QCD strings, junctions, strangeness, and beyond

Peter Skands (Monash University)

- 1. Confinement in High-Energy Collisions
- 2. Basics of String Hadronization
- **3. QCD Colour Reconnections**
- 4. String Junctions
- 5. Dynamical Tension >> Strangeness Enhancement?
- 6. Octet Fields >> Diquark Suppression?

Australian Government

Australian Research Council

The Problem of **Confinement** — in High-Energy Collisions

Consider a "hard" process

- "Hard" = large momentum transfers
 - Example: $gg \rightarrow t\bar{t}$

Here, $Q_{\rm hard}^2 \sim m_{\rm top}^2 \gg \Lambda_{\rm QCD}^2$

Accelerated charges

- → Bremsstrahlung → Parton Showers
 Perturbative QCD (& QED/EW)
- + Resonance decays with $\Gamma > \Lambda_{\rm QCD}$

The Problem of **Confinement** — in High-Energy Collisions

Consider a "hard" process

- "Hard" = large momentum transfers
 - Example: $gg \rightarrow t\bar{t}$

Here, $Q_{\rm hard}^2 \sim m_{\rm top}^2 \gg \Lambda_{\rm QCD}^2$

Accelerated charges

- ➔ Bremsstrahlung ➔ Parton Showers
 Perturbative QCD (& QED/EW)
- + Resonance decays with $\Gamma > \Lambda_{\rm QCD}$

At wavelengths ~ $r_{\rm proton}$ ~ $1/\Lambda_{\rm QCD}$ Some dynamical process must force quarks and gluons to be confined inside hadrons: Hadronisation

Requirement #1: Colour Neutralisation

The point of confinement is that partons are coloured A physical model needs two or more partons to create colour-neutral objects

On lattice, compute potential energy V(R) of a colour-singlet $q\bar{q}$ state

as function of the distance, R, between the q and \bar{q} :

 $F(r) \simeq \text{const} = \kappa \simeq 1 \text{ GeV}/\text{fm} \iff V(r) \simeq \kappa r$

→ Strings!!

Who gets confined with whom?

A corresponding event record from PYTHIA, up to the second gluon emission

#	id	name	status	mot	hers	daugh	ters	colo	urs	p_x	p_y	p_z	е	m
5	23	(ZO)	-22	3	4	6	7			0.000	0.000	0.000	91.188	91.188
6	3	(s)	-23	5	0	10	0	101	0	-12.368	16.523	40.655	45.594	0.000
7	-3	(sbar)	-23	5	0	8	9	0 1	01	12.368	-16.523	-40.655	45.594	0.000
8	21	(g)	-51	7	0	13	0	103	101	9.243	-9.146	-29.531	32.267	0.000
9	-3	sbar	51	7	0			0 1	03	3.084	-7.261	-10.973	13.514	0.000
10	3	(s)	-52	6	0	11	12	101	0	-12.327	16.406	40.505	45.406	0.000
11	21	g	-51	10	0			101	102	-2.834	-2.408	1.078	3.872	0.000
12	3	S	51	10	0			102	0	-10.246	17.034	38.106	42.979	0.000
13	21	g	52	8	0			103	101	9.996	-7.366	-28.211	30.823	0.000

Gluon Kinks: The Signature Feature of the Lund Model

Confinement in pp Collisions

MPI (or cut pomerons) \Rightarrow lots of coloured partons scattered into final state Who gets confined with whom?

Each has a colour ambiguity ~ $1/N_C^2$ ~ 10%

E.g.: random triplet charge has 1/9 chance to be in singlet state with random antitriplet:

 $3 \otimes \overline{3} = 8 \oplus 1$,

 $3 \otimes 8 = 15 + 6 + 3$, etc.

Many charges \rightarrow Colour Reconnections* (CR) more likely than not

Expect Prob(no CR)
$$\propto \left(1 - \frac{1}{N_C^2}\right)^{n_{\text{MPI}}}$$

(And do other things happen? Emergent dynamics?)

*): in this context, QCD CR simply refers to an ambiguity beyond Leading N_C, known to exist. The term "CR" can also be used more broadly.

Example (from arXiv:2203.11601) $pp \rightarrow t\bar{t}$ (all-jets) 2000000000 Le ceccecce 20000 Peller $d\sigma_0$ Leleelee contraction (Lee MPI MPI

"Parton Level" (Event structure before confinement)

String-length minimisation and <pT>(Nch)

When many string configurations are possible, assume nature picks the one with smallest potential energy ~ "string length"

QCD @ LHC > Lots of New Discoveries!

Baryon Production

Barvon proc

String Topologies

Types of string topologies:

Fragmentation of String Junctions

Assume Junction Strings have same properties as ordinary ones (u:d:s, Schwinger p_T, etc) ➤ **No new string-fragmentation parameters**

[Sjöstrand & PS, <u>NPB 659 (2003) 243</u>] [+<u>Altmann & PS, JHEP 07 (2024) 238</u>]

*qC*0

The Junction Baryon is the most "subleading" hadron in all three "jets".

Generic prediction: low pT

A Smoking Gun for String Junctions: Baryon enhancements at low p_T

Colour Reconnections > String Junging 10

[ALICE 2020; Altmann & PS 2024]

Spin

QCD @ LHC > Lots of New Discoveries!

New Directions in String Fragmentation

 \rightarrow Regard tension κ as an emergent quantity (not fundamental strings)

May depend on (invariant) time τ ?

