
CERN-LCGAPP-2007-03

March 2007

A Brief Introduction to

PYTHIA 8.080

T. Sjöstrand

CERN/PH, CH–1211 Geneva 23, Switzerland

and

Department of Theoretical Physics, Lund University,

Sölvegatan 14A, SE–223 62 Lund, Sweden

Abstract

The Pythia program is a standard tool for the generation of high-energy
collisions, comprising a coherent set of physics models for the evolution from a
few-body hard process to a complex multihadronic final state. While previous
versions were written in Fortran, Pythia 8 represents a complete rewrite in
C++. This is still a project under development, with only a rather limited
library of subprocesses, and in need of validation and tuning of several aspects.
Nevertheless, by now most of the basic structure is in place, and the user
interaction is approaching its final form. Therefore the program is ready
to be tried out, with feedback e.g. on interoperability with LHC software
useful for preparing the first production-quality release later this year. The
current introduction should provide enough details to get going with such an
exploratory phase.

1 Introduction

The development of Jetset [1], containing several of the components that later were
merged with Pythia [2], was begun in 1978. Thus the current Pythia 6 generator [3, 4]
is the product of almost thirty years of development, and some of the code has not been
touched in a very long time. New options have been added, but old ones seldom removed.
The basic structure has been expanded in different directions, well beyond what it was once
intended for, making it rather cumbersome by now.

From the onset, all code has been written in Fortran 77. For the LHC era, the exper-
imental community has made the decision to move heavy computing completely to C++.
Fortran support may be poor to non-existing, and young experimenters will not be conver-
sant in Fortran any longer. Therefore it is logical also to migrate Pythia to C++, in the
process cleaning up and modernizing various aspects.

A first attempt in this direction was the Pythia 7 project [5]. However, after the Her-

wig++ [6] group decided to join in the development of a generic administrative structure
split off from Pythia 7, ThePEG [7], work on the left-behind physics aspects stalled.

Pythia 8 is a clean new start, to provide a successor to Pythia 6. In a return to
the traditional Pythia spirit, it is a completely standalone generator, thus not relying on
ThePEG or any other external library. Some hooks for links to other programs are already
provided, however, and others may be added. Work on Pythia 8 was begun from scratch
in September 2004, so far essentially as a one-person effort, with a three-year “road map”.

The fifth public version, presented here, is not yet tested and tuned enough to provide
a realistic alternative to Pythia 6. Instead it is released to allow feedback, as part of the
development and validation process. All subversions in the 8.0xx series should be viewed
as development snapshots, with 8.100, sometime in late 2007, the first one to be taken
seriously. Even so, that version will not be a complete replacement in all respects, but
strongly focused on LHC applications.

Further, with the rise of automatic matrix-element code generation and phase-space
sampling, input of process-level events via the Les Houches Accord (LHA) [8] and with Les
Houches Event Files (LHEF) [9] reduces the need to have extensive process libraries inside
Pythia itself. Thus emphasis is on providing a good description of subsequent steps of the
story, involving elements such as initial- and final-state parton showers, multiple parton–
parton interactions, string fragmentation, and decays. All the latter components now exist
as C++ code, even if in a preliminary form, with some finer details to be added, and still
to be retuned to some of the key experimental data.

At the current stage, however, there is only the beginning of a Pythia 8 process library.
Therefore a runtime LHA-based interface is provided to Pythia 6, so that essentially all
hard processes available there can be generated and sent on to Pythia 8.

The current article provides an introduction to Pythia 8 usage. The programming
aspects are covered in more detail in a set of interlinked HTLM (or alternativly PHP) pages
that comes with the program files, see below. Much of the physics aspects are unchanged
relative to the Pythia 6 manual [4], and so we refer to it and to other physics articles
for that. Instead what we here give is an overview for potential users who already have
some experience with event generators in general, and Pythia 6 in particular, who want to
understand what is different about Pythia 8, and how to get going with the new program.

1

2 Program Structure

2.1 Program flow

The physics topics that have to come together in a complete event generator can crudely
be subdivided into three stages:

1. The generation of a “process” that decides the nature of the event. Often it would
be a “hard process”, such as gg → h0 → Z0Z0 → µ+µ−qq, that is calculated in
perturbation theory, but a priori we impose no requirement that a hard scale must
be involved. Only a very small set of partons/particles is defined at this level, so only
the main aspects of the event structure are covered.

