The sum of weights also goes into the calculation of the total
generated cross section.

After the event loop, the contribution to the p⊥ of the W boson from this particular
multiplicity is normalised by

pTWnow *= MB2PB*norm/binWidth;

where norm includes the weight per event,
norm = sigmaInc/pythia.info.nAccepted();

the variable MB2PB is a factor of 109 to convert from mb to pb, and binWidth compensates
for the bin width to yield cross section per GeV. This number and more detailed statistics
are printed to the terminal. As a final step, the contribution of the current subrun is
added to the total histogram

pTWsum += pTWnow;

and the subrun loop begins over with the next LHE file. The complete histogram, com-
bining all multiplicities, is printed after the sub-run loop has concluded.

You can compile main162.cc by
make main162

and run CKKW-L merging with
./main162 main162ckkwl.cmnd

When you run the program, note that some warning messages are issued routinely as part
of the merging machinery, in the steps where a clustering history is found and where it is
decided whether an event fails the merging scale cuts. Warnings from the SLHA interface
also are irrelevant. So no reason to worry about any of that.

After the first run with the main program as is, you can try different variations.

• Convince yourself that the variation of the “merging weight” is moderate.

• Check in which p⊥ regions which jet multiplicity contributes most.

• Study how the individual contributions and the sum changes when you run with a
maximum of 1 or 0 jets, instead of the default 2.

• Compare the p⊥ spectrum of the W with what you get from running the internal
Pythia production process, by straightforward modifications of your mymain01

program.

• A major limitation is the size of the event files that come with the standard Pythia
distribution, for storage reasons. If you have a decent internet connection you can
download larger files, with 100 000 events for each multiplicity up to W + 4 par-
tons. Do this from the Pythia home page, near the bottom of the start page,
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files wp tree 0.lhe.gz through wp tree 4.lhe.gz. You should gunzip them after
downloading. (It is also possible to configure Pythia so that it can read gzipped
files, see the README in the Pythia main directory, but this is less trivial.) With
these files you can repeat the exercise above, and in particular check how much
is gained by including the further W + 3 and W + 4 samples. Note that you
have to change the Beams:LHEF inputs in the respective subruns to reflect the
names of the wp tree *.lhe files. Since these files were generated with a k⊥ cut
of k⊥,cut = 30 GeV and D = 0.4, you also need to set Merging:doKTMerging = on

(and Merging:doPTLundMerging = off) and Merging:DParameter = 0.4. To run
through all events in the files takes a while, so check with a fraction of the sample
to begin with, and be prepared to do something else while you wait for the full run
to complete.

• Alternatively, if you are already familiar with MadGraph5, you could generate
your own LHE files and merge them. This would take some time, however, in
particular for the higher multiplicities, so may not be an option.

• Use a jet finder to analyse the final state, and plot the p⊥ spectra for the first,
second, and third hardest jets, combining separate contributions similarly to what
is done in main162.cc for the W p⊥ spectrum. Instructions how to use the built-in
SlowJet jet finder can be found in Appendix B.2.

• Check the variation of merged predictions with tMS. You can do this by using an
“inclusive” event sample, and having Pythia enforce a stronger tMS cut. In which
phase-space region is the tMS variation most visible?

• Switch between the “wimpy” and “power” options for maximal shower scales by
choosing values for TimeShower:pTmaxMatch and SpaceShower:pTmaxMatch. Are
the effects more visible in merged or non-merged predictions?

Once you have familiarised yourself with the example, you can experiment with more
advanced settings in main162ckkwl.cmnd. Alternatively, you can also try other merg-
ing schemes and check how the results compare to CKKW-L merging, e.g. unitarised
leading-order merging (UMEPS) as illustrated in main162umeps.cmnd, or unitarised next-
to-leading order merging (UNLOPS) as illustrated in main162cmnd.cc. Both input files
work with the main162.ccmain program that you have used for CKKW-L merging above.
To see how to implement a user-defined merging scale function, take a look at main161.cc.
Finally, you can try main164.cc, which is intended as the matching and merging frontend
for Pythia and can be run with several .cmnd files for different matching/merging op-
tions. The main164.cc example produces HepMC events that can either be used directly
in Rivet during the run or saved in a file to be used in standard analysis and plotting
tools after the run.