E.g., **hot** strings which cool down [Hunt-Smith & PZS EPJ C 80 (2020) 11]

May depend on spatial coordinate σ ?

Ideas of "fluctuating string tension": Bialasz 1997; Pirner, Kopeliovich & Reygers 2018 + New work in progress with Altmann (Monash), and Carragher & March-Russell (Oxford).

May depend on environment? (e.g., other strings nearby)

Two approaches (so far) within Lund string-model context: **Colour Ropes** [Bierlich et al. 2015] + several more recent Close-Packing [Fischer & Sjöstrand 2017] + Work in progress with L. Bernardinis & V. Zaccolo (Trieste)

angeness Emancer Non-Linear String Dynamics?

LEP

geiss Enhancement Strangeness enhancer Rope hadronisation / Close Closepackin

Rope hadronisation / Closepacking

Rope hadronisation / Closepacking

$$\tilde{\kappa} = \left[1 + \boldsymbol{k_p}\left(\frac{p + (k_c)}{1 + p_{\perp,h}^2}\right)\right]$$

Thorny Issue 🥂 The Proton-to-Pion Ratio

Slide adapted from J. Altmann

Baryon Production

Reexamine baryon formation via diquark prod

Popcorn mechanism for diquark production Popcorn mechanism for diqua

Q: could one see this also in (at tips of) gluon jets?

Preliminary Trieste Tunes by L. Bernardinis (& V. Zaccolo)

New directions: QCD CR Sequential-Recombination model?

The stochastic SU(3) model:

Assign "Colour indices" $\in [1,9]$ to each parton

Dipole type screening: $i \oplus -i = 0$:

Partons with matching (anti)indices can screen each other

Junction type screening : $i \oplus (i + 3) = -(i + 6)$:

Partons with indices in modulo-3 groups can screen each other

New QCD CR by sequential recombination under development:

Combine nearby partons (by λ measure) if at least partially screening \implies Can build larger reps (p,q) with p indices and q anti-indices. E.g., we already use (p,q) = (1,1) to represent QCD octets (8) But also, e.g., a state with (p,q) = (3,2) = 42 could be represented by: (1 3 2);(-4 -8) Screening implies additional rules. E.g., for octet, the p and q index cannot be the same (or it would be singlet) For higher multiplets, we also check for degeneracies modulo 3 among the p or q indices respectively.

Works underway **Close-packing + tuning** with Altmann, Bernardinis, Kreps, Zaccolo **Excited Strings** with Altmann, Carragher, March-Russell **QCD CR by sequential recombination** with Altmann, El-Menoufi, Scyboz, Smith **CP Echidna Model** with Bergmann Lightcone Scaling & follow-ups with Abidi

- Stay "tuned" !
 - **LEP tuning** with Jueid + others
 - **LEP studies** with Hansen + others?
 - + Renewed PYTHIA 8.3 general tuning effort

Backup Slides

Fragmentation of String Junctions

Assume Junction Strings have same properties as ordinary ones (u:d:s, Schwinger p_T , etc)

Exploit causality again to fragment outwards-in, from endpoints towards junction First Stage: 2 least energetic legs (q_{A0} , q_{B0}) fragmented first

Predicting the Junction Baryon Spectrum

The Junction Baryon = smoking gun of String Junctions

- Predicting the movement of the string junction is crucial! The movement of the string junction is crucial, To make solid predic it is the smoke of the BNV gun!
- we use a trick: Sjöstrand & PSA Junction is a topological feature of the string Find the Lorentz fram confinement field: $V(r) = \kappa r$. Each string piece Inverse boost (+ $\mathcal{O}(/ \text{ acts on the other two with a constant force, <math>\kappa \vec{e_r}$.
- \square \implies in junction rest frame (JRF) the angle is Junction = Topologi 120° between the string pieces.

Or better, 'pull vectors' lie at 120°:

$$\implies$$
 each "leg" (string

 $p_{\mathrm{pull}}^{\mu} = \sum p_i^{\mu} e^{-\sum_{j=1}^{i-1} rac{E_j}{\kappa}}$ i=1.N

 \implies In "Mercedes Fra (since soft gluons 'eaten' by string) Massless legs: exact solution. Mercedes Frame = Junction Rest Frame (JRF). Massive legs (eg heavy flavours or ones with lots of kinks!) => Iterative algorithm. But org algorithm often broke down (failed to converge) for "soft legs"

Does a Boost to the Mercedes Frame Always Exist?

Consider the following kinematic case

In the **rest frame of one of the partons**, and the angle between the other two is greater than 120 degrees (not considered in org algorithmic implementation)

I.e., can only happen for massive partons

Org algorithm failed to converge

Slide adapted from J. Altmann

The case of a heavy slow endpoint: Pearl on a String String Motion: Soft Massless Case String Motion: Slow Massive Case

With thanks to G. Gustafson. Slide adapted from J. Altmann

The case of a heavy slow endpoint: Pearl on a String

The junction gets "stuck" to the soft _____ quark, which we call a pearl-on-astring

More likely to occur for junctions with heavy flavour endpoints

For a string junction to make a **heavy baryon**, the junction leg with the heavy quark can't "break" (*i.e.* a "soft" junction leg) = **pearl-on-a-string!**

(Could it be Thermal?)

Or a "hot string" that cools down?

Hunt-Smith & PS, Eur.Phys.J.C 80 (2020) 11

 $/m_{q}^{2} + p_{\perp}^{2}$