2. The generation of all subsequent activity on the partonic level, involving initial- and
final-state radiation, multiple parton–parton interactions and the structure of beam
remnants. Much of the phenomena are under an (approximate) perturbative control,
but nonperturbative physics aspects are also important. At the end of this step,
a realistic partonic structure has been obtained, e.g. with broadened jets and an
underlying-event activity.

3. The hadronization of this parton configuration, by string fragmentation, followed by
the decays of unstable particles. This part is almost completely nonperturbative, and
so requires extensive modelling and tuning or, especially for decays, parametrizations
of existing data. It is only at the end of this step that realistic events are available,
as they could be observed by a detector.

This division of tasks is not watertight — parton distributions span and connect the two
first steps, to give one example — but it still helps to focus the discussion.

The structure of the Pythia 8 generator, as illustrated in Fig. 1, is based on this
subdivision. The main class for all user interaction is called Pythia. It calls on the three
classes ProcessLevel, PartonLevel and HadronLevel, corresponding to points 1, 2 and 3
above. Each of these, in their turn, call on further classes that perform the separate kinds
of physics tasks.

Information is flowing between the different program elements in various ways, the most
important being the event record, represented by the Event class. Actually, there are two
objects of this class, one called process, that only covers the few partons of the “hard”
process of point 1 above, and another called event, that covers the full story from the
incoming beams to the final hadrons. A small Info class keeps track of useful one-of-a-kind
information, such as kinematical variables of the hard process.

There are also two incoming BeamParticles, that keep track of the partonic content
left in the beams after a number of interactions and initial-state radiations, and rescales
parton distributions accordingly.

The process library, as well as parametrizations of total, elastic and diffractive cross sec-
tions, are used both by the hard-process selection machinery and the multiple-interactions
one.

The Settings database keeps track of all integer, double, boolean and string vari-
ables that can be changed by the user to steer the performance of Pythia, except that
ParticleDataTable is its own separate database.

Finally, a number of utilities can be used just about anywhere, for Lorentz four-vectors,
random numbers, jet finding and simple histograms, and for a number of other “minor”

2

The User (≈ Main Program)

Pythia

Info Event process Event event

ProcessLevel

ProcessContainer

InFlux, PhaseSpace

LHAinit, LHAevnt

ResonanceDecays

PartonLevel

TimeShower

SpaceShower

MultipleInteractions

BeamRemnants

HadronLevel

StringFragmentation

MiniStringFrag...

ParticleDecays

BeamParticle SigmaProcess, SigmaTotal

Vec4, Random, Hist, Settings, ParticleDataTable, StandardModel, ...

Figure 1: The relationship between the main classes in Pythia 8. The thick arrows show
the flow of commands to carry out different physics tasks, whereas the thinner show the
flow of information between the tasks. The bottom box contains common utilities that may
be used anywhere. Obviously the picture is strongly simplified.

tasks.
Orthogonally to the subdivision above, there is another, more technical classification,

whereby the user interaction with the generator occurs in three phases:

• Initialization, where the tasks to be performed are specified.

• Generation of individual events (the “event loop”).

• Finishing, where final statistics is made available.

Again the subdivision (and orthogonality) is not strict, with many utilities and tasks stretch-
ing across the borders, and with no finishing step required for many aspects. Nevertheless,
as a rule, these three phases are represented by different methods inside the class of a
specific physics task.

3

2.2 Program files

The code is subdivided into a set of files, mainly by physics task. Each file typically contains
one main class, but often with a few related helper classes that are not used elsewhere in
the program. Normally the files come in pairs.

1. A header file, .h in the include subdirectory, where the public interface of the class
is declared, and inline methods are defined.

2. A source code file, .cc in the src subdirectory, where the lengthier methods are
implemented.

During compilation, related dependency files, .d, and compiled code, .o are created in the
tmp subdirectory.

In part the .xml documentation files in the xmldoc subdirectory have matching names,
but the match is broken by the desire to group topics more by user interaction than internal
operation. These files contain information on all settings and particle data, but not in a
convenient-to-read format. Instead they are translated into a corresponding set of .html
files in the htmldoc subdirectory and a set of .php files in phpdoc. The former set can
easily be read if you open the htmldoc/Welcome.html file in your favourite web browser,
but offers no interactivity. The latter set must be installed under a webserver, like where
you put your homepage, and then provides a simple Graphical User Interface if you open
the phpdoc/Welcome.php file in a web browser.

