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1 Introduction

The objective of this exercise is to teach you the basics of how to use the Pythia 8.1
event generator to study various physics aspects. As you become more familiar you will
better understand the tools at your disposal, and can develop your own style to use them.
Within this first exercise it is not possible to describe the physics models used in the
program; for this we refer to the Pythia 8.1 brief introduction [1], to the full Pythia 6.4
physics description [2], and to all the further references found in them.

Pythia 8 is, by today’s standards, a small package. It is completely self-contained, and
is therefore easy to install for standalone usage, e.g. if you want to have it on your own
laptop, or if you want to explore physics or debug code without any danger of destructive
interference between different libraries. Section 2 describes the installation procedure,
which is what we will need for this introductory session.

When you use Pythia you are expected to write the main program yourself, for maximal
flexibility and power. Several examples of such main programs are included with the
code, to illustrate common tasks and help getting started. Section 3 gives you a simple
step-by-step recipe how to write a minimal main program, that can then gradually be
expanded in different directions, e.g. as in Section 4.

In Section 5 you will see how the parameters of a run can be read in from a file, so that the
main program can be kept fixed. Many of the provided main programs therefore allow you
to create executables that can be used for different physics studies without recompilation,
but potentially at the cost of some flexibility.

While Pythia can be run standalone, it can also be interfaced with a set of other li-
braries. One example is HepMC, which is the standard format used by experimentalists
to store generated events. Since the HepMC library location is installation-dependent it
is not possible to give a fool-proof linking procedure, but some hints are provided for the
interested in Section 6.
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Finally, Section 7 gives some suggestions for the study of other possible physics topics,
and Appendix A contains a brief summary of the event-record structure.

2 Installation

Denoting a generic Pythia 8 version pythia81xx (at the time of writing xx = 25), here
is how to install Pythia 8 on a Linux/Unix/MacOSX system as a standalone package.

1. In a browser, go to
http://www.thep.lu.se/∼torbjorn/Pythia.html

2. Download the (current) program package
pythia81xx.tgz

to a directory of your choice (e.g. by right-clicking on the link).

3. In a terminal window, cd to where pythia81xx.tgz was downloaded, and type
tar xvfz pythia81xx.tgz

This will create a new (sub)directory pythia81xx where all the Pythia source files
are now ready and unpacked.

4. Move to this directory (cd pythia81xx) and do a make. This will take 1–3 minutes
(computer-dependent). The Pythia 8 libraries are now compiled and ready for
physics.

5. For test runs, cd to the examples/ subdirectory. An ls reveals a list of programs,
mainNN, with NN from 01 through 29. These example programs each illustrate an
aspect of Pythia 8. For a list of what they do, see the README file in the same
directory.
Initially only use one or two of them to check that the installation works. Once you
have worked your way though the introductory exercises in the next sections you
can return and study the programs and their output in more detail.
To execute one of the test programs, do

make mainNN

./mainNN.exe

The output is now just written to the terminal, stdout. To save the output to a
file instead, do ./mainNN.exe > mainNN.out, after which you can study the test
output at leisure by opening mainNN.out. See Appendix A for an explanation of
the event record that is listed in several of the runs.

6. If you open the file
pythia81xx/htmldoc/Welcome.html

you will gain access to the online manual, where all available methods and param-
eters are described. Use the left-column index to navigate among the topics, which
are then displayed in the larger right-hand field.

3 A “Hello World” program

We will now generate a single gg → tt event at the LHC, using Pythia standalone.

Open a new file mymain.cc in the examples subdirectory with a text editor, e.g. Emacs.
Then type the following lines (here with explanatory comments added):
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// Headers and Namespaces.

#include "Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main() { // Begin main program.

// Set up generation.

Pythia pythia; // Declare Pythia object

pythia.readString("Top:gg2ttbar = on"); // Switch on process.

pythia.init( 2212, 2212, 14000.); // Initialise pp (PDG 2212) at LHC.

