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Perturbative Uncertainties




The bad news:
Things will get a bit more technical (e.g., NNLO)

The good news:

You can look forward to percent-level accurate MCs
for HL-LHC and future colliders



Perturbation Theory

~ Calculate the area of a shape (do) with higher and higher detail

Difference from exact area « a”*!

LO

Example: Koch Snowtlake
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Note: (over)simplified analogy, mainly for IR structure. More at each order than shown here.



Perturbation Theory

~ Calculate the area of a shape (do) with higher and higher detail

Difference from exact area « a”*!

Massless gauge theories

Scale invariance =¥ fractal substructure
LO

Example: Koch Snowtlake
Formulated as differential

evolution equations
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Parton Showers: stochastic

(MC) solutions (+ can build in
running couplings, masses)
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Note: (over)simplitied analogy, mainly for IR structure. More at each order than shown here.



Why go beyond Fixed-Order perturbation theory?

Simple example of a multi-scale observable:

Fraction of events that pass a jet veto (for arbitrary hard process O, 4 > 1 GeV)

(i.e., no additional jets resolved above O, ., ):

[0 NLO NNLO

~=

[ — q(L2+L+F) + 2L*+L3+L*+L+F,) +

L ln(Q\%eto / Ql%ard)

1
(Logs arise from integrals over propagators —2)
q




The Case for Combining Fixed-Order Calculations with Resummations

LL L = HOg(Qz/Qéom)‘

— NNLO
--- Beyond NNLO

<+ Target accuracy at NNLO

Beyond NNLO

Parametric size of each
perturbative coefticient

‘\
\\

1 5 10 50 100

Generic observable scale QO
(for Ogoy = 100 GeV, e.g., Drell-Yan pr)

Resummation (e.g., by showering) extends domain of validity of perturbative calculations



Jet Rates at Fixed Order

Consider Z — qq
. = QFT amplitude tor n legs, £ loops

Can’t predict much at this level
a.k.a. the Born Level

“Loops and Legs” diagram
Showing coefficients of perturbative series




Leading Order + Parton Shower

3 4 Legs

Consider Z — gg @ LO ® shower
. = QFT amplitude tor n legs, £ loops

= Shower approximation

Starting density of states in ®,:

Act on each of these states with
a shower evolution operator &

= My W [MIPS(D)

"tz d2F
87‘(’4 d(I)Q

S'(®d,) is an operator that stochastically evolves an n-parton state ~ zooming the fractal

Normally defined to be strictly unitary: can only change properties of state but not normalisation
Constructed to generate approximate (LL, NLL, ...?) all-orders real and virtual corrections.



Perturbation Theory as a Markov Chain

&: Stochastic differential evolution in “hardness” scale

~ Sliding factorisation scale ~ quantum resolution scale ~ jet resolution
scale ~ momentum transfer ~ formation time ~ characteristic wavelength

(Determines which specific logs are resummed. Many showers use a scale < p))

Differential cross section for a generic observable “"0O":

Born-Level |
"Matching Coefficient’ Shower operator =» next slide

9 _ ao, (M0 oS’(CD/O)
dO — 2 2 29 [

We want to evaluate the observable O on the state after showering.
(Could also define the observable as an operator acting from the right)




A Simple Parton Shower

With only (iterated) n — n + 1 branchings

Evaluate O on ©,
Shower operator - -~ .

$1(P0) = 5(0((1)") B 0)

Branching Kernel

+ “Something happens” CS) +1(CI)n 419 0)

MARKOV CHAIN

Unitarity: if nothing doesn’t happen, then something happens
—d"Nothing Happens"

dp?

—> Probability for “Something happens” =

P



A Simple Parton Shower

With only (iterated) n — n + 1 branchings

Evaluate O on @
Shower operator ‘Sudakov Factor’ . N n_

S (P, O)

A ((Dz; QIR)\ 0 (é(q)n) - 0)

Branchings
-> “reals”

Sudakov expansions
=>» “virtuals” HEAN

Branching Kernel <

“Something happens” S +1 ((I)n_l_ 0> 0) f}gg;ig;ng

MARKOV CHAIN UNITARITY

QZ
J ! dg)n—m+1
CXp| —

0?

Sudakov Factor A(D,, Q) =

Branching Kernel
Soft-Collinear Approximations or tree-level MEs (MECs)

NB: partition of phase space and branching probabilities onto different terms not shown here ﬂ



Examples of Branching Kernels (for single branchings)

Factorisation of 2 2
(squared) amplitudes in
IR singular limits

(leading colour)

Full ME Born ME

q4d 89 q8
| T K 45.3(%) K 35.4%5)
S oS0 S\ S Son : ! ’
4884 q8 89 !
eikonal term collinear terms ng qu

One term for each parton
Requires angular ordering One term for each colour- Two terms for each colour-
to get soft limits right connected pair of partons connected pair of partons

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon
parents, global vs sector, colour factors, initial-state partons, mass terms) not shown.