For output to the HepMC event record format [10], an interface is provided in the
hepmcinterface subdirectory. There are also interfaces to allow parton distribution func-
tions to be used from the LhaPdf library [11] and hard processes from Pythia 6.4.

The installation procedure is described in a README file, and involves a configure file
and a Makefile. The former should be invoked with command-line arguments, alternatively
be brute-force edited, to provide the path to the HepMC library if it will be used. Compiled
libraries are put in the lib subdirectory. Default is to build archive libraries, but optionally
also shared-object ones can be built.

Finally, some examples of main programs, along with input files for them, are found
in the examples subdirectory. A configure file and Makefile there will allow you to
build executables, see the examples/README file. As above, command-line arguments or
brute-force editing allows you to set the LhaPdf and Pythia 6.4 paths, if required. The
executables are placed in the bin directory, but with links from examples.

Important warnings

Playing with the files in the examples subdirectory is encouraged, to familiarize oneself with
the program. Modifying the configure files may be required during installation. For the
rest, files should not be modified, at least not without careful consideration of consequences.

In particular, the .xml files are set read-only, and should not be tampered with. Inter-
spersed in them, there are lines beginning with <flag, <mode, <parm, <word, <particle,
<channel, or <a. They contain instructions from which Settings and ParticleDataTable

build up their respective databases of user-accessible variables, see further below. Any
stupid changes here will cause difficult-to-track errors!

Further, sometimes you will see two question marks, “??”, in the text or code. This is
for internal usage, to indicate loose ends or preliminary thoughts. Please disregard.

4

3 Key Program Elements

3.1 The main generation class

As has already been mentioned, the Pythia class is the main means of communication
between the user and the event-generation process. We here present the key methods that
should be used, put in context.

Already at the top of the main program file you need to include the proper header file
#include "Pythia.h"

To simplify typing, it also makes sense to declare
using namespace Pythia8;

Given this, the first step in the main program is to create a generator object, e.g. with
Pythia pythia;

In the following we will assume that the pythia object has been created with this name,
but of course you are free to pick another one.

The Pythia constructor will initialize the default values for the Settings and the
ParticleDataTable data bases. These data can now be modified in a number of ways, but
most conveniently by the two methods

pythia.readString(string);

for changing a single variable, and
pythia.readFile(fileName);

for changing a set of variables, one per line in the input file. The allowed form for a
string/line will be explained as we go along to consider the data bases in more detail. A
short summary is that

• a non-alphanumeric first non-blank character signals a comment line,

• one like id:command = value, with id a number, as a modification to the particle
database, and

• anything else as a setting, i.e. an instruction how Pythia 8 should execute its tasks.

If the database in question then fails to parse the string, a warning is normally issued, but
in the end the relevant line is again considered as a comment and ignored.

To check which changes have actually taken effect in the settings database, it is conve-
nient to insert a

pythia.settings.listChanged();

while a complete listing with
pythia.settings.listAll();

gives a survey of all the possibilities. For the particle data there are corresponding
methods either to show only those particles that were changed (one way or another)

pythia.particleData.listChanged();

or to give the complete listing
pythia.particleData.listAll();

A specific particle can be listed with list(id), or a set as a vector<int> of id’s.
At this stage you can also optionally insert links to some external facilities.
At the initialization stage all remaining details of the generation are to be specified.

The pythia.init(...) method allows a few different input formats, so you can pick the
one convenient for you:

pythia.init(idA, idB, eA, eB);

5

lets you specify the identities and energies of the two incoming beam particles, with A (B)
assumed moving in the +z (−z) direction;

pythia.init(idA, idB, eCM);

is similar, but you specify the CM energy, and you are assumed in the rest frame;
pythia.init(LHAinit*, LHAevnt*);

assumes LHA initialization information is available in an LHAinit class object, and
that LHA event information will be provided by the LHAevnt class object, see below;

pythia.init(fileName);

assumes that the file obeys the LHEF standard format and that information can be ex-
tracted from it accordingly.

It is when the init(...) call is executed that all the settings values are propagated to
the various program elements, and in some cases used to precalculate quantites that will be
used at later stages of the generation. Further settings changed after the init(...) call
will be ignored (unless methods are used to force a partial or complete re-initialization).
By contrast, the particle properties database is queried all the time, and so a later change
would take effect immediately, for better or worse.