// Show settings

pythia.settings.listChanged(); // Show changed settings

pythia.particleData.listChanged(); // Show changed particle data

// Generate event(s).

pythia.next(); // Generate an(other) event. Fill event record.

pythia.event.list(); // Print contents of event record.

return 0;

} // End main program with error-free return.

Next you need to edit the Makefile (the one in the examples subdirectory) so it knows
what to do with mymain.cc. The lines

# Create an executable for one of the normal test programs

main00 main01 main02 main03 ... main09 main10 main10 \

and the three next enumerate the main programs that do not need any external libraries.
Edit the last of these lines to include also mymain:

main44 mymain: \

Now it should work as before with the other examples:
make mymain

./mymain.exe > mymain.out

whereafter you can study mymain.out, especially the example of an event record. At this
point you need to turn to Appendix A for a brief overview of the information stored in
the event record.

An important part of the event record is that many copies of the same particle may exist,
but only those with a positive status code are still present in the final state. To exemplify,
consider a top quark produced in the hard interaction, initially with positive status code.
When later, a shower branching t → tg occurs, the new t and g are added at the bottom
of the then-current event record, but the old t is not removed. It is marked as decayed,
however, by negating its status code. At any stage of the shower there is thus only one
“current” copy of the top. After the shower, when the final top decays, t → bW+, also
that copy receives a negative status code. When you understand the basic principles,
see if you can find several copies of the top quarks, and check the status codes to figure
out why each new copy has been added. Also note how the mother/daughter indices tie
together the various copies.
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4 A first realistic analysis

We will now gradually expand the skeleton mymain program from above, towards what
would be needed for a more realistic analysis setup.

• Often, we wish to mix several processes together. To add the process qq → tt to
the above example, just include a second pythia.readString call

pythia.readString("Top:qqbar2ttbar = on");

• Now we wish to generate more than one event. To do this, introduce a loop around
pythia.next() and pythia.event.list(), so the code now reads

for (int iEvent = 0; iEvent < 5; ++iEvent) {
pythia.next();

pythia.event.list();

}
Hereafter, we will call this the event loop. The program will now generate and
print 5 events; each call to pythia.next() resets the event record and fills it with
a new event.

• To obtain statistics on the number of events generated of the different kinds, and
the estimated cross sections, add a

pythia.statistics();

just before the end of the program.

• During the run you may receive problem messages. These come in three kinds:

• a warning is a minor problem that is automatically fixed by the program, at
least approximately;

• an error is a bigger problem, that is normally still automatically fixed by the
program, by backing up and trying again;

• an abort is such a major problem that the current event could not be completed;
in such a rare case pythia.next() is false and the event should be skipped.

Thus the user need only be on the lookout for aborts. During event generation,
a problem message is printed only the first time it occurs. The above-mentioned
pythia.statistics() will then tell you how many times each problem was encoun-
tered over the entire run.

• Looking at the pythia.event.list() listing for a few events at the beginning of
each run is useful to make sure you are generating the right kind of events, at the
right energies, etc. For real analyses, however, you need automated access to the
event record. The Pythia event record provides many utilities to make this as simple
and efficient as possible. To access all the particles in the event record, insert the
following loop after pythia.next() (but fully enclosed by the event loop)

for (int i = 0; i < pythia.event.size(); ++i) {
cout << "i = " << i

<< ", id = " << pythia.event[i].id() << endl;

}
which we will call the particle loop. Inside this loop, you can access the properties
of each particle pythia.event[i]. For instance, the method id() returns the PDG
identity code of a particle (see Appendix A). The cout statement, therefore, will
give a list of the PDG code of every particle in the event record.

• As mentioned above, the event listing contains all partons and particles, traced
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through a number of intermediate steps. Eventually, the top will decay (t → Wb),
and by implication it is the last copy of this top in the event record that gives the
“final” answer. You can obtain the location of this final top e.g. by a line just before
the particle loop

int iTop = 0;

and a line inside the particle loop

if (pythia.event[i].id() == 6) iTop = i;

The value of iTop will be set every time a top is found in the event record. When
the particle loop is complete, iTop will now point to the final top in the event
record (which can be accessed as pythia.event[iTop]).

