

Soft Physics in PYTHIA8

Leif Lönnblad

for the PYTHIA8 Collaboration

Department of Physics Lund University

QCD@LHC 2024-10-10

Outline

 \triangleright The Lund approach to hadronic collisions

ˇ

- ▶ Multi-parton interactions
- String formation and hadronisation
- **Heavy** ions
- ▶ The Lund model reloaded
	- Colour reconnections
	- **String interactions**
	- Rope hadronisation
	- ▶ Hadronic rescattering

[\[arXiv:2203.11601,](https://arxiv.org/abs/2203.11601) A comprehensive guide to the physics and usage of PYTHIA8]

Outline

 \triangleright The Lund approach to hadronic collisions

ˇ

- ▶ Multi-parton interactions
- \triangleright String formation and hadronisation
- **Heavy** ions
- ▶ The Lund model reloaded
	- Colour reconnections
	- \blacktriangleright String interactions
	- Rope hadronisation
	- ▶ Hadronic rescattering

there is \mathcal *soft* QCD everywhere $@$ LHC

[\[arXiv:2203.11601,](https://arxiv.org/abs/2203.11601) A comprehensive guide to the physics and usage of PYTHIA8]

(Semi-) Hard Multiple Interactions

Starting Point in PYTHIA:

$$
\frac{d\sigma^H}{dk_\perp^2} = \sum_{ij} \int dx_1 dx_2 f_i(x_1,\mu_F^2) f_j(x_2,\mu_F^2) \frac{d\hat{\sigma}_{ij}^H}{dk_\perp^2}
$$

The QCD 2 \rightarrow 2 cross section is divergent $\propto \alpha_{\cal S}^2(k_{\perp}^2)/k_{\perp}^4$ $\int_{k_{\perp c}^2} d\sigma^H$ will exceed the total (non-diffractive) *pp* cross section at the LHC for $k_{\perp c} \lesssim 5$ GeV.

There are more than one partonic interaction per *pp*-collision

$$
\left\langle N_H \right\rangle\left(k_{\perp c}\right) = \frac{\int_{k_{\perp c}^2} d\sigma^H}{\sigma^{ND}}
$$

The trick in PYTHIA is to treat everything as if it is perturbative.

$$
\frac{d\hat{\sigma}_{ij}^H}{dk_\perp^2} \rightarrow \frac{d\hat{\sigma}_{ij}^H}{dk_\perp^2} \times \left(\frac{\alpha_S(k_\perp^2 + k_{\perp 0}^2)}{\alpha_S(k_\perp^2)} \cdot \frac{k_\perp^2}{k_\perp^2 + k_{\perp 0}^2}\right)^2
$$

Where $k_{\perp 0}^2$ is motivated by colour screening (saturation) and is dependent on collision energy.

$$
k_{\perp 0}(E_{\rm CM}) = k_{\perp 0}(E_{\rm CM}^{\rm ref}) \times \left(\frac{E_{\rm CM}}{E_{\rm CM}^{\rm ref}}\right)^{\epsilon \sim 0.16}
$$

(using handwaving about the the rise of the total cross section)

The total and non-diffractive cross section is put in by hand (or with a Donnachie—Landshoff parameterization).

▶ Pick a hardest scattering according to

$$
\frac{1}{\sigma^{\rm ND}} \frac{d\sigma^H}{d k_\perp^2} \times \exp\left(-\int_{k_\perp^2} dq_\perp^2 \frac{1}{\sigma^{\rm ND}} \frac{d\sigma^H}{dq_\perp^2}\right)
$$

- ▶ Pick an impact parameter, *b*, from the overlap function (high *k*⊥gives bias for small *b*).
- ▶ Generate additional scatterings with decreasing *k*[⊥] μ sing 1 $/ \sigma^{\rm ND}$ *d* $\sigma^{\rm H}(b)/d k_\perp$

- \triangleright Most of the energy of a proton continues along the beam direction.
- ▶ Any scattering will give accelerated colour charges, and also bremsstrahlung (parton showers).
- ▶ Each parton pinches a hole in the QCD vacuum condensate, like a magnetic field line in a superconductor.
- ▶ Confinement means that each and every accelerated colour charge must be individually neutralised.

The Lund model

ˇ

All partons in an event are connected with (one-dimensional, massless relativistic) string pieces.

As partons separates, energy is stored in the strings, with tension $\kappa \approx 1$ GeV/fm.

The Lund model

ˇ

All partons in an event are connected with (one-dimensional, massless relativistic) string pieces.