The bulk of the code is concerned with the event generation proper. However, all
the information on how this should be done has already been specified. Therefore only a
command

pythia.next();

is required to generate the next event. This method would be located inside an event loop,
where a required number of events are to be generated.

The key output of the pythia.next() command is the event record found in
pythia.event, see below. A process-level summary of the event is stored in
pythia.process.

When problems are encountered, in init(...) or next(), they can be assigned one
of three degrees of severity. Abort is the highest. In that case the call could not complete
its tasks, and returns the value false. If in init(...) it is then not possible to generate
any events at all. If in next() only the current event must be skipped. In a few cases the
abort may be predictable and desirable, e.g. when a file of LHA events comes to an end.
Errors are less severe, and the program can usually work around them, e.g. by backing up
one step and trying again. Should that not succeed, an abort may result. Warnings are of
informative character only, and do not require any corrective actions (except, in the longer
term, to find more reliable algorithms).

At the end of the generation process, you can call
pythia.statistics();

to get some run statistics, both on cross sections for the subprocesses generated and on the
number of aborts, errors and warnings issued.

3.2 The event record

The Event class for event records is not much more than a wrapper for a vector of
Particles. This vector can expand to fit the event size. The index operator is over-
loaded, so that event[i] corresponds to the i’th particle of an Event object called event.
For instance, given that the PDG identity code [12] of a particle is provided by the id()

method, event[i].id() returns the identity of the i’th particle.

6

In this section, first the Particle methods are surveyed, and then the further aspects
of the event record.

3.2.1 The particle

A Particle corresponds to one entry/slot/line in the event record. Its properties therefore
mix ones belonging to a particle-as-such, like its identity code or four-momentum, and ones
related to the event-as-a-whole, like which mother it has.

The following properties are stored for each particle, listed by the member functions
you can use to extract the information:

• id() : the identity of a particle, according to the PDG particle codes.

• status() : status code. The full set of codes provides info on where and why a
given particle was produced. The key feature, however, is that positive status codes
correspond to remaining particles of the event, while negative codes give ones that
have been processed further. If the latter has happened, the reason can be gleaned
by considering the status code of daughters.

• mother1(), mother2() : the indices in the event record where the first and last
mothers are stored, if any. A few different cases are possible, to allow for one or many
mothers. The motherList(i) method of the Event class can return a vector with all
the mothers, based on this info.

• daughter1(), daughter2() : the indices in the event record where the first and
last daughters are stored, if any. A few different cases are possible, to allow for one
or many daughters. The daughterList(i) method of the Event class can return a
vector with all the daughters, based on this info.

• col(), acol() : the colour and anticolour tags, LHA style.

• px(), py(), pz(), e() : the particle four-momentum components (in GeV, with
c = 1), alternatively extracted as a Vec4 p().

• m() : the particle mass (in GeV).

• scale() : the scale at which a parton was produced (in GeV); model-specific but
relevant in the processing of an event.

• xProd(), yProd(), zProd(), tProd() : the production vertex coordinates (in mm
or mm/c), alternatively extracted as a Vec4 vProd().

• tau() : the proper lifetime (in mm/c).

The same method names, with a value inserted between the brackets, set these quantities.
In addition, a number of derived quantities can easily be obtained, but cannot be set,

such as:

• isFinal() : true for a remaining particle, i.e. one with positive status code, else
false.

• pT(), pT2() : (squared) transverse momentum.

• mT(), mT2() : (squared) transverse mass.

• pAbs(), pAbs2() : (squared) three-momentum magnitude.

• theta(), phi() : polar and azimuthal angle (in radians).

• y(), eta() : rapidity and pseudorapidity.

• xDec(), yDec(), zDec(), tDec() : the decay vertex coordinates, alternatively ex-
tracted as a Vec4 vDec().

7

Each Particle contains a pointer to the respective ParticleDataEntry object in the
particle data tables. This pointer gives access to properties of the particle species as such.
It is there mainly for convenience, and should be thrown if an event is written to disk, to
avoid any problems of object persistency. This pointer is used by member functions such
as:

• name() : the name of the particle, as a string.

• nameWithStatus() : as above, but for negative-status particles the name is given in
brackets, to emphasize that they are intermediaries.

• spinType() : 2s + 1, or 0 where undefined spin.