• In addition to the particle properties in the event listing, there are also methods
that return many derived quantities for a particle, such as transverse momentum,
pythia.event[iTop].pT(), and pseudorapidity, pythia.event[iTop].eta(). Use
these methods to print out the values for the final top found above.

• We now want to generate more events, say 1000, to view the shape of these distri-
butions. Inside Pythia is a very simple histogramming class, that can be used for
rapid check/debug purposes. To book the histograms, insert before the event loop

Hist pT("top transverse momentum", 100, 0., 200.);

Hist eta("top pseudorapidity", 100, -5., 5.);

where the last three arguments are the number of bins, the lower edge and the up-
per edge of the histogram, respectively. Now we want to fill the histograms in each
event, so before the end of the event loop insert

pT.fill( pythia.event[iTop].pT() );

eta.fill( pythia.event[iTop].eta() );

Finally, to write out the histograms, after the event loop we need a line like
cout << pT << eta;

• As a final standalone exercise, consider plotting the charged multiplicity of events.
You then need to have a counter set to zero for each new event. Inside the particle

loop this counter should be incremented whenever the particle isCharged() and
isFinal(). For the histogram, note that it can be treacherous to have bin limits
at integers, where roundoff errors decide whichever way they go. In this particular
case only even numbers are possible, so 100 bins from −1 to 399 would still be
acceptable.

5 Input files

With the mymain.cc structure developed above it is necessary to recompile the main
program for each minor change, e.g. if you want to rerun with more statistics. This is
not time-consuming for a simple standalone run, but may become so for more realistic
applications. Therefore, parameters can be put in special input “card” files that are read
by the main program.

We will now create such a file, with the same settings used in the mymain example program.
Open a new file, mymain.cmnd, and input the following

! t tbar production at the LHC

Beams:idA = 2212 ! first incoming beam is a 2212, i.e. a proton.
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Beams:idB = 2212 ! second beam is also a proton.

Beams:eCM = 14000. ! the cm energy of collisions.

Top:gg2ttbar = on ! switch on the process g g -> t tbar.

Top:qqbar2ttbar = on ! switch on the process q qbar -> t tbar.

The mymain.cmnd file can contain one command per line, of the type
variable = value

All variable names are case-insensitive (the mixing of cases has been chosen purely to
improve readability) and non-alphanumeric characters (such as !, # or $) will be inter-
preted as the start of a comment. All valid variables are listed in the online manual (see
Section 2, point 6, above). Cut-and-paste of variable names can be used to avoid spelling
mistakes.

The final step is to modify our program to use this input file. The name of this input file
can be hardcoded in the main program, but for more flexibility, it can also be provided
as a command-line argument. To do this, replace the int main() { line by

int main(int argc, char* argv[]) {
and replace all pythia.readString(...) commands with the single command

pythia.readFile(argv[1]);

We now have the beam parameters specified both in the mymain.cmnd file and in the main
program itself by the line

pythia.init( 2212, 2212, 14000.);

The arguments to pythia.init() will always take precedence over the settings in the
input file, so this line should be changed to

pythia.init();

The executable mymain.exe is then run with a command line like
./mymain.exe mymain.cmnd > mymain.out

and should give the same output as before.

In addition to all the internal Pythia variables there exist a few defined in the database
but not actually used. These are intended to be useful in the main program, and thus
begin with Main:. The most basic of those is Main:numberOfEvents, which you can use
to specify how many events you want to generate. To make this have any effect, you need
to read it in the main program, after the pythia.readFile(...) command, by a line
like

int nEvent = pythia.mode("Main:numberOfEvents");

and set up the event loop like
for (int iEvent = 0; iEvent < nEvent; ++iEvent) {

You are now free to play with further options in the input file, such as:

• 6:m0 = 175.

change the top mass, which by default is 171 GeV.

• PartonLevel:FSR = off

switch off final-state radiation.

• PartonLevel:ISR = off

switch off initial-state radiation.

• PartonLevel:MI = off

switch off multiple interactions.
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• Random:setSeed = on

Random:seed = 123456789

all runs by default use the same random-number sequence, for reproducibility, but
you can pick any number between 1 and 900,000,000 to obtain a unique sequence.

