Accelerating PYTHIA8

LUND

UNIVERSITY

Leif Lonnblad
On behalf of the PYTHIA8 collaboration

Department Physics
Lund University

CERN, 2023-11-13

Accelerating PYTHIA8 Lund University

Introduction

Outline

Introduction
Recent developments

» ParallelPythia, Shower variations, biasing
New developments

» Hadronisation weights, Onium showers
Future developments

» Sectorised merging histories, GPUs,

v

v

v

v

[arXiv:2203.11601, A comprehensive guide to the physics and usage of PYTHIAS]

Accelerating PYTHIA8

https://arxiv.org/abs/2203.11601

Introduction

Is PYTHIA8 a bottleneck?

el self
- 0456 000
- 798 006
n 3748 723
w2961 924
§ 2720 0ma
n 2585 308
2 2171y 1225

|10 4se
| 1003 058
| 9ss oo
| e05 030
| 85y 1200
755 004
620 014
611 056
498 175
477 450
472 000
458 000
404 130
363 000
EEC
324 000
323 020

Fle View Go Setngs Help
B open. < Back v

Fiat Profle

Search:

Self | ELFObject

m 6461 5 Ibpythias so
B 2807 Wibm22650
323 8 Ibstdc++.50.6.0.28

251 W libc-2.26.50

Called Function
999 g Pythias:
1002 u Pythias:
144941 g Pythias:
14633 665 5 Pythias:
116799 g Pythias:
2103878 5 Pythias:
25243 668 Pythias:
25243 668 s Pythias
368 566 g Pythias:
1002 g Pythias
4015909 Pythias:
4015908 Pythias:
116798 Pythias:
2001 5 Pythias:
273017 g Pythias:
999 u Pythiae:
3273559 g Pythias:
274 u Pythice

() m Pythias:
324685 u Pythias
10717 g Pythias:
49572637 g Pythias:
10716 g Pythias:
931892 g Pythias

Aup v >

ELF Object

Pythianext(int)
PartonLevel:next(Pythiag:Events.,
SimpleTimeShower:pTnext(Pythias:
SimpleTimeshower:pT2nextQCDI(.
SimpleSpaceShower:pTnext(Pythia.
Simplespaceshower:pT2nextQCD(d.
BeamParticlezxfModified(int, int, do.
PDF:xfsea(int, double, double)
MultipartonInteractions:sigmaPTs.
HadronLevel:next(Pythias:events)
LHAGrid1:xfUpdate(int, double, do.
LHAGrid1:xfxevolve(double, double)
Multipartonlnteractions:pTnext(do.
ParticleDecays:decayAllPythlas:Ev.
ParticleDecays:decay(int, Pythla8:.
Pythia:icheck)
BeamParticlezxModPrep(int, double)
Taubecays:decay(int, Pythias:Even.
Pythiazinit)
sigmaMultiparton:sigma(int, nt, do.
HellctyMatrixElement:decayWelght.
Rndm:flaty)
HellcltyMatrix€lement:decayWelgh.

HellctyMatrixElement:decayWeight.

Cycle Estimation

In its default setup PYTHIAS8 is fast.

One (13 TeV tt) event takes ~10 ms
40% Final state shower

~ 30% Initial state shower

~ 10% Multi parton interactions
~ 10% Hadronisation + decays
~ 50k random numbers (~6%)

4k PDF evaluations (~10%)

Accelerating PYTHIA8

Introduction

Is PYTHIA8 a bottleneck?

1 open. < Back v AUp v > | cycleEstimation
Flat Profile o
In its default setup PYTHIAS8 is fast.
m 6461 o libpythis.so
m 2807 @ libm-2.26.50
3.23 o libstdc++.50.6.0.28
2.51 8 IIbc-2.26.50 -
One (13 TeV tt) event takes ~10 ms
By o gy ~ 40% Final state shower
[o am mari et ~ 30% Initial state shower
R e ~ 10% Multi parton interactions
1 905 030 4015909 y Pythia8:LHAGrid1:xfUpdate(int, double, do. o/ H d H t' d
i A S ~ 10% Hadronisation + decays
620 o014 2001 g Pythias: ParticleDecays: decayAllPythias:Ev. o/
B ~ 50k random numbers (~6%)
477 490 3273559 g Pythiag:BeamParticle:xiModPrep(in, double) 4k PDF | t 100/
~ evaluations (~10%
408 130 324685 g PythiagisigmaMultparton:sigmafin,int, do. 20/ ME t
< ° generation

Accelerating PYTHIA8

Introduction

Every step in PYTHIA8 depends on what happened in the
previous step, so parallelisation is in general not possible.

Even where parallelisation is possible, the steps typically
involves a lot of admin code that is not suited for e.g. GPUs.