• charge(), chargeType() : charge, and three times it to make an integer.

• isCharged(), isNeutral() : bools whether chargeType() is different from 0 or
not.

• colType() : 0 for colour singlets, 1 for triplets, −1 for antitriplets and 2 for octets.

• m0() : the nominal mass of the particle species.

3.2.2 Other methods in the event record

While the Particle vector is the key component of an Event, a few further methods are
available. The event size can be found with size(), i.e. valid particles are stored in the
range 0 ≤i< event.size(). Line 0 is used to represent the event as a whole, with its total
four-momentum and invariant mass, but does not form part of the event history, and only
contains redundant information. When you translate to another event-record format where
the first particle is assigned index 1, such as HepMC, this line should therefore be dropped so
as to keep the rest of the indices synchronized. It is only with lines 1 and 2, which contain
the two incoming beams, that the history tracing begins. That way unassigned mother and
daughter indices can be put 0 without ambiguity.

A listing of the whole event is obtained with list(). The basic identity, status, mother,
daughter, colour, four-momentum and mass data are always given, but switches can be set
to provide further information, on the complete lists of mothers and daughters, and on
production vertices.

The user would normally be concerned with the Event object that is a public member
event of the Pythia class. Thus pythia.event[i].id() would be used to return the
identity of the i’th particle, and pythia.event.size() to give the size of the event record.

A Pythia object contains a second event record for the hard process alone, similar to
the LHA process specification, called process. This record is used as input for the gen-
eration of the complete event. Thus one may e.g. call either pythia.process.list() or
pythia.event.list(). To distinguish those two rapidly at visual inspection, the “Pythia
Event Listing” header is printed out differently, adding either “(hard process)” or “(com-
plete event)”.

There are also a few methods with an individual particle index i as input, but requiring
some search operations in the event record, and therefore not possible to define as methods
of the Particle class. The most important ones are motherList(i), daughterList(i)
and sisterList(i). These return a vector<int> containing a list of all the mothers,
daughters or sisters of a particle. This list may be empty or arbitrarily large, and is given
in ascending order.

8

One data member in an Event object is used to keep track of the largest col() or
acol() tag set so far, so that new ones do not clash.

The event record also contains two further sets of vectors. These are intended for the
expert user only, so only a few words on each. The first is a vector of junctions, i.e. vertices
where three string pieces meet. This list is often empty or else contains only a very few
per event. The second is a storage area for parton indices, classified by subsystem. Such
information is needed to interleave multiple interactions, initial-state showers, final-state
showers and beam remnants. It can also be used in the hadronization.

3.3 Other event information

A set of one-of-a-kind pieces of event information is stored in the Info info object in the
Pythia class. This is mainly intended for processes generated internally, but some of the
information is also available for external processes.

You can use pythia.info.method() to extract e.g. the following information:

• list() : list some information on the current event.

• eCM(), s() : the cm energy and its square.

• name(), code() : the name and code of the subprocess.

• id1(), id2() : the identities of the two partons coming in to the hard subprocess.

• x1(), x2() : x fractions of the two partons coming in to the hard subprocess.

• pdf1(), pdf2(), QFac(), Q2Fac() : parton densities x fi(x, Q2) evaluated for the
two incoming partons, and the associated Q/Q2 factorization scale.

• mHat(), sHat(), tHat(), uHat() : the invariant mass of the hard subprocess and
the Mandelstam variables for 2 → 2 processes.

• pTHat(), thetaHat() : transverse momentum and polar scattering angle of the hard
subprocess.

• alphaS(), alphaEM(), QRen(), Q2Ren() : αs and αem values for the hard process,
and the associated Q/Q2 renormalization scale.

• nTried(), nAccepted(), sigmaGen(), sigmaErr() : the number of trial and ac-
cepted events, and the resulting estimated cross section and estimated error, in units
of mb, summed over the included processes.

In other classes there are also methods that can be called to do a sphericity or thrust
analysis or search for jets with a clustering or simple cone jet finder. These take the event
record as input.

3.4 Databases

Inevitably one wants to be able to modify the default behaviour of a generator. Currently
there are two Pythia 8 databases with modifiable values. One deals with general settings,
the other specifically with particle data.