For instance, check the importance of FSR, ISR and MI on the charged multiplicity of
events by switching off one component at a time.

The usage of further Main: variables is illustrated e.g. in main03.cc, and the possibility
to use command-line input files in main17.cc and main32.cc.

The online manual also exists in an interactive variant, where you semi-automatically can
construct a file with all the command lines you wish to have. This requires that somebody
installs the pythia81xx/phpdoc directory in a webserver. If you lack a local installation
you can use the one at

http://home.thep.lu.se/∼torbjorn/php81xx/Welcome.php

This is not a commercial-quality product, however, and requires some user discipline. Full
instructions are provided on the “Save Settings” page.

6 Interface to HepMC

The standard HepMC event-record format will be frequently used in subsequent training
sessions, with a ready-made installation. However, for the ambitious, here is described how
to set up the Pythia interface, assuming you already know where HepMC is installed.
Note: the interface to HepMC version 1 is no longer supported; you must use version 2.

To begin with, you need to go back to the installation procedure of section 2 and in-
sert/redo some steps.

1. Move back to the main pythia81xx directory (cd .. if you are in examples).

2. Remove the currently compiled version with
make clean

3. Configure the program in preparation for the compilation:
./configure --with-hepmc=path

where the directory-tree path would depend on your local installation.

4. Should configure not recognise the version number you can supply that with an
optional argument, like

./configure --with-hepmc=path --with-hepmcversion=2.04.01

5. Recompile the program, now including the HepMC interface, with make as before,
and move back to the examples subdirectory.

6. Do either of
source config.csh

source config.sh

the former when you use the csh or tcsh shells, otherwise the latter. (Use echo

$SHELL if uncertain.)

7. You can now also use the main31.cc and main32.cc examples to produce HepMC

event files. The latter may be most useful; it presents a slight generalisation of the
command-line-driven main program you constructed in Section 5. After you have
built the executable you can run it with
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./main32.exe infile hepmcfile > main32.out

where infile is an input “card” file (e.g. mymain.cmnd) and hepmcfile is your
chosen name for the output file with HepMC events.

Note that the above procedure is based on the assumption that you will be running your
main programs from the examples subdirectory. If not you will have to create your own
scripts and/or makefiles to handle the linking. If you have no experience with such tasks
then it is better use any existing instructions for your local installation. If you do have
such experience then a short summary of what you need to know to get going is provided.

Before you run a Pythia program the PYTHIA8DATA environment variable needs to be
set to point to the xmldoc subdirectory where all settings and particle data are stored. If
you use the csh or tcsh shells this means a line like

setenv PYTHIA8DATA /path/pythia81xx/xmldoc

or else
export PYTHIA8DATA=/path/pythia81xx/xmldoc

where the correct path has to be found by you. Similarly, to use HepMC, you also
have to set or append its location to the LD LIBRARY PATH (the DYLD LIBRARY PATH on
Mac OSX); the config.csh and config.sh files generated above well illustrate the code
needed to achieve this. Finally, the necessary linking stage can be understood from the
relevant parts of the examples/Makefile.

7 Further studies

If you have time left, you should take the opportunity to try a few other processes or
options. Below are given some examples, but feel free to pick something else that you
would be more interested in.

• One popular misconception is that the energy and momentum of a B meson has to
be smaller than that of its mother b quark, and similarly for charm. The fallacy
is twofold. Firstly, if the b quark is surrounded by nearby colour-connected gluons,
the B meson may also pick up some of the momentum of these gluons. Secondly,
the concept of smaller momentum is not Lorentz-frame-independent: if the other
end of the b colour force field is a parton with a higher momentum (such as a beam
remnant) the “drag” of the hadronization process may imply an acceleration in the
lab frame (but a deceleration in the beam rest frame).
To study this, simulate b production, e.g. the process HardQCD:gg2bbbar. Identify
B/B∗ mesons that come directly from the hadronization, for simplicity those with
status code −83 or −84. In the former case the mother b quark is in the mother1()
position, in the latter in mother2() (study a few event listings to see how it works).
Plot the ratio of B to b energy to see what it looks like.

