main263
Back to index.
// main263.cc is a part of the PYTHIA event generator.
// Copyright (C) 2024 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.
// Authors:
// Christian Bierlich
// Stephen Mrenna
// Philip Ilten
// Keywords:
// Hadronization
// Reweighting
// Tuning
// Parallelism
// Matplotlib
// Demonstrates how to reweight an event for different kinematic or flavor
// hadronization parameters using in-situ reweighting.
// Pythia includes.
#include "Pythia8/Pythia.h"
#include "Pythia8/PythiaParallel.h"
using namespace Pythia8;
//==========================================================================
int main() {
// Choose to reweight kinematic (0) or flavor (1) hadronization
// parameters. Both can be reweighted simultaneously, but the
// separation is kept here for illustrative purposes.
int type = 0;
// Number of events to generate per run.
int nEvent = 1e6;
// Define the new set of kinematic parameters that we wish to reweight to.
double aLund = 0.6; // StringZ:aLund, default 0.68
double bLund = 0.9; // StringZ:bLund, default 0.98
double rFactC = 1.3; // StringZ:rFactC, default 1.32
double rFactB = 0.9; // StringZ:rFactB, default 0.855
double ptSigma = 0.3; // StringPT:sigma, default 0.335
// Define the new set of flavor parameters that we wish to reweight to.
double rho = 0.2; // StringFlav:ProbStoUD, default 0.217
double xi = 0.1; // StringFlav:ProbQQtoQ, default 0.081
double x = 0.9; // StringFlav:ProbSQtoQQ, default 0.915
double y = 0.04; // StringFlav:ProbQQ1toQQ0, default 0.0275
// Create and configure Pythia.
PythiaParallel pythia;
pythia.readString("Beams:idA = 11");
pythia.readString("Beams:idB = -11");
pythia.readString("Beams:eCM = 91.189");
pythia.readString("PDF:lepton = off");
pythia.readString("WeakSingleBoson:ffbar2gmZ = on");
pythia.readString("23:onMode = off");
pythia.readString("23:onIfAny = 1 2 3 4 5");
// Configure the in-situ kinematic or flavor reweighting.
if (type == 0) {
pythia.readString("VariationFrag:List = {kineVar frag:aLund="
+ to_string(aLund) + " frag:bLund=" + to_string(bLund) + " frag:rFactC="
+ to_string(rFactC) + " frag:rFactB=" + to_string(rFactB)
+ " frag:ptSigma=" + to_string(ptSigma) + "}");
} else if (type == 1) {
pythia.readString("VariationFrag:List = {flavVar frag:rho="
+ to_string(rho) + " frag:xi=" + to_string(xi) + " frag:x="
+ to_string(x) + " frag:y=" + to_string(y) + "}");
pythia.readString("StringFlav:popcornRate = 0");
pythia.readString("HadronLevel:Decay = off");
}
// If Pythia fails to initialize, exit with error.
if (!pythia.init()) return 1;
// Define the plot title.
string title = "default: (";
if (type == 0)
title +=
toString(pythia.settings.parm("StringZ:aLund")) + ", " +
toString(pythia.settings.parm("StringZ:bLund")) + ", " +
toString(pythia.settings.parm("StringZ:rFactC")) + ", " +
toString(pythia.settings.parm("StringZ:rFactB")) + ", " +
toString(pythia.settings.parm("StringPT:sigma")) + "), " +
"variation: (" + toString(aLund) + ", " + toString(bLund) + ", " +
toString(rFactC) + ", " + toString(rFactB) + ", " +
toString(ptSigma) + ") ";
else if (type == 1)
title +=
toString(pythia.settings.parm("StringFlav:ProbStoUD")) + ", " +
toString(pythia.settings.parm("StringFlav:ProbQQtoQ")) + ", " +
toString(pythia.settings.parm("StringFlav:ProbSQtoQQ")) + ", " +
toString(pythia.settings.parm("StringFlav:ProbQQ1toQQ0")) + "), " +
"variation: (" + toString(rho) + ", " + toString(xi) + ", " +
toString(x) + ", " + toString(y) + ") ";
// Identified final state hadrons to include in the flavor histograms.
vector<int> hadrons = {
211, 221, 331, 213, 223, 321, 311, 333, 2212, 2112, 2214, 2224, 3222,
3212, 3122, 3322, 3334};
// Define multiplicity histograms. For kinematics, we look at
// charged multiplicity while for flavor we look at multiplicity per
// species.
// default: the default parameters in Pythia
// insitu: in-situ reweighted
// rerun: a run with the varied parameters
vector<string> names = {"default", "insitu", "rerun"};
map<string, Hist> hists;
for (string &name : names) {
if (type == 0)
hists[name] = Hist(name, 25, 2, 51);
else if (type == 1)
hists[name] = Hist(name, hadrons.size(), 0, hadrons.size());
}
// Track the weights.
map<string, double> wgts, sumWgts, sumWgt2s;
for (string &name : names)
wgts[name] = sumWgts[name] = sumWgt2s[name] = 0;
names.pop_back();
// Run events.