As partons separates, energy is stored in the strings, with tension $\kappa \approx 1$ GeV/fm.

A virtual *qq* pair can neutralise the field and use the released string tension to tunnel on-shell and break the string, with probability

$$
P \propto e^{-\frac{\pi (m_q^2 + \rho_\perp^2)}{\kappa}}
$$

The Lund model

r \bar{r} *r* \bar{r} *r* \bar{r} *r* \bar{r} *r* \rightarrow 0 $\$

ˇ

All partons in an event are connected with (one-dimensional, massless relativistic) string pieces.

As partons separates, energy is stored in the strings, with tension $\kappa \approx 1$ GeV/fm.

A virtual *qq* pair can neutralise the field and use the released string tension to tunnel on-shell and break the string, with probability

$$
P \propto e^{-\frac{\pi (m_q^2 + \rho_\perp^2)}{\kappa}}
$$

 $(d: u: s: c \sim 1:1:0.3:10^{-11})$

All breakups are causally disconnected, but quantum mechanics will give us (on-shell) hadrons.

All breakups are causally disconnected, but quantum mechanics will give us (on-shell) hadrons.

Operationally in PYTHIA, hadrons are chopped off sequentially from string ends. Left–right symmetry constrains the form of the resulting fragmentation function.

$$
p(z) \propto \frac{(1-z)^a}{z} e^{-bm_{\perp}^2/z}
$$

(*z* is the energy fraction of the string end taken by the hadron)

The role of Gluons

ˇ

\triangleright A gluon acts like a kink on the string

- \triangleright As a gluon is connected with two string pieces, (a.k.a dipoles)
- \blacktriangleright it looses energy faster than a quark ...
- \blacktriangleright ... and will eventually stop ...
- ▶ ... stretching out new string region.

The role of Gluons

- \triangleright A gluon acts like a kink on the string
- \triangleright As a gluon is connected with two string pieces, (a.k.a dipoles)
- \blacktriangleright it looses energy faster than a quark ...
- \blacktriangleright ... and will eventually stop ...
- ▶ ... stretching out new string region.

The role of Gluons

- \triangleright A gluon acts like a kink on the string
- \triangleright As a gluon is connected with two string pieces, (a.k.a dipoles)
- \blacktriangleright it looses energy faster than a quark ...
- \blacktriangleright ... and will eventually stop ...
- ▶ ... stretching out new string region.

The role of Gluons

- \triangleright A gluon acts like a kink on the string
- \triangleright As a gluon is connected with two string pieces, (a.k.a dipoles)
- \blacktriangleright it looses energy faster than a quark ...
	- . . . and will eventually stop . . .
- ▶ ... stretching out new string region.

The role of Gluons

- \triangleright A gluon acts like a kink on the string
- \triangleright As a gluon is connected with two string pieces, (a.k.a dipoles)
- \blacktriangleright it looses energy faster than a quark ...
	- . . . and will eventually stop . . .
- ▶ ... stretching out new string region.

The role of Gluons

- \triangleright A gluon acts like a kink on the string
- \triangleright As a gluon is connected with two string pieces, (a.k.a dipoles)
- \blacktriangleright it looses energy faster than a quark ...
	- . . . and will eventually stop . . .
- ▶ ... stretching out new string region.

The role of Gluons

- \triangleright A gluon acts like a kink on the string
- \triangleright As a gluon is connected with two string pieces, (a.k.a dipoles)
- \blacktriangleright it looses energy faster than a quark ...
	- . . . and will eventually stop . . .
- ▶ ... stretching out new string region.

Baryons and Popcorn

The simplest way of producing baryons in PYTHIA8 is to have string breaking due to have virtual diquark–anti-diquark pairs tunnelling out to become on-shell.

Baryons and Popcorn

The simplest way of producing baryons in PYTHIA8 is to have string breaking due to have virtual diquark–anti-diquark pairs tunnelling out to become on-shell.

This would give strong **BB** correlations.

▶ What happens if we have a *qq*¯ fluctuation that does *not* break the colour field?

- \blacktriangleright If the quark moves in the original quark direction, there is no net force acting on it, so it could live for a while
- \triangleright long enough for a new fluctuation to break the string
- ▶ maybe even twice, reducing the *BB* correlations.

- ▶ What happens if we have a *qq*¯ fluctuation that does *not* break the colour field?
- \blacktriangleright If the quark moves in the original quark direction, there is no net force acting on it, so it could live for a while
- \triangleright long enough for a new fluctuation to break the string
- maybe even twice, reducing the *BB* correlations.