• One of the characteristics of multiple-interactions (MI) models is that they lead to
strong long-range correlations, as observed in data. That is, if many hadrons are
produced in one rapidity range of an event, then most likely this is an event where
many MI’s occurred (and the impact parameter between the two colliding protons
was small), and then one may expect a larger activity also at other rapidities.
To study this, select two symmetrically located, one unit wide bins in rapidity
(or pseudorapidity), with a variable central separation ∆y: [∆y/2, ∆y/2 + 1] and
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[−∆y/2 − 1,−∆y/2]. For each event you may find nF and nB, the charged mul-
tiplicity in the “forward” and “backward” rapidity bins. Suitable averages over a
sample of events then gives the forward–backward correlation coefficient

ρFB(∆y) =
〈nF nB〉 − 〈nF 〉〈nB〉

√

(〈n2
F 〉 − 〈nF 〉2)(〈n2

B〉 − 〈nB〉2)
=

〈nF nB〉 − 〈nF 〉
2

〈n2
F 〉 − 〈nF 〉2

,

where the last equality holds for symmetric distributions such as in pp and pp.
Compare how ρFB(∆y) changes for increasing ∆y = 0, 1, 2, 3, . . ., with and
without MI switched on (PartonLevel:MI = on/off) for minimum-bias events
(SoftQCD:minBias = on).

• Higgs production can proceed through several different production processes. For
the Standard Model Higgs some process switches are:
HiggsSM:ffbar2H for ff → H0 (f generic fermion, here mainly bb → H0);
HiggsSM:gg2H for gg → H0;
HiggsSM:ffbar2HZ for ff → H0Z0;
HiggsSM:ffbar2HW for ff → H0W±;
HiggsSM:ff2Hff(t:ZZ) for ff → H0ff via Z0Z0 fusion;
HiggsSM:ff2Hff(t:WW) for ff → H0ff via W+W− fusion;
HiggsSM:all for all of the above (and some more).
Study the p⊥ and η spectrum of the Higgs in these processes, and compare.

• You can also vary the Higgs mass with a 25:m0 = ... and switch off FSR/ISR/MI
as above for top.

• Z0 production to lowest order only involves one process, accessible with
WeakSingleBoson:ffbar2gmZ = on. The problem here is that the process is
ff → γ∗/Z0 with full γ∗/Z0 interference and so a signficiant enhancement at low
masses. The combined particle is always classified with code 23, however. So gener-
ate events and study the γ∗/Z0 mass and p⊥ distributions. Then restrict to a more
“Z0-like” mass range with PhaseSpace:mHatMin = 75. and PhaseSpace:mHatMax

= 120.

• Using your favourite jet cluster algorithm, study the number of jets found in asso-
ciation with the Z0 above. You can switch off Z0 decay with 23:mayDecay = no. If
you do not have a jet finder around, to begin with you can use the simple CellJet

one that comes with Pythia, see the “Event Analysis” page in the online manual.
Again check the importance of FSR/ISR/MI.

A The Event Record

The event record is set up to store every step in the evolution from an initial low-
multiplicity partonic process to a final high-multiplicity hadronic state, in the order that
new particles are generated. The record is a vector of particles, that expands to fit the
needs of the current event (plus some additional pieces of information not discussed here).
Thus event[i] is the i’th particle of the current event, and you may study its properties
by using various event[i].method() possibilities.

The event.list() listing provides the main properties of each particles, by column:

• no, the index number of the particle (i above);
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• id, the PDG particle identity code (method id());

• name, a plaintext rendering of the particle name (method name()), within brackets
for initial or intermediate particles and without for final-state ones;

• status, the reason why a new particle was added to the event record (method
status());

• mothers and daughters, documentation on the event history (methods mother1(),
mother2(), daughter1() and daughter2());

• colours, the colour flow of the process (methods col() and acol());

• p x, p y, p z and e, the components of the momentum four-vector (px, py, pz, E), in
units of GeV with c = 1 (methods px(), py(), pz() and e());

• m, the mass, in units as above (method m()).