9 Further studies

If you have time left, you should take the opportunity to try a few other processes or
options. Below are given some examples, but feel free to pick something else that you
would be more interested in.
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• One popular misconception is that the energy and momentum of a B meson has to
be smaller than that of its mother b quark, and similarly for charm. The fallacy
is twofold. Firstly, if the b quark is surrounded by nearby colour-connected gluons,
the B meson may also pick up some of the momentum of these gluons. Secondly,
the concept of smaller momentum is not Lorentz-frame-independent: if the other
end of the b colour force field is a parton with a higher momentum (such as a beam
remnant) the “drag” of the hadronization process may imply an acceleration in the
lab frame (but a deceleration in the beam rest frame).
To study this, simulate b production, e.g. the process HardQCD:gg2bbbar. Identify
B/B∗ mesons that come directly from the hadronization, for simplicity those with
status code −83 or −84. In the former case the mother b quark is in the mother1()
position, in the latter in mother2() (study a few event listings to see how it works).
Plot the ratio of B to b energy to see what it looks like.

• One of the characteristics of multiparton-interactions (MPI) models is that they lead
to strong long-range correlations, as observed in data. That is, if many hadrons are
produced in one rapidity range of an event, then most likely this is an event where
many MPI’s occurred (and the impact parameter between the two colliding protons
was small), and then one may expect a larger activity also at other rapidities.
To study this, select two symmetrically located, one unit wide bins in rapidity
(or pseudorapidity), with a variable central separation ∆y: [∆y/2,∆y/2 + 1] and
[−∆y/2− 1,−∆y/2]. For each event you may find nF and nB, the charged mul-
tiplicity in the “forward” and “backward” rapidity bins. Suitable averages over a
sample of events then gives the forward–backward correlation coefficient

ρFB(∆y) =
⟨nF nB⟩ − ⟨nF ⟩⟨nB⟩√

(⟨n2
F ⟩ − ⟨nF ⟩2)(⟨n2

B⟩ − ⟨nB⟩2)
=

⟨nF nB⟩ − ⟨nF ⟩2

⟨n2
F ⟩ − ⟨nF ⟩2

,

where the last equality holds for symmetric distributions such as in pp and pp.
Compare how ρFB(∆y) changes for increasing ∆y = 0, 1, 2, 3, . . ., with and
without MPI switched on (PartonLevel:MPI = on/off) for minimum-bias events
(SoftQCD:minBias = on).

• Z0 production to lowest order only involves one process, which is accessible with
WeakSingleBoson:ffbar2gmZ = on. The problem here is that the process is ff →
γ∗/Z0 with full γ∗/Z0 interference and so a significant enhancement at low masses.
The combined particle is always classified with code 23, however. So generate events
and study the γ∗/Z0 mass and p⊥ distributions. Then restrict to a more “Z0-like”
mass range with PhaseSpace:mHatMin = 75. and PhaseSpace:mHatMax = 120.

• Use a jet clustering algorithm, e.g. one of the SlowJet options described in Ap-
pendix B.2, to study the number of jets found in association with the Z0 above.
You can switch off Z0 decay with 23:mayDecay = no, and negate its status code by
pythia.event[iZ].statusNeg(), so that it will not be included in the jet finding.
Here iZ is the last copy of the Z0, cf. how the last top copy was found above. Again
check the importance of FSR/ISR/MPI.

As a final note, some past summer schools have focused on specific topics for tutorials,
and often used preconfigured environments. These tutorials can offer further insights, but
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are seldom of the Pythia-standalone character that we have aimed for here. If you are
interested, some of them are available at

https://gitlab.com/Pythia8/tutorials.

A The Event Record

The event record is set up to store every step in the evolution from an initial low-
multiplicity partonic process to a final high-multiplicity hadronic state, in the order that
new particles are generated. The record is a vector of particles, that expands to fit the
needs of the current event (plus some additional pieces of information not discussed here).
Thus event[i] is the i’th particle of the current event, and you may study its properties
by using various event[i].method() possibilities.

The event.list() listing provides the main properties of each particles, by column:

• no, the index number of the particle (i above);

• id, the PDG particle identity code (method id());

• name, a plaintext rendering of the particle name (method name()), within brackets
for initial or intermediate particles and without for final-state ones;

• status, the reason why a new particle was added to the event record (method
status());

• mothers and daughters, documentation on the event history (methods mother1(),
mother2(), daughter1() and daughter2());

• colours, the colour flow of the process (methods col() and acol());

• p x, p y, p z and e, the components of the momentum four-vector (px, py, pz, E), in
units of GeV with c = 1 (methods px(), py(), pz() and e());

• m, the mass, in units as above (method m()).