Jet Rates at NLO

2 3 Legs
Example: Z = gg @ NLO —°
. = QFT amplitude for n legs, ¢ loops

Fully-ditferential NLO 2-jet rate:

"z dQF
87’(‘4 d(I)Q

— (M + RelMIME] + [ a2y VI 6O (B, - Ba(2y)

+ also incorporates LO 3-jet rate:

374 D5 = | M| Note: relative accuracy in general varies across domain

Most observables are not clear-cut n-jet observables.

E.g., “event shapes” sensitive to different multiplicities across their ranges

&3



NLO combined with Parton Showers

Example: Z = gg @ NLO & shower
. = QFT amplitude for n legs, ¢ loops

. = Shower approximation

MC@NLO and POWHEG (+ a few more recent proposals)

Differ in their approximate M31 and M; & beyond: vary < uncertainties!

Note: can also start from Z — 3 @ NLO

Divergent for 2-jet observables

NLO for 3-jet observables/regions
LO for 4-jet observables/regions




Matiching and Merging

Matching:
One fixed-order calculation matched to a resummation (as, e.g., on previous slide)

E.g.. EITHER Z — 2 @ NLO + Shower OR Z — 3 @ NLO + Shower
2 3 4 Legs 5 Legs

Merging:
Combine several matched calculations (consistently!)

Generally achieved with phase-space (jet) cuts
E.g.:IF pr3 < preut, use Z — 2 @ NLO + Shower, ELSE use Z — 3 @ NLO + Shower

Important to ensure (and validate) smooth transition! (Devil is in the details.)

Ps



State of the Art: NNLO + Showers

Example: VinciaNNLO
Goal:

—> Change notation:
Bn — ‘Mr(z) ‘2
Vn — 2R€[M,(Z)M,}*] T qu)q-l ‘M;/(l)+1 ‘2

W, = | M} |* + 2Re[M*M?] + JchHVn+1

So far swept under rug:

M¢ divergent for £ > 1

B,,V,,W, are all finite

(for n resolved partons)

Separates how to match them
from how to calculate them

(latter — a “clean” tixed-order problem)




Using Amplitudes as Branching Kernels

|dea: Use (nested) Shower Markov Chain as Phase-Space Generator

Harnesses the power of showers as efficient phase-space generators for QCD
Efficient: Pre-weighted with the (leading) QCD singular structures = soft/collinear poles

(Cm)

Different from conventional Fixed-Order phase-space generation (eg VEGAS)

- Bom+1 Bom 42
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OK, let’s get started

Start from Z — 2 normalised to NNLO rate: @
M dzr Born-Level Matching Coefficients : E.g., V, = (a,/7)B; VINCIA NNLO
Z — f /. \ o
o (Bz T V2 T VV2) CS)(CDZ’ QIR) Disclaimer:

871'4 dq)z

ShOWGl‘VOpera‘[or Will try to make it look a little easier than

it actually is. Don’t want to bury you in
technical details.: see arXiv:2412.14242.

From & = Difterential inclusive 3-jet rate:

New: “Direct” 2 — 4 branchings (only for “unordered” 1, > 1)

= (By + Vo + Wo)l As(M,,13)A5, 5 + J dd_ | A(M,, 1,)A,, 4

~- - [4>13
Ordinary 2 — 3 branchings

M, &°T
871'4 dq)3

SqeSeg NNLO matching = match this
M2 coefficient to the O(ar?) fixed-order result

B . o
A, .5 : probability density for 3-jet configurations = B—3 — (& using same here to preserve unitarity)
2

M;
A,(M,, ;) : Sudakov no-branching probability = exp (—[ dd_ A, 5+

t; : jet resolution scale of 3-jet configuration =




3-jet Matching af @(asz)

: . [see arXiv:2412.14242]
Equate fixed-order and shower 3-jet rates:

By + V3 + @(0(3) = (Bz + V, + Wz)(Az(M , l‘3)A2,_)3 + J d(D+1A2(M , l‘4)A2,_>4>
[

4>

Expand right-hand side through @(az) and solve for A,, . ;:

M2
Bz + V3 = (By + V2)A2 3T BZA — BZA§H3J dq)+1A2|—>3 + J dq)+lB4
I3 1>1 [
1 3 Assuming shower
@(0{ ) — A2|—>3 — is matched to By
BZ Direct 2 — 4
Shower off V5 AjUdaKOV on top” branchings
Z
2 V3 — V2A§|—>3 B3I dq)+1A2|—>3 L >(t1q)_|_1B4
@(Cl ) — Az,_)g | (-I- Hp term)
BZ Bz