- ▶ What happens if we have a $q\bar{q}$ fluctuation that does **not** break the colour field?
- \blacktriangleright If the quark moves in the original quark direction, there is no net force acting on it, so it could live for a while
- \triangleright long enough for a new fluctuation to break the string
	- maybe even twice, reducing the *BB* correlations.

 $\frac{r}{r}$ **g** $b\overline{b}$ *b* \overline{b} *b* \overline{b} *g* \overline{r}

- ▶ What happens if we have a $q\bar{q}$ fluctuation that does **not** break the colour field?
- \blacktriangleright If the quark moves in the original quark direction, there is no net force acting on it, so it could live for a while
- \triangleright long enough for a new fluctuation to break the string
- maybe even twice, reducing the $B\bar{B}$ correlations.

Multiple Scattering and Remnants

The Multi-parton scattering model in PYTHIA allows for several strings connecting to the proton remnant.

If you kick out

▶ . . .

- \triangleright a valence quark, you get a diquark remnant
- ▶ a gluon \Rightarrow quark + diquark
- an anti-quark \Rightarrow two quarks + diquark
- $▶$ two gluons \Rightarrow quark + diquark
- two valence quarks \Rightarrow quark (connected via a junction)

Junction hadronization

- ▶ First the *shortest* leg
- \blacktriangleright then the second shortest
- \blacktriangleright finally the longest with a di-quark end

Junction hadronization

- ▶ First the *shortest* leg
- \blacktriangleright then the second shortest
- \blacktriangleright finally the longest with a di-quark end

Junction hadronization

- ▶ First the *shortest* leg
- \blacktriangleright then the second shortest
- \blacktriangleright finally the longest with a di-quark end

Junction hadronization

Performed in the junction rest frame, but normal string breaks.

- ▶ First the *shortest* leg
- \blacktriangleright then the second shortest

 \blacktriangleright finally the longest with a di-quark end

Junction hadronization

- ▶ First the *shortest* leg
- \blacktriangleright then the second shortest
- \blacktriangleright finally the longest with a di-quark end

Junction hadronization

- ▶ First the *shortest* leg
- \blacktriangleright then the second shortest
- \blacktriangleright finally the longest with a di-quark end

- ▶ Glauber–Gribov modelling with fluctuating nucleon wave functions.
- ▶ Using the full PYTHIA8 MPI machinery for each *NN* sub-collision.
- \blacktriangleright The sub-collisions are then simply stacked together.
- \blacktriangleright Lots and lots of strings...

- ▶ Glauber–Gribov modelling with fluctuating nucleon wave functions.
- ▶ Using the full PYTHIA8 MPI machinery for each *NN* sub-collision.
- \blacktriangleright The sub-collisions are then simply stacked together.
- \blacktriangleright Lots and lots of strings...
- ▶ How hot?

- ▶ Glauber–Gribov modelling with fluctuating nucleon wave functions.
- ▶ Using the full PYTHIA8 MPI machinery for each *NN* sub-collision.
- \blacktriangleright The sub-collisions are then simply stacked together.
- \blacktriangleright Lots and lots of strings...
- ▶ How hot?
- ▶ How dense?

ˇ

Strings are not one-dimensional. We can estimate both the tension and the radius of a QCD string on the lattice: $R = 0.25 - 1.0$ fm.

Strings are not one-dimensional. We can estimate both the tension and the radius of a QCD string on the lattice: $R = 0.25 - 1.0$ fm.

$$
\begin{array}{ccc}\n & q & \bar{q} \\
\hline\nx & & & \\
\uparrow & & \\
\uparrow & & \\
z & & & \end{array}
$$
\n
$$
t = 0.00 \text{ fm/c}
$$

ˇ

Strings are not one-dimensional. We can estimate both the tension and the radius of a QCD string on the lattice: $R = 0.25 - 1.0$ fm.

Strings are not one-dimensional. We can estimate both the tension and the radius of a QCD string on the lattice: $R = 0.25 - 1.0$ fm. <sup>19 Bayyon and popcom

Heavy ion collisions

Strings are not one-dimensional. We can estimate both the

tension and the radius of a QCD string on the lattice:
 $R = 0.25 - 1.0$ fm.
 x
 $t = 0.50$ fm/c

Colour magnetic curr</sup>

ˇ

field in flux tubes

ˇ

Strings are not one-dimensional. We can estimate both the tension and the radius of a QCD string on the lattice: $R = 0.25 - 1.0$ fm. <sup>1Bayons and popcom

Heav ion collisions</sup>

Strings are not one-dimensional. We can estimate both the

tension and the radius of a QCD string on the lattice:
 $R = 0.25 - 1.0$ fm.
 x
 $t = 0.75$ fm/c

Colour magnetic curren

field in flux tubes Energy density (κ) is built up from the longitudinal momentum of the partons.