3.4.1 Settings

We distinguish four kinds of user-modifiable variables, by the way they have to be stored:

1. A Flag is an on/off switch, and is stored as a bool.

9

2. A Mode correspond to an enumeration of separate options, and is stored as an int.

3. A Parm — short for parameter — takes a continuum of values, and is stored as a
double.

4. A Word is a text string (with no embedded blanks) and is stored as as a string.

Collectively the four above kinds of variables are called settings.
The Settings class keeps track of all the flags, modes, parms and words in the pro-

gram. As such, it serves the other program elements from one central repository. The
Settings class is purely static, i.e. exists only as one global copy, that you can inter-
act with directly by Settings::command(argument). However, a settings object of the
Settings class is a public member of the Pythia class, so an alternative notation would
be pythia.settings.command(argument).

Each variable stored in Settings is associated with a few pieces of information:

• The variable name, of the form class:name (or file:name, usually these agree), e.g.
TimeShower:pTmin. The class/file part often, but not always, specifies the only part
of the program where the setting is used.

• The default value, set in the original declaration, and intended to represent a reason-
able choice.

• The current value, which differs from the default when the user so requests.

• An allowed range of values, represented by meaningful minimum and maximum values.
This has no sense for a flag or a word (and is not used there), is usually rather well-
defined for a mode, but less so for a parameter. Either of the minimum and maximum
may be left free, giving an open-ended range. Often the allowed range exaggerates
the degree of our current knowledge, so as not to restrict too much what the user can
do.

Technically, the Settings class is implemented with the help of four separate maps, one
for each kind of variable, with the name used as key. The default values are taken from the
.xml files in the xmldoc subdirectory.

Many methods exist that can be used to set or get values, to modify the default ones.
Here we only describe the most convenient input methods, readString(...) (in two
versions) and readFile(...).

You can directly set values with Settings::readString(string), where both the vari-
able name and the value are contained inside the character string, separated by blanks
and/or an equal sign, e.g. "TimeShower:pTmin = 1.0". A string not beginning with a
letter is considered as a comment and ignored. Therefore inserting an initial !, #, $, %, or
another such character, is a good way to comment out a command. For non-commented
strings, the match of the name to the database is case-insensitive. Strings that do begin
with a letter and still are not recognized cause a warning to be issued, unless a second
argument false is used in the call. Any further text after the value is ignored, so the
rest of the string can be used for any comments. Values below the minimum or above the
maximum are set at the respective border. For bool values, the following notation may
be used interchangeably: true = on = yes = ok = 1, while everything else gives false

(including but not limited to false, off, no and 0).
As already mentioned, the Pythia class contains a readString(...) method that

hands on to the similarly-named Settings or ParticleDataTable methods, the case being,
and therefore offers the most flexible form:

10

pythia.readString("TimeShower:pTmin = 1.0");

The readString(...) method is convenient for changing one or two settings, but
becomes cumbersome for more extensive modifications. In addition, a recompilation and
relinking of the main program is necessary for any change of values. Alternatively, the
changes can therefore be collected in a file, where each line corresponds to a character string
(without the quotes) of the same kind as above. Thus we could have a file, main.cmnd say,
collecting commands such as

TimeShower:pTmin = 1.0

PartonLevel:MI = off ! no multiple interactions

SpaceShower:alphaSorder = 2 ! second-order running alpha-strong

The whole file can then be read and processed with pythia.readFile("main.cmnd").
Like for the pythia.readString(...) method also ParticleDataTable commands can
be freely mixed in.

You may obtain a listing of all variables in the database by calling
Settings::listAll();

The listing is strictly alphabetical, which at least means that names from the same file/class
are kept together, but otherwise may not be so well-structured: important and unimportant
ones will appear mixed. A more relevant alternative is

Settings::listChanged();

where you will only get those variables that differ from their defaults.

3.4.2 Processes

Currently only a limited set of processes is implemented internally in Pythia 8. These that
are there are switched on and off via the ordinary settings machinery, using flags of the type
ProcessGroup:ProcessName, see Table 1. By default all processes are off. A whole group
can be turned on by a ProcessGroup:all = on command, then overriding the individual
flags. The processes are not all fully finished, e.g. angular correlations in resonance decays
are almost always absent.

It is not (yet) possible to mix internal processes with those input via the Les Houches
Accord.

Note that processes in the SoftQCD group are of a kind that cannot be input via the
LHA, but the complementarity between internal and external processes allows essentially
any physics process to be generated.