For a complete description of these and other particle properties (such as production and
decay vertices, rapidity, p⊥, etc), open the program’s online documentation in a browser
(see Section 2, point 6, above), scroll down to the “Study Output” section, and follow
the “Particle Properties” link in the left-hand-side menu. For brief summaries on the less
trivial of the ones above, read on.

A.1 Identity codes

A complete specification of the PDG codes is found in the Review of Particle Physics [11].
An online listing is available from

http://pdg.lbl.gov/2022/reviews/rpp2022-rev-monte-carlo-numbering.pdf

A short summary of the most common id codes would be
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1 d 11 e− 21 g 211 π+ 111 π0 213 ρ+ 2112 n
2 u 12 νe 22 γ 311 K0 221 η 313 K∗0 2212 p
3 s 13 µ− 23 Z0 321 K+ 331 η′ 323 K∗+ 3122 Λ0

4 c 14 νµ 24 W+ 411 D+ 130 K0
L 113 ρ0 3112 Σ−

5 b 15 τ− 25 H0 421 D0 310 K0
S 223 ω 3212 Σ0

6 t 16 ντ 431 D+
s 333 ϕ 3222 Σ+

Antiparticles to the above, where existing as separate entities, are given with a negative
sign.
Note that simple meson and baryon codes are constructed from the constituent (anti)quark
codes, with a final spin-state-counting digit 2s + 1 (K0

L and K0
S being exceptions), and

with a set of further rules to make the codes unambiguous.

A.2 Status codes

When a new particle is added to the event record, it is assigned a positive status code
that describes why it has been added, as follows (see the online manual for the meaning
of each specific code):

code range explanation
11 – 19 beam particles
21 – 29 particles of the hardest subprocess
31 – 39 particles of subsequent subprocesses in multiparton interactions
41 – 49 particles produced by initial-state-showers
51 – 59 particles produced by final-state-showers
61 – 69 particles produced by beam-remnant treatment
71 – 79 partons in preparation of hadronization process
81 – 89 primary hadrons produced by hadronization process
91 – 99 particles produced in decay process, or by Bose-Einstein effects

Whenever a particle is allowed to branch or decay further its status code is negated (but it
is never removed from the event record), such that only particles in the final state remain
with positive codes. The isFinal() method returns true/false for positive/negative
status codes.

A.3 History information

The two mother and two daughter indices of each particle provide information on the
history relationship between the different entries in the event record. The detailed rules
depend on the particular physics step being described, as defined by the status code. As
an example, in a 2 → 2 process ab → cd, the locations of a and b would set the mothers
of c and d, with the reverse relationship for daughters. When the two mother or daughter
indices are not consecutive they define a range between the first and last entry, such as a
string system consisting of several partons fragment into several hadrons.

There are also several special cases. One such is when “the same” particle appears as a
second copy, e.g. because its momentum has been shifted by it taking a recoil in the dipole
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picture of parton showers. Then the original has both daughter indices pointing to the
same particle, which in its turn has both mother pointers referring back to the original.
Another special case is the description of ISR by backwards evolution, where the mother
is constructed at a later stage than the daughter, and therefore appears below it in the
event listing.

If you get confused by the different special-case storage options, the two motherList()

and daughterList() methods return a vector of all mother or daughter indices of a
particle.

A.4 Colour flow information

The colour flow information is based on the Les Houches Accord convention [2]. In it, the
number of colours is assumed infinite, so that each new colour line can be assigned a new
separate colour. These colours are given consecutive labels: 101, 102, 103, . . . . A gluon
has both a colour and an anticolour label, an (anti)quark only (anti)colour.

While colours are traced consistently through hard processes and parton showers, the
subsequent beam-remnant-handling step often involves a drastic change of colour labels.
Firstly, previously unrelated colours and anticolours taken from the beams may at this
stage be associated with each other, and be relabelled accordingly. Secondly, it appears
that the close space–time overlap of many colour fields leads to reconnections, i.e. a
swapping of colour labels, that tends to reduce the total length of field lines.