ˇ

Strings are not one-dimensional. We can estimate both the tension and the radius of a QCD string on the lattice: $R = 0.25 - 1.0$ fm. ^{1 Baryons and popcorn}

Heavy ion collisions

Strings are not one-dimensional. We can estimate both the

tension and the radius of a QCD string on the lattice:
 $R = 0.25 - 1.0$ fm.
 x
 $t = 1.00$ fm/c

Colour magnetic cu

field in flux tubes Energy density (κ) is built up from the longitudinal momentum of the partons.

Strings are not one-dimensional. We can estimate both the tension and the radius of a QCD string on the lattice: $R = 0.25 - 1.0$ fm.

Colour magnetic current is built up, confining the colour electric field in flux tubes Energy density (κ) is built up from the longitudinal momentum of the partons.

Strings are not one-dimensional. We can estimate both the tension and the radius of a QCD string on the lattice: $R = 0.25 - 1.0$ fm.

Colour magnetic current is built up, confining the colour electric field in flux tubes Energy density (κ) is built up from the longitudinal momentum of the partons.

ˇ **How far can we go with the string picture?**

\blacktriangleright Where are the collective effects?

- \triangleright Do the strings melt?
- ▶ Or is this rather a highly structured (cold) system?
- \triangleright Surely the strings must interact some way!

ˇ **How far can we go with the string picture?**

- \blacktriangleright Where are the collective effects?
- ▶ Do the strings melt?
- ▶ Or is this rather a highly structured (cold) system?
- \triangleright Surely the strings must interact some way!

ˇ **How far can we go with the string picture?**

- \blacktriangleright Where are the collective effects?
- \triangleright Do the strings melt?
- ▶ Or is this rather a highly structured (cold) system?
- \triangleright Surely the strings must interact some way!

ˇ **How far can we go with the string picture?**

- \blacktriangleright Where are the collective effects?
- \triangleright Do the strings melt?
- ▶ Or is this rather a highly structured (cold) system?
- \triangleright Surely the strings must interact some way!

[ˆHeavy ion collisions](#page-33-0) [Colour connections](#page-55-0) [String shoving](#page-62-0)

ˇ

Colour Connections

Every MI will stretch out new colour-strings.

Heavy ion collisions [Colour connections](#page-55-0) [String shoving](#page-62-0)

ˇ

Colour Connections

Every MI will stretch out new colour-strings.

Evidently not all of them can stretch all the way back to the proton remnants.

Heavy ion collisions [Colour connections](#page-53-0) [String shoving](#page-62-0)

ˇ

Colour Connections

Every MI will stretch out new colour-strings.

Evidently not all of them can stretch all the way back to the proton remnants.

To be able to describe observables such as ⟨*p*⊥⟩(*n*ch) we need (a lot of) colour (re-)connections.

Heavy ion collisions [Colour connections](#page-53-0) [String shoving](#page-62-0)

Colour reconnections

The cases where two (anti-) parallel strings forms triplets or singlets are treated with *Colour reconnections*.

The singlet case is straight forward.

ˇ

The general idea is that nature prefers shorter strings.

The anti-triplet case is trickier and is only treated in the "QCD-based" model:

We get junctions, potentially well separated in rapidity.

[\[arXiv:1505.01681\]](https://arxiv.org/abs/1505.01681)

These junction reconnections also allow for more heavy baryons

[\[arXiv:2309.12452\]](https://arxiv.org/abs/2309.12452)

String Interactions

- ▶ Overlapping (anti-)parallel strings may attenuate each other
- ▶ Overlapping strings may repel each other

ˇ

▶ Overlapping strings will have an increased string tension, making it easier to produce eg. strange hadrons.

String Interactions

- ▶ Overlapping (anti-)parallel strings may attenuate each other
- ▶ Overlapping strings may repel each other

ˇ

▶ Overlapping strings will have an increased string tension, making it easier to produce eg. strange hadrons.

String Interactions

- ▶ Overlapping (anti-)parallel strings may attenuate each other
- ▶ Overlapping strings may repel each other

ˇ

▶ Overlapping strings will have an increased string tension, making it easier to produce eg. strange hadrons.