P



@(asz) Corrections to the 3-jet density

Dalitz Plots of the O(a?) correction terms:
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Summary of NNLO Matching

Several efforts breaking ground towards general NNLO matching
MINNLOps, GENEVA, and now VinciaNNLO
+ expect to combine with efforts to develop (N)NLL parton showers (e.g., PanScales, ALARIC, ...)
Expect these to eventually define a new state of the art for High-Lumi LHC & Future Colliders

Message: expect percent-level perturbative uncertainties from MCs @ NNLO + (N)NLL accuracy in ~ few years

Current Status of VinciaNNLO:

-irst method to achieve a fully-differential matching in each ot the respective phase spaces.

Proot of concepts so far only tfor colour-singlet decays to quarks (e.g., ee colliders: Z — qg, H — s5)

Full-fledged implementation underway in PYTHIA 8; coming in 2025.

—uture Directions

NNLO MC for H — gg, DIS, Drell-Yan, eTe™ - WW, and LHC processes
NNLO merging, and matching at N3LO VINCIA

NNLO




Uncertainties

Any prediction is
only as good as its
uncertainty estimate

Disclaimer: | am not offering solutions to all the issues | will mention
But we should acknowledge them, and think about how to deal with them...




gg > H

o(pp—~H+X)[pb]
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Are scale variations good enoughe

13 TeV, PDF4LHC15, pug=pug=my/2

Standard Approach: Scale variations

ATLAS®

NLO QCD

Dawson, Spira et al
1991-2003

LO

Georgi et al
1978

Slide adapted from M. Grazzini

NNLL+NNLO QCD+NL N3LO QCD+NLO EW

Not always
available

(+ a lot of work) |
Anastasiou et al

2016-
M. Grazzini, D. de Florian
2003-2016

Problem: much exp/pheno still done
effectively at NLO or even LO

Need better uncertainties @ (N)LO
+ The pattern is systematic!

Would never fly in experimental HEP

Battles me how we keep doing this




Beyond Scale Variations?

Some recent proposals have added “nuisance parameters”

May be the best you can do it you know nothing else.

But we do know some things! Scientia Potentia Est!

L et's at least have a look ...

ASPEN CENTER
FOR PHYSICS |
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1) Multiscale Problems ~ Log Whack-a-Mole

Quantum Field Theory Whack-a-mole
|

Integrating propagators —

q
between two different scales g, and g,

_ﬂ_
4>

—> In

For complex processes involving multiple
scales, say a few massive particles + a few jets:

—> In o In | —

No single scale choice can absorb all the logs (best you can do is a geometric mean)
Nor can any factor-2 variation around such a scale (if the hierarchies are greater than factor-2)

At the very least, need to vary the functional form of the scale choice, for the problem at hand.

£3



2) Higher Orders > New Stfructures

Common to all of these is that they are not accessed at all by scale variations

@)

New he||(:|ty STructures (e.g., relief of Born-level helicity suppression)

%

New phase—space regiOns (e.g., accessing scales higher than puy)

(13

. New colour structures

(13

. New flavour structures

(13

. Interterence with other Born states

(13

Often possible to predict their presence (or absence) on general grounds
— quantitative uncertainty estimates?




3) Initial-Initial Form Factors

General amplitude structures from Glauber-type gauge bosons:

(Note: only aim here is getting lower bound on uncertainties from known amplitude
structures, not discussing whether these terms should be resummed or not.)

Final-state parton pairs Initial-state parton pairs
At all orders:
Loop _
a(u2) o ST )
S\NPUF ) ) -~ 2
ex C In“(—usls ()T
S P o (=H )J s —> €exp 14
In*(—1) = — 7 2

T

Use 1st uncontrolled
order of this as

(Integrated)
Real
corrections

Cancel against 2 — n
In inclusive sums

2 ng o .

a additional uncertainty

S exXp S('MF)%lnz(—,u%/S) estimate for
"""" 21 processes involving

colour annihilation?

£

Cancel No Cancellation



| Form Factors: Numerical Results

OrT goH Vv VV V+j100 tt 150 jj200

LO +59% +27.6% +24.7% +21.5% +22.1% +13.4% +10.1%
NLOwpprox.  +17%  +3.8%  +3.1%  +2.7%  +2.8%  +2.0%  +1.2%
NLO +18%  +3.9% +3.1% +2.4% +3.0% +1.8% +1.2%

Table 3: Examples of single-sided initial-initial form-factor uncertainty estimates obtained
with SHERPA /COMIX, for a selection of hard processes in pp collisions at 14 TeV CM energy.
The arguments used to evaluate a; in each case are, respectively, mg /2, mz/2, myz, 120 GeV,
my¢, 50 GeV, and 200 GeV, using as(mz) = 0.118 and 2-loop running. NLO,pprox. corresponds
multiplying the LO f;;; with NLO factors, while in the last line they are evaluated at NLO.