For a complete description of these and other particle properties (such as production and
decay vertices, rapidity, p⊥, etc), open the program’s online documentation in a browser
(see Section 2, point 6, above), scroll down to the “Study Output” section, and follow
the “Particle Properties” link in the left-hand-side menu. For brief summaries on the less
trivial of the ones above, read on.

A.1 Identity codes

A complete specification of the PDG codes is found in the Review of Particle Physics [3].
An online listing is available from

http://pdg.lbl.gov/2008/mcdata/mc particle id contents.html

A short summary of the most common id codes would be

1 d 11 e− 21 g 211 π+ 111 π0 213 ρ+ 2112 n
2 u 12 νe 22 γ 311 K0 221 η 313 K∗0 2212 p
3 s 13 µ− 23 Z0 321 K+ 331 η′ 323 K∗+ 3122 Λ0

4 c 14 νµ 24 W+ 411 D+ 130 K0
L 113 ρ0 3112 Σ−

5 b 15 τ− 25 H0 421 D0 310 K0
S 223 ω 3212 Σ0

6 t 16 ντ 431 D+
s 333 φ 3222 Σ+

Antiparticles to the above, where existing as separate entities, are given with a negative
sign.
Note that simple meson and baryon codes are constructed from the constituent (anti)quark
codes, with a final spin-state-counting digit 2s + 1 (K0

L and K0
S being exceptions), and

with a set of further rules to make the codes unambiguous.

A.2 Status codes

When a new particle is added to the event record, it is assigned a positive status code
that describes why it has been added, as follows:
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code range explanation
11 – 19 beam particles
21 – 29 particles of the hardest subprocess
31 – 39 particles of subsequent subprocesses in multiple interactions
41 – 49 particles produced by initial-state-showers
51 – 59 particles produced by final-state-showers
61 – 69 particles produced by beam-remnant treatment
71 – 79 partons in preparation of hadronization process
81 – 89 primary hadrons produced by hadronization process
91 – 99 particles produced in decay process, or by Bose-Einstein effects

Whenever a particle is allowed to branch or decay further its status code is negated (but it
is never removed from the event record), such that only particles in the final state remain
with positive codes. The isFinal() method returns true/false for positive/negative
status codes.

A.3 History information

The two mother and two daughter indices of each particle provide information on the
history relationship between the different entries in the event record. The detailed rules
depend on the particular physics step being described, as defined by the status code. As
an example, in a 2 → 2 process ab → cd, the locations of a and b would set the mothers
of c and d, with the reverse relationship for daughters. When the two mother or daughter
indices are not consecutive they define a range between the first and last entry, such as a
string system consisting of several partons fragment into several hadrons.

There are also several special cases. One such is when “the same” particle appears as
a second copy, e.g. because its momentum has been shifted by it taking a recoil in the
dipole picture of parton showers. Then the original has both daughter indices pointing
to the same particle, which in its turn has both mother pointers referring back to the
original. Another special case is the description of ISR by backwards evolution, where the
mother is constructed at a later stage than the daughter, and therefore appears below in
the event listing.

If you get confused by the different special-case storage options, the two
pythia.event.motherList(i) and pythia.event.daughterList(i) methods are able
to return a vector of all mother or daughter indices of particle i.

A.4 Colour flow information

The colour flow information is based on the Les Houches Accord convention [4]. In it, the
number of colours is assumed infinite, so that each new colour line can be assigned a new
separate colour. These colours are given consecutive labels: 101, 102, 103, . . . . A gluon
has both a colour and an anticolour label, an (anti)quark only (anti)colour.

While colours are traced consistently through hard processes and parton showers, the
subsequent beam-remnant-handling step often involves a drastic change of colour labels.
Firstly, previously unrelated colours and anticolours taken from the beams may at this
stage be associated with each other, and be relabelled accordingly. Secondly, it appears
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that the close space–time overlap of many colour fields leads to reconnections, i.e. a
swapping of colour labels, that tends to reduce the total length of field lines.
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