But default PYTHIA8 is fast so no problem!

Accelerating PYTHIA8 4 Leif Lénnblad Lund University

Recent deveopments

Paralellisation

Every event is independent, so PYTHIA8 itself can be
parallelised

» Everything is perfectly thread safe
» OpenMP and HDF5 LHEF supported
» New wrapper class using std: :thread

Accelerating PYTHIA8 5] Leif Lénnblad Lund University

Recent deveopments

ParallelPythia

from examples/mainlé6l.cc

#include "Pythia8/Pythia.h"
#include "Pythia8/PythiaParallel.h"
using namespace Pythia8;
int main() {
// Use the PythiaParallel class for parallel generation.
PythiaParallel pythia;
pythia.readString ("Beams:eCM = 8000.");
pythia.readString ("HardQCD:all = on");
pythia.readString ("PhaseSpace:pTHatMin = 20.");
pythia.init ();
Hist mult ("charged multiplicity", 100, -0.5, 799.5);
// Use PythiaParallel::run to generate the specified number of events.
pythia.run (10000, [&] (Pythiax pythiaPtr) {
// Find number of all final charged particles and fill histogram.
int nCharged = 0;
for (int i = 0; i < pythiaPtr->event.size(); ++1i)
if (pythiaPtr->event[i].isFinal() && pythiaPtr->event[i].isCharged())
++nCharged;
mult.fill (nCharged);
// End of event loop. Statistics. Histogram. Done.
b i
pythia.stat ();
cout << mult;
return 0;

Accelerating PYTHIA8

Recent deveopments

Shower variations

With multiple weights per event we can save a lot of CPU time
for scale variations etc.

Scale variations is easy for MEs. Showers are more tricky.

» We have splitting functions and no emission functions

pi, rev
P(p?) x exp (— /pz " dkiP(ki))

1

» Using the veto algorithm we oversample with a simple
overestimate function and throw to get the correct
distribution.

[arXiv:1605.08352]

Accelerating PYTHIA8 7 Leif Lénnblad Lund University

https://arxiv.org/abs/1605.08352

Recent deveopments

Every time we accept/reject we can get weights for different
variations,

P(pi7 aS(MR)) — P(pi7aS(C/~LR)) = pacc — p;covprej — p:eja

accept/reject according p,.. and p,;, and get an event weight
/
w112
.]
]

Note that large reweighting factors may result in fluctuating
weights, so the statistical uncertainty will increase:

(Cw)?

Ney, ei = W

Accelerating PYTHIA8 8 Leif Lénnblad Lund University

Recent deveopments

» up scale for QCD emissions in FSR

» up scale for QCD emissions in ISR

» inclusion of non-singular terms in QCD emissions in FSR
» inclusion of non-singular terms in QCD emissions in ISR
» PDF members of a PDF family in LHAPDF6

» individual PDF members of a PDF family in LHAPDF6

Accelerating PYTHIA8 9 Leif Lénnblad Lund University

10°

)

=
o

1/ do/d(1-T)

4

,_.
Q

Theory/Data
o o =R
O O = N A

Accelerating PYTHIA8

Recent deveopments

ee - hadrons 91.2 GeV
? 1-Thrust (udsc)

E - L3 Xz%/Nnms
F —— Pythia 04201

-~ Pythia u=0.5pT W302:11
—=- Pythia u=2.OpT W10.2:03

Weighting of
central prediction

o

YR ‘ | ‘ | ‘ L1 \ﬁ/‘
0.1 0.2 0.3 0. .
1-T (udsc)

o

VINCIAROOT

L
4 0.5

Recent deveopments

Biasing

The same procedure may be used to bias your events, e.g. to
get more g — bb

P;(P3) = CPuy(p7)

but now the réle of variation and standard setting are reversed,
so we accept/reject according to p, . and p/;, and get an event
weight

Accelerating PYTHIA8 11 Leif Lénnblad Lund University

Recent deveopments

Biasing works well for low probability processes, but for more
common processes we are hit by large weight fluctuations.

The statistical uncertainty of an observable scales like a power
of the inverse no-emission probability, A="

For an n-emission observable we get an uncertainty
—h

A .
50,7 X W, W|th h [C

You cannot bias MPI.

Accelerating PYTHIA8 Leif Lénnblad Lund University

New developments

Hadronisation weights

In addition, weight variations are soon also available for
hadronisation parameters.

Works on the same principle as shower variations
(with the same caveats), but this time modifying hit-and-miss
algorithms for e.g. the Lund symmetric fragmentation function.