Calculations by D. Reichelt for Aspen study

£33



Adding Single-Sided |l Form Factors

13 TeV, PDFALHC15, pg=yug=m,,/2 Scale variations @ Il Form Factors

ATLAS®
NNLL+NNLO QCD+NLO EW N3LO QCD+NLO EW

1 &0

NLO QCD

Anastasiou et al
2016-

S M. Grazzini, D. de Florian
A 2003-2016
W—
;<: 1 & Oy

T 30 000 uasmsmssssss

1‘ i Dawson, Spira et al

oy i 1991-2003
z |

= . LO

- My Recipe:

c— o(l + 6; £ 0.50;)

Georgi et al

10 |- 1978 .'
: \.""

Question: could something similar be done for threshold logs?




Uncertainties in Parton Showers

Standard for Shower Uncertainties: Renormalization-scale variations
Example: PYTHIA's DGLAP-based shower

MC,,,2
oy (U P(z)
MoalP~ ), === @ 57 ) 1M At

iEpartonS k 2C for quark,

- - C, for gluon Sudakov factor

2 2 - _
H; X pJ_l‘ [ is the shower evolution/

DGLAP Splitting Kernel ordering variable
(Or dipole/antenna/...)

N - 4

Varying p; only induces terms proportional to the shower splitting kernels
Actual higher-order MEs also have:

Non-singular terms (dominate far from singular limits),

Non-trivial colour factors outside collinear limits, Vary u, and these

Higher-order log terms not captured exactly by A (7,,7,. 1) [Hartgring, Laenen, P>

JHEP 10 (2013) 12/]



https://arxiv.org/abs/1303.4974
https://arxiv.org/abs/1303.4974

Non-Singular Variations: Example

Example from Mrenna & PS, “Automated Parton-Shower Variations in Pythia 8", PRD 94 (2016

Can vary renormalisation-scale and non-singular terms independently

o - 1-Thrust (udsc)
w 1.5 >
a - :
= - o
8 1 o _':4_- Vil s
C ~ . "Shower region” “Hard region”
— -~~~ Renormalization-scale Non-singular variations
0.5 — variations (blue) dominate (red) dominate
mi R N r I I ‘ I ‘ I I ‘ I I
0 0.1 0.2 0.3 0.4 0.5

1-T (udsc)

Note: ME corrections were switched off for illustration here. Would reduce red band, but not blue.

&3


https://arxiv.org/abs/1605.08352

Effect of Matching fo Matrix Elements

Example from Mrenna & PS, “Automated Parton-Shower Variations in Pythia 8", PRD 94 (2016

Can vary renormalisation-scale and non-singular terms independently

i _ With MECs/Matching/Merging

w 1.5 2

N _

E‘ g &

S 1f e -

C - "Shower region” “Hard region” s

= _ Renormalization-scale Non-singular variations reduced " |

0.5 — variations (blue) dominate by matching to hard ME

—IIIIrIIII‘IIII‘IIII‘III
0

0.1

So tar, up and non-singu
Being re-implemented in VINCIA. P

0.2

|
0.5
1-T (udsc)

an to add colour and Sudakov variations as well.

0.3 0.4

ar variations implemented in PYTHIA

&3


https://arxiv.org/abs/1605.08352

Lecture 2 Summary: From Amplitudes > Events

4 communities, each with own specialisations, techniques, & problems

Phase-Space
Integrations

Scattering Amplitudes MC Event Generators

& Fixed Orders Speed, Efficiency & Parton Showers

Numerical Stability
Accuracy

Codes/Interfaces

Resummation Combinations Collider Experiments

& PDFs (& Phenomenology)

Uncertainties




Lecture 2 Summary: From Amplitudes > Events

4 communities, each with own specialisations, techniques, & problems

| think we will be ganging up to produce the calculations for the future

Scattering Amplitudes MC Event Generators
& Fixed Orders & Parton Showers

Resummation Collider Experiments
& PDFs (& Phenomenology)




P. Skands

Final Words

MCs can be treated as black boxes,
without knowing what's in them.

Best Case: Limited Sophistication

Worst Case: Not your lucky day

The key to successful Monte Carlo:

« THE

with

In the words of Kenny Rogers Bruce Boxleitner

Knowing what to throw away

Knowing what to keep

Kenny Rogers “The Gambler”, first recorded in 1978
Same year as the first version of PYTHIA (JETGEN)