B Some facilities

The Pythia package contains some facilities that are not part of the core generation
mission, but are useful for standalone running, notably at summer schools. Here we give
some brief info on histograms and jet finding.

B.1 Histograms

For real-life applications you may want to use sophisticated histogramming programs like
ROOT, which however take much time to install and learn. Within the time at our
disposal, we therefore stick with the very primitive Hist class. Here is a simple overview
of what is involved.

As a first step you need to declare a histogram, with name, title, number of bins and x
range (from, to), like

Hist HpT("Higgs transverse momentum", 100, 0., 200.);

Once declared, its contents can be added by repeated calls to fill,
HpT.fill( 22.7, 1.);

where the first argument is the x value and the second the weight. Since the weight
defaults to 1 the last argument could have been omitted in this case.
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3.50*10^ 2 9

3.00*10^ 2 X 7

2.50*10^ 2 X 1X

2.00*10^ 2 X6 XX

1.50*10^ 2 XX5XX

1.00*10^ 2 XXXXX

0.50*10^ 2 XXXXX

Contents

*10^ 2 31122

*10^ 1 47208

*10^ 0 79373

Low edge --

*10^ 1 10001

*10^ 0 05050

Figure 2: Simple output of a histogram.

A set of overloaded operators have been defined, so that histograms can be added, sub-
tracted, divided or multiplied by each other. Then the contents are modified accordingly
bin by bin. Thus the relative deviation between two histograms data and theory can be
found as

diff = (data - theory) / (data + theory);

assuming that diff, data and theory have been booked with the same number of bins
and x range.

Also overloaded operations with double real numbers are available. Again these four
operations are defined bin by bin, i.e. the corresponding amount is added to, subtracted
from, multiplied by or divided by each bin. The double number can come before or after
the histograms, with obvious results. Thus the inverse of a histogram result is given by
1./result. The two kind of operations can be combined, e.g.

allpT = ZpT + 2. * WpT;

B.1.1 Line-printer output

A histogram can be printed by making use of the overloaded << operator, e.g.
cout << ZpT;

The printout format is inspired by the old HBOOK one. To understand how to read
it, consider the simplified example in Fig. 2. The key feature is that the Contents

and Low edge have to be read vertically. For instance, the first bin has the contents
3 ∗ 102 + 4 ∗ 101 + 7 ∗ 100 = 347. Correspondingly, the other bins have contents 179, 123,
207 and 283. The first bin stretches from −(1 ∗ 101 + 0 ∗ 100) = −10 to the beginning of
the second bin, at −(0 ∗ 101 + 5 ∗ 100) = −5.

The visual representation above the contents give a simple impression of the shape. An X
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means that the contents are filled up to this level, a digit in the topmost row the fraction
to which the last level is filled. So the 9 of the first column indicates this bin is filled 9/10
of the way from 3.00 ∗ 102 = 300 to 3.50 ∗ 102 = 350, i.e. somewhere close to 345, or more
precisely in the range 342.5 to 347.5.

The printout also provides some other information, such as the number of entries, i.e.
how many times the histogram has been filled, the total weight inside the histogram,
the total weight in underflow and overflow, and the mean value and root-mean-square
width (disregarding underflow and overflow). The mean and width assumes that all the
contents is in the middle of the respective bin. This is especially relevant when you plot
a integer quantity, such as a multiplicity. Then it makes sense to book with limits that
are half-integers, e.g.

Hist multMPI( "number of multiparton interactions", 20, -0.5, 19.5);

so that the bins are centred at 0, 1, 2, . . . , respectively. This also avoids ambiguities
which bin gets to be filled if entries are exactly at the border between two bins. Also note
that the fill( xValue) method automatically performs a cast to double precision where
necessary, i.e. xValue can be an integer.

B.1.2 Graphics output

If you have Python 3 with Matplotlib installed (see beginning of Appendix D) then an
interface is prepared to produce better-looking plots from the histograms above. Necessary
instructions, that are used behind-the-scene to produce relevant Python code, should be
put near the end of a run, after all histograms have been properly normalized.

In a first step you must decide on the name of the Python program, e.g.:
HistPlot hpl( "myplotNN");

where file ending .py is added automatically.