(1-2)% —br2 /2

p(2) o —

[arXiv:2308.13459]

Accelerating PYTHIA8 13 Leif Lénnblad Lund University

https://arxiv.org/abs/2308.13459

New developments

) a=0.30, b=0.80 a=0.76, b=0.98
p 0.3 i &xl T h i :'; aba£e=0‘68,_-
< [o+ r e bb*°=0.58]
I 1F ow]
021 + i e]
v i)]
L L - *]
0.1F . = a9t - B
[* 1F - i]
0.0 L PR .*% -w*. P R *:% 1
gasF T AR
S RN | i
ooL— 1 v T

’ 20 40 20 40
charge multiplicity charge multiplicity

Accelerating PYTHIA8

New developments

Flavour variations

p=StringFlav:probStoUD

AV spectrum K spectrum
s ETTTTTT OO g s T
= —4— Data = —4— Data
) —+— flav_025000, x*/1 = 21.91 g 10k —+— flav.o15000, x*/n =888 —
K —+— flavp no, x?/n = 18.59 & E —+— flavp no, x2/n = 5.40 3
1 -
107" |
PE] WU NN EUN U FUUE FEUTE NN SN e P I S O N I U Y
4 B - g PR
13 E 135 E
‘3 1.2 = %1.2 =
g 11 E 11 E
g 11 g u J———
J 09 E E O 09 B =
= o8 E =3 > o8 =
o7 E = o7 -
13 i I I WU IR PO PO L SR D 33O N I N DU SV TR U P
0.5 0.6 0.7 08 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9
X %

p=0217 = p=0.25 p=0217 = p=0.15

Accelerating PYTHIA8

New developments

Mean time per event [ms]
IS o
— ——

NS}
—T

— Fit: 0.28+0.05 xx

[

Means

Accelerating PYTHIA8

20 40

60

80 100
Number of variations

New developments

This is mainly useful for tuning

But again, if you can do weight variations you can do biasing
(caveats still applies)

Accelerating PYTHIA8 Leif Lénnblad Lund University

New developments

Onia showers

PYTHIA8 now includes shower splittings into charmonium and
bottomonium splittings, e.g. ¢ — J/¢ + cand g — O(PP)) + g

(it's unfortunately a bit slow)

Biasing with a constant factor available.

[available since version 8.310]

Accelerating PYTHIA8 18 Leif Lénnblad Lund University

New developments

Biasing heavy flavours

An alternative to biasing is to simply try to veto uninteresting
events at a very early stage.

Using UserHooks you can tell PYTHIA8 to veto an event, e.g.
when the evolution scale has dropped below some scale, pr.

I~
G

Process veto + Evolution veto Process veto + Evolution veto

Process veto

Factor-10 speedup

AT e e 0
Py threshold [GeV/c]

Process veto b

&
<
8
2,
7
o
2
I
o)
&

Fraction of bb missed (%)

4 45 5
Py threshold [GeV/c]
Problem: aggressive speedup misses part of the b cross section

[Ulrik Egede et al. arXiv:2205.15681]

Accelerating PYTHIA8 19

https://arxiv.org/abs/2205.15681

New developments

LHC10 Pythia 8.306 » ISR has the

g Differential probability i t::rse:teabquark expected behaviour,
102 -+ ISR FSR and MPI not.
. - » WIP: reformulate
i shower to have a
“E % more physical
ET ,w*“”“i"?»:;\“**n::«w.»w evolution scale so
,% H T] that all bs are
B ey T N produced at scales
0 5 10 15 20 25
Pro (511 above my,.

Accelerating PYTHIA8

Future developments

Beyond the default PYTHIA8

While the default PYTHIA8 is fast, we sometimes need speed-up.

In addition PYTHIA8 includes important optional modules which
are quite CPU demanding, e.g.

» Hadronic rescattering has complexity N2 (CPUx2)

» QCD-based Colour reconnections, N or even N3
(CPUx15)

» CKKW-L type merging: N;!

Accelerating PYTHIA8 21 Leif Lénnblad Lund University

Future developments

ME+PS merging

For CKKW-L style merging (UMEPS, NL3, UNLOPS, ...) you
need to take all contributing shower histories into account for a
given ME state.

In conventional PS each possible phase-space point receives
contributions from many possible branching “histories”

(or “clusterings”). Approximately sums over (singular) diagrams
to give the full singularity structure.

#branchings |1 2 3 4 5 6 7
histories ‘2 8 48 384 3840 46080 645120

histories ~ # feynman diagrams grow faster than factorial

Accelerating PYTHIA8 22 Leif Lénnblad Lund University

Future developments

Sector Showers

The default VINCIA shower in PYTHIA8 is unique in being a “Sector
Shower”

» Divide N-gluon Phase Space into N “sectors”, with step
functions.

» Each PS sector corresponds to one specific gluon being the
“softest” in the event — the one you would cluster if you were
running a jet algorithm (specifically one called ARCLUS)

» Inside each sector, only a single kernel is allowed to contribute
(the most singular one)!

Sector Kernel = the eikonal for the soft gluon and its collinear DGLAP.
limits for z > 1/2.

Only a single (product of) kernel(s) contributes to each phase‘space

point. NI — 1!
[Skands & Villajero arXiv:1109.3608, Brooks, Preuss, Skands arXiv:2003.00702]

Accelerating PYTHIA8 23 Leif Lénnblad Lund University

https://arxiv.org/abs/1109.3608
https://arxiv.org/abs/2003.00702

Future developments

Sector Merging with VINCIA Sector Shower

Available since PYTHIA 8.306

VINCIA MESS A
o] €PU time

23 GHz Intel Core i5
16 GB 2133 MHz LPDDR3

1wf lﬂus:lm: optimizations.

CPU Hours per 1M events

Niew

Extentsons are coming:
» Sectorized matching at NNLO
(proof of concept: arXiv:2108.07133, arXiv:2310.18671)

» Sectorized iterated tree-level ME corrections
(demonstrated in arXiv:1109.3608)

» Sectorized multi-leg merging at NLO

[Brooks & Preuss arXiv:2008.09468]

Accelerating PYTHIA8 if L6 University

https://arxiv.org/abs/2108.07133
https://arxiv.org/abs/2310.18671
https://arxiv.org/abs/1109.3608
https://arxiv.org/abs/2008.09468

Future developments

Preview: VINCIA NNLO+PS for H — bb

Fixed-Order Reference = E.EﬁA-bii NLO H—> bbg: ‘a:\ir(;ady Highly optimised vmcm\@mo
Uses analytical MEs, “folds” phase space to cancel azimuthally antipodal points, and uses
antenna subtraction (= smaller # of NLO subtraction terms than Catani-Seymour or FKS).

VINCIA NNLO + PS: uses the shower as phase-space generator: extremely efficient &

everything formulated to be positive definite = no negative weights
> About factor 5 faster than EERAD3 (for comparable unweighted stats) + can be hadronised, etc.

—— H = b NNLO+PS [Vincia) Note:
—— M by NLO [EERAD3} : . e
NNLO accuracy in H — 2j implies NLO correction in first
emission and LO correction in second emission.

Expectation: VINCIA NLO MEC approach order-of-

Plot made by C. Preuss
magnitude faster than anything less optimised than EERAD3

0

0
(] 01 02 X 04 05

Accelerating PYTHIA8

Future developments

GPU plans

Both hadronic rescattering and QCD-based colour
reconnections can be improved algorithmically.

QCD-CR actively being worked on with M. Kreps (Warwick):
Purely code-based modifications may result in speed increases
of factors 2-3.

But some of the N? and N° calculations should be possible to
parallelise and be delegated to a GPU.

This would in particular be important for heavy ion collisions,
where N ~ ©O(1000) are common

Accelerating PYTHIA8 26 Leif Lénnblad Lund University

Future developments

Conclusions

PYTHIA8 may not be an important bottleneck, but there are
improvements than can be made and are being made.

Accelerating PYTHIA8 if L6 Lund University

Future developments

Other Thoughts (from Peter Skands)

Optimisation also crucial to reduce computational footprint / environmental impact
But funders do not (currently) score on this criterion at all
E.g., ERC allow a “Do No Significant Harm” statement — but ors told (in boldface) to ignore it

ARC does not even have such a statement. Not sure about other agencies... ?

Tricky choice if one has to compromise on scientific ambition? Some thoughts on this in “Computational
scientists should consider climate impacts and grant agencies should reward them”, P Skands, Nature
Rev.Phys. 5 (2023) 3, 137-138

All grants | am connected with now include minimisation of footprint as explicit goal
ARC DP22 “Tackling the computational bottleneck in precision particle physics” — on sector-based approaches

ARC DP23 "Beautiful Strings” — on more efficient (and better) models of heavy flavour production, fragmentation, and
decays (incl matching), QED showers in hadron decays, collective effects in fragmentation, and Colour Reconnections:

POST DOC AT MONASH NOW OPEN FOR APPLICATIONS

Monash-Warwick Alliance for Particle Physics: including optimisation and improvements to EVTGEN and PYTHIA for
HF physics (incl QED showers and QCD CR)

Royal Society Wolfson Visiting Fellowship “Piercing the precision barrier in high-energy particle physics”: to develop
efficient techniques for NNLO matching and beyond + interact with PanScales and with Warwick on (multithreaded)
multipole QED showers in hadron decays

DECRA 23 [L. Scyboz, Monash]: “Bridging the accuracy gap: High-precision parton showers for colliders” — on
PanScales and VINCIA.

Accelerating PYTHIA8

	
	Introduction
	Recent deveopments
	New developments
	Future developments