ˇ

String repulsion: Shoving

The string endpoints (quarks and gluons) carry longitudinal momentum, but the string itself cannot.

The shoving between parallel strings gives a transverse push according to

$$
\frac{d p_{\perp}}{dt\,dz}=\frac{g\kappa\delta_{\perp}(t)}{R^2}\exp\left(-\frac{\delta_{\perp}^2(t)}{4R^2}\right).
$$

This push must be parallel to both string pieces.

There is no frame where two random string pieces are parallel.

But there is always a frame where they lie in parallell planes at any given time.

ˇ

ˇ

ˇ

ˇ

- ▶ Use (simplified) space-time information of all partons.
- ▶ Transform to parallel frame for every pair of string pieces.
- ▶ Calculate and collect small nudges, ordered in time.
- ▶ Apply the nudges to the produced primary hadrons (both position and momenta).

ˇ

We have a ridge!

ˇ

We have v_2 in PbPb

[\[arXiv:2010.07595,](https://arxiv.org/abs/2010.07595) [arXiv:1602.01119\]](https://arxiv.org/abs/1602.01119)

String shoving [Rope hadronisation](#page-72-0) [Hadronic Rescattering](#page-75-0)

ˇ

Rope hadronisation

For completely overlapping parallel strings we get an increased tension proportional to the second Casimir operator for the resulting colour multiplet in the string ends.

For two random parallel string we can either get an sextet or an (anti-) triplet. While for the anti-parallel case we get an octet or a singlet.

$$
\kappa^{(6)} = \frac{5}{2} \kappa^{(3)}, \qquad \kappa^{(8)} = \frac{9}{4} \kappa^{(3)}
$$

Breaking such a "rope" with a $q\bar{q}$ breakup will happen with an increased effective string tension, e.g.

$$
\kappa_{\text{eff}}=\kappa^{(6)}-\kappa^{(3)}=\frac{3}{2}\kappa^{(3)}
$$

In general strings are not exactly parallel, nor are they completely overlapping (but we can use the parallel frame) . . .

From the tunnelling probability

$$
P\propto e^{-\frac{\pi(m_q^2+p_\perp^2)}{\kappa}}
$$

We see that strange quarks will be relatively less suppressed compared to *u*/*d*.

The same will be true for diquarks - so we expect more (anti-) baryons.

String shoving Rope hadronisation Hadronic Rescattering

Strangeness enhancement

Looks like a common mechanism

Nature Phys. 13 (2017) 535-539

Leif Lönnblad

Hadronic Rescattering

[\[arXiv:2103.09665\]](https://arxiv.org/abs/2103.09665)

PYTHIA8 includes a full machinery for hadron rescattering. with parametrisation of any hadronic cross section. Including $2 \rightarrow n$ but not $3 \rightarrow n$.

Hadronic Rescattering vs. Shoving

PYTHIA8 includes a full machinery for hadron rescattering. with parametrisation of any hadronic cross section. Including $2 \rightarrow n$ but not $3 \rightarrow n$.

Hadronic Rescattering vs. Shoving

PYTHIA8 includes a full machinery for hadron rescattering. with parametrisation of any hadronic cross section. Including $2 \rightarrow n$ but not $3 \rightarrow n$.

- ▶ Particle production is driven my multiple semi-hard parton interactions.
- ▶ Accelerated colour charges need to form colour-singlet hadrons.
- ▶ Colours can combine (reconnect) but we are left with colour fields that are confined into *fluxtubes* (strings).
- \triangleright The strings repel each other causing flow (shoving).
- \blacktriangleright The remaining overlap gives increased string tension (ropes, strangeness enhancement).
- \triangleright After hadronisation, the produced hadrons may rescat (giving more flow).

- ▶ Particle production is driven my multiple semi-hard parton interactions.
- ▶ Accelerated colour charges need to form colour-singlet hadrons.
- ▶ Colours can combine (reconnect) but we are left with colour fields that are confined into *fluxtubes* (strings).
- \triangleright The strings repel each other causing flow (shoving).
- \blacktriangleright The remaining overlap gives increased string tension (ropes, strangeness enhancement).
- \triangleright After hadronisation, the produced hadrons may rescat (giving more flow).