// This defines a lambda function that acts as a callback.
// This function is called for each event generated.
// The argument is a pointer to the instance that generated the event.
// This is neccesary to use PythiaParallel (multi-core).
pythia.run( nEvent, [&](Pythia* pythiaPtr) {
// For the default parameters, the weight is just 1.
wgts["default"] = 1;
// The weight given by the in-situ reweighting.
wgts["insitu"] = pythiaPtr->info.getGroupWeight(0);
// Keep track of the weights.
for (string &name : names) {
sumWgts[name] += wgts[name];
sumWgt2s[name] += pow2(wgts[name]);
}
// Fill the histograms.
int mult = 0;
for (const Particle &prt : pythiaPtr->event) {
if (!prt.isFinal()) continue;
if (type == 0) {
if (prt.isCharged()) ++mult;
} else if (type == 1) {
int pid = prt.idAbs();
int idx = -1;
for (int iHad = 0; iHad < (int)hadrons.size(); ++iHad)
if (pid == hadrons[iHad]) {idx = iHad; break;}
if (idx < 0) continue;
for (string &name : names) hists[name].fill(idx, wgts[name]);
}
}
if (type == 0)
for (string &name : names) hists[name].fill(mult, wgts[name]);
});
pythia.stat();
// Rerun Pythia with the varied parameters.
if (type == 0) {
pythia.settings.parm("StringZ:aLund", aLund);
pythia.settings.parm("StringZ:bLund", bLund);
pythia.settings.parm("StringZ:rFactC", rFactC);
pythia.settings.parm("StringZ:rFactB", rFactB);
pythia.settings.parm("StringPT:sigma", ptSigma);
} else if (type == 1) {
pythia.settings.parm("StringFlav:ProbStoUD", rho);
pythia.settings.parm("StringFlav:ProbQQtoQ", xi);
pythia.settings.parm("StringFlav:ProbSQtoQQ", x);
pythia.settings.parm("StringFlav:ProbQQ1toQQ0", y);
}
pythia.settings.wvec("VariationFrag:List", {});
// If Pythia fails to initialize, exit with error.
if (!pythia.init()) return 1;
// Run events.
// This defines a lambda function that acts as a callback.
// This function is called for each event generated.
// The argument is a pointer to the instance that generated the event.
// This is neccesary to use PythiaParallel (multi-core).
pythia.run( nEvent, [&](Pythia* pythiaPtr) {
sumWgts["rerun"] += 1;
sumWgt2s["rerun"] += 1;
int mult = 0;
for (const Particle &prt : pythiaPtr->event) {
if (!prt.isFinal()) continue;
if (type == 0) {
if (prt.isCharged()) ++mult;
} else if (type == 1) {
int pid = prt.idAbs();
int idx = -1;
for (int iHad = 0; iHad < (int)hadrons.size(); ++iHad)
if (pid == hadrons[iHad]) {idx = iHad; break;}
if (idx >= 0) hists["rerun"].fill(idx, 1.);
}
}
if (type == 0) hists["rerun"].fill(mult, 1);
});
pythia.stat();
// Normalize the histograms.
for (auto &hist : hists) hist.second /= sumWgts[hist.first];
// Print the histogram ratios.
string xlabel;
if (type == 0) {
xlabel = "multiplicity";
} else if (type == 1) {
for (int iHad = 0; iHad < (int)hadrons.size(); ++iHad) {
string name = pythia.particleData.name(hadrons[iHad]);
cout << left << setw(3) << iHad << ": " << name << "\n";
xlabel += " " + name + "(" + to_string(iHad) + ")";
}
}
for (auto &hist : hists)
cout << "\n" << hist.first << hist.second/hists["default"];
// Print the reweighting stats.
// The 1 - mu should be statistically consistent with zero if the
// reweighting has proper coverage.
// The n_eff gives the statistical power of the reweighted sample.
for (string &name : names) {
double w(sumWgts[name]), w2(sumWgt2s[name]), n(sumWgts["default"]);
cout << name << "\n"
<< "\t1 - mu = " << scientific << setprecision(3) << abs(1. - w/n)
<< " +- "<< abs(1. - sqrt((w2/n - pow2(w/n))*n/(n - 1)))/sqrt(n)
<< "\n\tn_eff = " << scientific << setprecision(3) << w*w/(n*w2)
<< "\n";
}
// Create the Python plot and return.
HistPlot hpl("plot263");
hpl.frame("fig263", title, xlabel, "n(variation)/n(default)");
for (string &name : names)
hpl.add(hists[name]/hists["default"], "e", name);
hpl.add(hists["rerun"]/hists["default"], "e", "rerun");
hpl.plot();
return 0;
}