For each new frame you give its file name, title, and x and y axis labels:
hpl.frame("myfigNNa", "Transverse momentum spectra",

"$p_{\\perp}$ (GeV)", "$\\sigma$ (mb)");

This will (later) create a file myfigNNa.pdf. If you keep the file name empty after the
first frame, the new frame will be appended to the current file. Note the possibility to
use LaTex symbols, but with backslash doubled up to give the correct escape sequence.

For each frame you can add several curves, by histogram name, plotting style and colour,
and text label

hpl.add( ZpT, "-,blue", "Z");

hpl.add( WpT, "--,red", "W");

hpl.plot();

where the final command finishes the frame. Each add command writes out its respective
histogram contents in a *.dat file, to be used subsequently.

Once the Pythia run is finished, you have to run Python to generate the plots
python3 myplotNN.py

whereafter you can open myfigNNa.pdf (and other frames) in a PDF viewer.
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B.2 Jet finding

The SlowJet class offer jet finding by the k⊥, Cambridge/Aachen and anti-k⊥ algorithms.
By default it is now a front end to the FJcore subset, extracted from the FastJet package
[12] and distributed as part of the Pythia package, and is therefore no longer slow. It
is good enough for basic jet studies, but does not allow for jet pruning or other more
sophisticated applications. (An interface to the full FastJet package is available for such
uses.)

You set up SlowJet initially with
SlowJet slowJet( pow, radius, pTjetMin, etaMax);

where pow = -1 for anti-k⊥ (recommended), pow = 0 for Cambridge/Aachen, pow = 1

for k⊥, while radius is the R parameter, pTjetMin the minimum p⊥ of jets, and etaMax

the maximum pseudorapidity of the detector coverage.

Inside the event loop, you can analyze an event by a call
slowJet.analyze( pythia.event );

The jets found can be listed by slowJet.list();, but this is only feasible for a few
events. Instead you can use the following methods, among others:

slowJet.sizeJet() gives the number of jets found,
slowJet.pT(i) gives the p⊥ for the i’th jet, and
slowJet.y(i) gives the rapidity for the i’th jet.

The jets are ordered in falling p⊥.

C Interface to HepMC

The standardHepMC event-record format is frequently used in the MCnet school training
sessions, notably since it is required for comparisons with experimental data analyses
implemented in the Rivet package. Then a ready-made installation is used. However, for
the ambitious, here is sketched how to set up the Pythia interface, assuming you already
have installed HepMC. A similar procedure is required for interfacing to other external
libraries, so the points below may be of more general usefulness.

To begin with, you need to go back to the installation procedure of section 2 and in-
sert/redo some steps.

1. Move back to the main pythia83xx directory (cd .. if you are in examples).

2. Do a make distclean to remove the old configuration and the compiled library.

3. Configure the program:
./configure --with-hepmc3=path

where the directory-tree path would depend on your local installation. If the library
is in a standard location you can omit the =path part.

4. Use make as before, to recompile with the new configure information available in
examples/Makefile.inc, and move back to the examples subdirectory.

5. You can now also use the main131.cc and main132.cc examples to produce
HepMC event files. The latter may be most useful; it presents a slight gener-

24



alisation of the command-line-driven main program you constructed in Section 5.
After you have built the executable you can run it with

./main132.exe infile hepmcfile > main132.log

where infile is an input “card” file (like mymain01.cmnd or main132.cmnd) and
hepmcfile is your chosen name for the output file with HepMC events.

Note that the above procedure is based on the assumption that you will be running your
main programs from the examples subdirectory. For experts there is a make install

step to install the library and associated components in locations of your choice, and a
bin/pythia8-config script to help you link to the library from anywhere.

D Preparations before starting the tutorial

Normally, you will run this tutorial on your own (laptop or desktop) computer. It is
therefore important to make sure that you will be able to extract, compile, and run the
code.

Pythia is not a particularly demanding package by modern standards, but it requires
you to have a C++ compiler, able to accept C++11 code. You also need to use the make
and tar command tools, and have access to a text editor, such as Emacs. Below, we give
some very basic instructions for standard installations on Linux, macOS, and Windows
platforms, respectively.

For a nicer display of histograms, additionally the Python language needs to be installed,
including the Matplotlib library. Assuming you have the former, e.g. as python3, the
latter can be downloaded by

python3 -m pip install -U matplotlib

In the context of summer schools, students are strongly recommended to make sure that
the above-mentioned facilities have been properly installed before traveling to the school,
especially if the school is in a location which is likely to offer limited bandwidth.