- ▶ Particle production is driven my multiple semi-hard parton interactions.
- ▶ Accelerated colour charges need to form colour-singlet hadrons.
- ▶ Colours can combine (reconnect) but we are left with colour fields that are confined into *fluxtubes* (strings).
- \triangleright The strings repel each other causing flow (shoving).
- \blacktriangleright The remaining overlap gives increased string tension (ropes, strangeness enhancement).
- \triangleright After hadronisation, the produced hadrons may rescat (giving more flow).

- ▶ Particle production is driven my multiple semi-hard parton interactions.
- ▶ Accelerated colour charges need to form colour-singlet hadrons.
- ▶ Colours can combine (reconnect) but we are left with colour fields that are confined into *fluxtubes* (strings).
- \blacktriangleright The strings repel each other causing flow (shoving).
- ▶ The remaining overlap gives increased string tension (ropes, strangeness enhancement).
- \triangleright After hadronisation, the produced hadrons may rescat (giving more flow).

- ▶ Particle production is driven my multiple semi-hard parton interactions.
- ▶ Accelerated colour charges need to form colour-singlet hadrons.
- ▶ Colours can combine (reconnect) but we are left with colour fields that are confined into *fluxtubes* (strings).
- \blacktriangleright The strings repel each other causing flow (shoving).
- \blacktriangleright The remaining overlap gives increased string tension (ropes, strangeness enhancement).

 \triangleright After hadronisation, the produced hadrons may rescate (giving more flow).

- ▶ Particle production is driven my multiple semi-hard parton interactions.
- ▶ Accelerated colour charges need to form colour-singlet hadrons.
- ▶ Colours can combine (reconnect) but we are left with colour fields that are confined into *fluxtubes* (strings).
- \blacktriangleright The strings repel each other causing flow (shoving).
- \blacktriangleright The remaining overlap gives increased string tension (ropes, strangeness enhancement).
- ▶ After hadronisation, the produced hadrons may rescatter (giving more flow).

- ▶ Particle production is driven my multiple semi-hard parton interactions.
- ▶ Accelerated colour charges need to form colour-singlet hadrons.
- ▶ Colours can combine (reconnect) but we are left with colour fields that are confined into *fluxtubes* (strings).
- \blacktriangleright The strings repel each other causing flow (shoving).
- \blacktriangleright The remaining overlap gives increased string tension (ropes, strangeness enhancement).
- ▶ After hadronisation, the produced hadrons may rescatter (giving more flow).

Unfortunately we are still not ready to use reconnections + shoving + ropes + rescattering together.

PYTHIA8 News flashes for QCD

- \triangleright Quarkonium states can now be produced in the shower, using NRQCD [\[arXiv:2312.05203\]](https://arxiv.org/abs/2312.05203)
- \triangleright String fragmentation now comes with weight variations [\[arXiv:2308.13459\]](https://arxiv.org/abs/2308.13459)
- ▶ Variable beams (soon also in Heavy Ions) allows for modelling cosmic rays, and could even be used in detector Simulations. [\[arXiv:2108.03481\]](https://arxiv.org/abs/2108.03481)

Soft Physics in PYTHIA8

Leif Lönnblad

pp vs. pPb vs. PbPb

Net baryon number, LHC pp, 7 TeV

Net baryon number, LHC pp, 7 TeV

Net baryon number, LHC pp, 7 TeV

Net baryon number, LHC pp, 7 TeV

Popcorn vs. Gluons

ALICE found some weird baryon correlation effects

There is no jet peak for like-sign baryons!

Do baryons not like (gluon) jets?

[\[arXiv:1401.4306,](https://arxiv.org/abs/1401.4306) [arXiv:1612.08975\]](https://arxiv.org/abs/1612.08975)

[Soft Physics in PYTHIA8](#page-0-0) 42 Leif Lönnblad [Lu](#page-96-0)[nd](#page-0-0) [Univ](#page-96-0)ersity Lund University

Maybe the answer is related to the popcorn model.

- \triangleright A non-breaking $q\bar{q}$ pair can still be formed
- ▶ But travelling across a kink corresponds to the quark acquiring a transverse momentum, which must be exponentially suppressed.

Maybe the answer is related to the popcorn model.

- \triangleright A non-breaking $q\bar{q}$ pair can still be formed
- ▶ But travelling across a kink corresponds to the quark acquiring a transverse momentum, which must be exponentially suppressed.

Maybe the answer is related to the popcorn model.

- \triangleright A non-breaking $q\bar{q}$ pair can still be formed
- \triangleright But travelling across a kink corresponds to the quark acquiring a transverse momentum, which must be exponentially suppressed.

Popcorn suppression in jets is not properly implemented yet, but a toy model with a simple veto looks promising:

