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1 The DGLAP splitting kernel

The standard expression for g → qq, with q a massless quark is the DGLAP splitting
expression

dPg→qq =
αs

2π

dm2

m2

1

2

(
z2 + (1− z)2

)
dz . (1)

The z dependence can be related e.g. to the e+e− → γ∗ → qq angular distribution,

dσe+e−→γ∗→qq

d cos θ
∝ 1 + cos2 θ ∝ (1 + cos θ)2 + (1− cos θ)2 ∝ z2 + (1− z)2 (2)

for

z =
1 + cos θ

2
=

(E + pz)q

(E + pz)γ∗
. (3)

The last equality refers to a lightcone definition of the energy–momentum sharing in the
branching.

Now instead consider g → QQ, where Q is a massive quark, in reality c or b, with
mass mQ. Introducing the notation

rQ =
m2

Q

m2
γ∗

, (4)

βQ =

√√√√1−
4m2

Q

m2
γ∗

=
√

1− 4rQ , (5)

the γ∗ decay rate is changed to

dσe+e−→γ∗→qq

d cos θ
∝ βQ

(
1 + cos2 θ + 4rQ sin2 θ

)
∝ βQ

(
z2 + (1− z)2 + 8rQz(1− z)

)
. (6)

The last expression here is valid for z defined in terms of angles, but no longer for the
alternative lightcone definition. Thus the same applies for the DGLAP rate

dPg→QQ =
αs

2π

dm2

m2

βQ

2

(
z2 + (1− z)2 + 8rQz(1− z)

)
dz , (7)

whereas the z-integrated rate

dPg→QQ

dm2
=

αs

2π

1

m2

1

3
βQ(1 + 2rQ) (8)
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is unambiguous. For ease of plotting we will often use

dPg→QQ

dm
= 2m

dPg→QQ

dm2
=

αs

2π

1

m

2

3
βQ(1 + 2rQ) (9)

as reference for the DGLAP answer.

2 A matrix element expression

The above expression does not put the g → QQ branching into the context of a real
process. The most convenient choice for such an exercise is the Higgs decay H → gg →
QQg. Using CalcHep the one contributing graph is
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with Q = b here. This gives a numerator expression

8*p1.p3^2*p1.p2-4*p1.p3^2*Mh^2+8*p1.p3*p1.p2^2-12*p1.p3*p1.p2*Mh^2

+4*p1.p3*Mh^4+4*p1.p2^3-4*p1.p2^2*Mbp^2-6*p1.p2^2*Mh^2+4*p1.p2*Mh^4-Mh^6

For convenience it is converted to the energy fractions

xi =
2Ei

M
=

2p0pi

M2
(10)

using the more standard labels H(0) → Q(1) Q(2) g(3), and with M = mH. Also introduce
r = m2

Q/M2, not to be confused with rQ = m2
Q/m2

g∗ by analogy with the γ∗ case above.
Multiplied by −2/M6 the numerator turns into

−2x2
1x3 + 2x2

1 − 2x1x
2
3 + 6x1x3 − 4x1 − x3

3 + 3x2
3 − 4x3 + 2 + 2rx2

3

= x3
1 + x2

1x2 + x1x
2
2 + x3

2 − 3x2
1 − 4x1x2 − 3x2

2 + 4x1 + 4x2 − 2 + 2rx2
3 (11)

using the relationship x1 + x2 + x3 = 2 to derive the second line.
The denominator is ((p0 − p3)

2)2 = M4(1− x3)
2 = M4(x1 + x2 − 1)2, giving the ratio

x3
1 + x2

1x2 + x1x
2
2 + x3

2 − 3x2
1 − 4x1x2 − 3x2

2 + 4x1 + 4x2 − 2 + 2rx2
3

(x1 + x2 − 1)2

=
x2

1 + x2
2

1− x3

− 2 + 2r
x2

3

(1− x3)2
. (12)
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The prefactor to the matrix element is −128g2
sλ

2
Hgg, to be compared with the H → gg

matrix element 32λ2
HggM

4. Combining this with the omitted numerator and denominator
prefactors gives altogether

−128g2
sλ

2
Hgg

32λ2
HggM

4

M6

−2

1

M4
=

2g2
s

M2
=

8παs

M2
. (13)

So far we only considered the (squared) matrix elements. Now we need to consider
the phase space factors as well. Using e.g. the Review of Particle Physics we get

Γ2 =
|M2|2

16πM
(14)

dΓ3 =
1

(2π)5

|M3|2

16πM
dE1 dE2 dϕ d(cos θ) dχ

=
1

(2π)5

|M3|2

16πM

M

2
dx1

M

2
dx2 8π2 =

|M3|2

256π3
M dx1 dx2 , (15)

since decays are isotropic in angles for a spin 0 particle. The ratio is

dΓ3

Γ2

=
|M3|2

|M2|2
M2

16π2
dx1 dx2 =

8παs

M2

M2

16π2

(
x2

1 + x2
2

1− x3

− 2 + 2r
x2

3

(1− x3)2

)
dx1 dx2

=
αs

2π

(
x2

1 + x2
2

1− x3

− 2 + 2r
x2

3

(1− x3)2

)
dx1 dx2 . (16)

This will be the standard fully differential matrix element expression.
As an alternative form, note that dx1 dx2 = dx1 dx3 and that x3 = 1−m2/M2 so that

dx3/(1− x3) = dm2/m2. Thus

dP =
dΓ3

Γ2

=
αs

2π

dm2

m2

(
x2

1 + x2
2 − 2(1− x3) + 2r

x2
3

(1− x3)

)
dx1 (17)

For massless quarks and in the limit m2 → 0 we may choose x1 ≈ z, x2 ≈ 1 − z, so that
the standard DGLAP expression is recovered, with an extra factor of 2 since we have two
gluons that can branch.

The allowed phase space for the complete expression is compactly given by

(1− x1)(1− x2)(1− x3)

x2
3

> r , (18)

which is not so convenient for integration.
An alternative setup is to relate x1,2 to the cos θ angle in the rest frame of the g∗,

similarly to what was done for γ∗ previously:

pQ,Q =
m

2
(1;±βQ sin θ, 0,±βQ cos θ) . (19)

Introducing the ratio δ = m2/M2, the boost along the z axis is βz = (1− δ)/(1 + δ), and
the boosted momenta give

x1,2 =
1

2
(1 + δ ± (1− δ) βQ cos θ) , (20)

x3 = 1− δ . (21)
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Then, using that r/δ = (m2
Q/M2)/(m2/M2) = m2

Q/m2 = rQ, the integration becomes

∫ x1,max

x1,min

(
x2

1 + x2
2 − 2(1− x3) + 2r

x2
3

(1− x3)

)
dx1

=
∫ 1

−1

1

2

(
(1 + δ)2 + (1− δ)2 β2

Q cos2 θ − 4δ + 4
r

δ
(1− δ)2

)
1

2
(1− δ) βQ d(cos θ)

=
1

2
βQ (1− δ)3

∫ 1

−1

(
1 + β2

Q cos2 θ + 4rQ

) 1

2
d(cos θ)

=
1

2
βQ (1− δ)3

∫ 1

−1

(
1 + cos2 θ + 4rQ sin2 θ

) 1

2
d(cos θ)

=
2

3
βQ (1 + 2rQ) (1− δ)3 , (22)

i.e. again we recover the DGLAP rate, but with the additional (1 − δ)3 suppression of
large g∗ masses m, and a trivial factor of two from having two gluon ends. We will refer
to this expression as the ME rate.

There is no guarantee that the (1 − δ)3 factor is universal, but it is as plausible a
suppression near the kinematical limit as any. The quark mass dependence and the g∗

angular decay distribution are identical with the e+e− → γ∗ → qq process, and here the
universal character is more convincing.

3 The PYTHIA algorithm

The main points of the Pythia algorithm, as it impacts the g → QQ rate, are as follows.

• Evolution is ordered in terms of a decreasing p2
⊥evol. This is so hardcoded that no

attempt will be made to change on that.

• The allowed z range is related to the p⊥evol evolution variable

zmax,min(p
2
⊥evol) =

1

2
±
√

1

4
− p2

⊥evol

M2
(23)

where now M is the full dipole mass. If the same z definition is to be used as for
g → gg then it isimportant that z stays away from the singularities at z = 0, 1.
Here, technically, one could imagine to have a different z definition for g → qq and
g → gg, but again we will not go down that path.

• Initially, the lower cutoff of the p2
⊥evol evolution variable provides the maximally

allowed z range. The splitting kernel is overestimated by noting that z2+(1−z)2 < 1,
so that the evolution rate can be overestimated by the length of the maximally
allowed z range, times a half for each allowed quark flavour. An z is picked flat in
this overestimated range.

• As the downwards evolution in p2
⊥evol proceeds, a potential branching is rejected if

the chosen z value lies outside the allowed z range for that particular p2
⊥evol scale.

By the veto algorithm this means that the proper z range is accounted for at each
p2
⊥evol scale.
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• Once a consistent candidate (p2
⊥evol, z) pair has been found, the qq pair mass is

calculated as

m2 =
p2
⊥evol

z(1− z)
(24)

Note that the Jacobian has the convenient property that

dp2
⊥evol

p2
⊥evol

dz =
dm2

m2
dz (25)

so the two evolution measures populate the phase space equally, just traced in a
different “time” order, which has indirect consequences via the Sudakov.

• A q flavour is chosen at random among the possibilities. Its mass is found and its
βq value is calculated. Below the threshold βq = 0.

• A weight W = βq (z2 + (1 − z)2) is assigned and gives the survival probability for
the trial branching.

• The kinematics of the g → qq branching is first constructed identically with the g →
gg one, i.e. assuming the quark massless, and using an energy-sharing interpretation
of the z variable.

• Masses are introduced by shrinking the three-momenta in the qq rest frame while
keeping the “decay” angles fixed, notably the cos θ one.

This has been the only existing implementation up until now. From now on we will
refer to it as option 1.

An obvious shortcoming is that the branching kernel is only z2 + (1− z)2 rather than
the full z2 +(1− z)2 +8rQz(1− z) one. This means that Pythia falls below the DGLAP
and ME expressions in the threshold regions. Since also the full kernel is bounded from
above by unity, it is straightforward to add the mass-dependent term to the weight W .
The thus modified code is denoted option 2. It has the same low-mass behaviour as the
DGLAP and ME expressions, up to corrections from the finite gg dipole mass.

In the high-m2 region, m2 → M2, the Pythia rate falls faster than the DGLAP one,
but not as fast as the ME one. One could argue that this is as good an answer as any,
given that the (1− δ)3 factor need not be universal. Nevertheless, let us investigate how
to recover the DGLAP and ME expressions.

A key observation is that a given m2 value can be reached from a curve of points in
the (p2

⊥evol, z) plane. These p2
⊥evol values correspond to different allowed z ranges, so the z

range open for the specific p2
⊥evol of a branching is not the same as the z range open for the

m2 reached. We can instead use the kinematics of eqs. (19) and (20). Here βQ = 1 since
the starting point of the construction is massless quarks, which later are transformed to
massive ones, with preserved cos θ. Since z = x1/(x1+x2) by the energy-sharing definition
used in Pythia, the minimal z is obtained for cos θ = −1:

zmin(m
2) =

1 + δ − (1− δ)

2(1 + δ)
=

δ

1 + δ
=

m2

M2 + m2
. (26)

One point of the Jacobian in eq. (25) is that z is flat in the z range for a fixed m2 if it
was it for a fixed p2

⊥evol. Introducing the shorthand

Iz(m
2) =

∫ 1−zmin(m2)

zmin(m2)

(
z2 + (1− z)2 + 8rQz(1− z)

)
dz (27)
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it therefore follows that the weight

W =
2

3
βQ (1 + 2rQ)

z2 + (1− z)2 + 8rQz(1− z)

Iz(m2)
(28)

will average to (2/3) βQ (1+2rQ). Recalling that the initial overestimate provides a factor
1/2, a Monte Carlo acceptance by W will reproduce the DGLAP rate in eq. (8).

One imperfection to note is that the allowed z range shrinks towards z = 1/2 in the
m2 → M2 limit, such that W is almost constant. This means that the angular dependence
flattens out, rather than obeying the expected 1 + cos2 θ shape. A further improvement
on the scheme above therefore is to introduce a

zθ =
1 + cos θ

2
=

(1 + δ) z − δ

1− δ
(29)

which thereby is stretched out to the range 0 < zθ < 1. This means that the equivalent
of Iz(m

2) in eq. (27) becomes the familiar (2/3) (1+2rQ), times a Jacobian dz/dzθ. Thus
eq. (28) simplifies to

W = βQ

(
z2

θ + (1− zθ)
2 + 8rQzθ(1− zθ)

) 1 + δ

1− δ
. (30)

This defines option 3.
A special aspect is that, as already noted, DGLAP falls off slower than Pythia options

1 and 2, essentially owing to the 1− δ denominator, so W can become arbitrarily large in
the limit m2 → M2. This is resolved by enhancing the g → qq trial rate by fixed factor
that then is used to reduce W accordingly. This factor is hardcoded to be 20. It is not
enough at the very extreme tail of m2 values, where therefore Pythia falls below the
DGLAP rate, but this is a very minor blemish for all practical purposes.

By multiplying the W weight above by (1 − δ)3 instead the ME rate in eq. (22) is
reproduced. This gives option 4. Here no extra enhancement factor is required.

Studies so far have been with a fixed αs, to simplify comparisons with the DGLAP
and ME expressions. It is then also possible to use a low p2

⊥evol cutoff. The normal choice
is to have a running αs(p

2
⊥evol), hardcoded into the evolution algorithm. An option would

be to have a αs(m
2) instead. For simplicity the effect of mass thresholds and second-order

running is neglected, so that only an additional factor log(p2
⊥evol/Λ

2)/ log(m2/Λ2) need
to be included in the z weighting factor. These variants of options 1− 4 are available as
options 5− 8. The scale choice impacts both rates and angular dependencies, and could
have more of an effect than switching between the kinematics options 1− 4 for a fixed αs.

The different options described above can be accessed by setting the option value in
TimeShower:weightGluonToQuark. To summarize, these are

1. The old behaviour, which misses a mass term and therefore is somewhat low in the
threshold region. At high masses it is intermediate in rate to the DGAP and ME
results, and also has a flatter cos θ distribution than them.

2. A modest change, which adds the missing mass term and therefore behaves better
in the threshold region. At high masses there is no change. Should maybe be made
new default.
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3. The DGLAP shape, which has a high tail out to large masses. Should mainly be
viewed as an extreme upper limit, not particularly likely.

4. The ME shape, which has a very suppressed tail out to large masses. Reproduces
the correct behaviour for one specific process, with no claim of universality. It is
hard to imagine that any other process would give an even stronger suppression,
however, so probably represents a lower bound.

Option 5− 8 are the same as 1− 4 above, but with αs(m
2) instead of αs(p

2
⊥evol).

4 Phenomenology

The options have been studied in [1]. All options tend to give a larger g → bb rate than
observed at LEP/SLC, but within the large experimental errors options 1, 4, 5 and 8 are
acceptable, at almost the same rate. Options 3 and 7 are way too high, and thus cannot
be regarded as realistic. Since the choice of αs argument does not seem to make a large
difference, options 1 and 4 should be the prime target for further comparisons, where
the difference is visible mainly in the invariant mass spectra, with option 4 more biased
towards lower bb masses than option 1.
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