D.1 Linux (Ubuntu)

The default tutorial instructions are intended for Linux (or other Unix-based) platforms,
so this should be the easiest type of system to work with. The presence of the required
development tools, including the C++ compiler, should be automatic on most Linux dis-
tributions. If this is not the case, you have to download them with the command

sudo apt install build-essential

in an Ubuntu installation, presumably with similar commands in other distributions.
Linux distributions use the GCC compiler suite, so you can type gcc --version to con-
firm that GCC is installed.
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D.2 macOS

macOS does not include code development tools by default, but they can relatively easily
be obtained by installing Apple’s Xcode package, which can be downloaded from the App
Store on the Mac; just type “xcode” in the App Store search field to find it. Note that
downloading and installing Xcode can take quite some time, and if you don’t already
have an Apple ID it will take even longer, so this should be done well before starting
the tutorial. After downloading Xcode you should open it once, since this is required to
trigger the full installation procedure.

An alternative is to type
xcode-select --install

in a terminal window (preceded by sudo if you are not the superuser). This will trigger
the installation of the command line tools part of the Xcode package, but not the full
development environment, and so is a faster procedure.

The Mac uses the CLANG compiler suite rather than the GCC one, but mimics the GCC
front end. The remaining minor structural differences are already taken into account in
the Makefiles, hidden from the normal user. Warnings issued during compilation may
differ, and results may not be identical between CLANG and GCC, but should agree
within statistical errors.

There are also (at least) two external package management system for Macs: MacPorts
(www.macports.org) and Homebrew (https://brew.sh). You may want to explore these
to install other software, such as Root and various Emacs variants.

D.3 Windows

Historically it is a problem to run Pythia under Microsoft Windows, and it is not sup-
ported. That is, even if you buy and install a commercial C++ compiler, you would
still have to write replacements for the Makefiles yourself. Typically a Windows/Linux
dual boot setup has therefore been the recommended solution, with various virtualization
software as an option.

This has changed with the introduction of the Windows Subsystem for Linux (WSL) a
few years ago. It now allows the installation of a complete Linux distribution, by default
Ubuntu, without the overhead of dual boot or virtualization. There is no experience with
this solution within the Pythia team, but on paper it seems simple. Basically you have
to open a powershell terminal in administrator mode, type

wsl --install

and afterwards restart your machine. From there on you can open a Linux terminal
window and operate as for any native Linux installation.

D.4 Python, Docker, and Jupyter notebooks

A Python interface to Pythia is available and can be enabled by configuring Pythia as
follows:
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./configure --with-python

The interface is compatible with both Python 2 and 3. To configure with a specific
Python version, the relevant python-config script can be passed. For example, the
following configures the bindings with Python 3:

./configure --with-python-config=python3-config

The Python interface can also be installed through the Anaconda distribution system:
conda install -c conda-forge pythia8

Note that typically the most recent Pythia release should be available via Anaconda
but it sometimes lags behind the release cycle. The default Python interface is a simplified
version of the full C++ interface. It is possible to generate the full interface, however:

cd plugins/python && ./generate --full && cd -

where the generate script requires Docker.

In general, Docker images containing Pythia installations are available at
https://hub.docker.com/u/pythia8

but these are mainly used for testing and development.

There is a tutorial available that provides the Pythia Python interface through a
Jupyter notebook. This tutorial requires only Docker; both the Jupyter instance
and Python interface are provided through the Docker container. The Docker con-
tainer for this tutorial can be run with the following command:

docker run --rm -u ‘id -u $USER‘ -v $PWD:$PWD -w $PWD -p 8888:8888 \\

-it pythia8/tutorials:cteq22 $@

You will then receive instructions on how to open the Jupyter notebook. For example,

[YYY] Serving notebooks from local directory: XXXXXX

[YYY] The Jupyter Notebook is running at:

[YYY] http://d9c979095ffc:8888/?token=a1024fc584f44...

[YYY] or http://127.0.0.1:8888/?token=a1024fc584f44...

where the http://127.0.0.1:8888 link can be copied into a browser to open the
Jupyter notebook.

Once connected to the Jupyter service, choose worksheet8307.ipynb. Each cell of the
notebook can be run to follow the tutorial in the main body of (the previous version of)
this document, but using the Python interface to Pythia.
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