Each process is assigned an integer code. This code is not used in the internal adminis-
tration of events, but only intended to allow a simpler user separation of different processes.
Also the process name is available, as a string.

For many processes it makes sense to apply phase space cuts. The ones currently
available (in the Settings database) in particular include

• PhaseSpace:mHatMin, PhaseSpace:mHatMax : the range of invariant masses of the
scattering process.

• PhaseSpace:pTHatMin, PhaseSpace:pTHatMax : the range of transverse momenta
in the rest frame of the process for 2 → 2 processes.

In addition, for any resonance with a Breit-Wigner mass distribution, the allowed mass
range of that particle species is taken into account, both for 2 → 1 and 2 → 2 processes,
thereby providing a further cut possibility. Note that the SoftQCD processes do not use any

11

Table 1: Currently implemented processes (still with some restrictions in the resonance-
decay treatment). In the names, a “2” separates initial and final state, an “(s:X)” or “(t:X)”
occasionally appends info on an s- or t-channel-exchanged particle X.

ProcessGroup ProcessName

SoftQCD minBias,elastic, singleDiffractive,

doubleDiffractive

HardQCD gg2gg, gg2qqbar, qg2qg, qq2qq, qqbar2qqbarNew,

qqbar2gg, gg2ccbar, qqbar2ccbar,

gg2bbbar, qqbar2bbbar

PromptPhoton qg2qgamma, qqbar2ggamma, gg2ggamma,

qqbar2gammagamma, gg2gammagamma

WeakBosonExchange ff2ff(t:gmZ), ff2ff(t:W)

WeakSingleBoson ffbar2gmZ, ffbar2W, ffbar2ffbar(s:gm)

WeakDoubleBoson ffbar2ZW, ffbar2WW

WeakBosonAndParton qqbar2Wg, qg2Wq, ffbar2Wgm

Charmonium gg2QQbar[3S1(1)]g + 18 more

Bottomonium gg2QQbar[3S1(1)]g + 18 more

Top gg2ttbar, qqbar2ttbar, qq2tq(t:W)

SUSY qqbar2chi0chi0

cuts but generate their respective cross sections in full.

3.4.3 Particle data

The ParticleDataTable class is purely static, i.e. you can interact with it directly
by ParticleDataTable::command(argument). However, a particleData object of the
ParticleDataTable class is a public member of the Pythia class, so an alternative notation
would be pythia.particleData.command(argument). Further, for some of the most fre-
quent user tasks, Pythia methods have been defined, so that pythia.command(argument)
would work, see further below.

The following particle properties are stored in the ParticleDataTable for a given PDG
particle identity code id, here presented by the name used to access this property:

• name(id) : particle and antiparticle names are stored separately, the sign of id

determines which of the two is returned, with ”void” used to indicate the absence of
an antiparticle.

• hasAnti(id) : bool whether a distinct antiparticle exists or not.

• spinType(id) : 2s + 1 for particles with defined spin, else 0.

• chargeType(id) : three times the charge (to make it an integer); can also be read as
a double charge(id) = chargeType(id)/3.

• colType(id) : the colour type, with 0 uncoloured, 1 triplet, −1 antitriplet and 2

12

octet.

• m0(id) : the nominal mass m0 (in GeV).

• mWidth(id) : the width Γ of the Breit-Wigner mass distribution (in GeV).

• mMin(id), mMax(id) : the allowed mass range generated by the Breit-Wigner,
mmin < m < mmax (in GeV).

• tau0(id) : the nominal proper lifetime τ0 (in mm/c).

• constituentMass(id) : the constituent mass for a quark, hardcoded as mu = md =
0.325, ms = 0.50, mc = 1.60 and mb = 5.0 GeV, for a diquark the sum of quark
constituent masses, and for everything else the same as the ordinary mass.

• mayDecay(id) : a flag telling whether a particle species may decay or not, offering
the main user switch (whether a given particle of this kind then actually will decay
also depends on other flags in the ParticleDecays class).

Similar methods can also be used to set most of these properties.
Each particle kind in the ParticleDataTable also has a a vector of DecayChannels

associated with it. The following properties are stored for each decay channel:

• onMode() : whether a channel is on (1) or off (0), or on only for particles (2) or
antiparticles (3).

• bRatio() : the branching ratio.

• meMode() : the mode of processing this channel, possibly with matrix-element infor-
mation.

• multiplicity() : the number of decay products in a channel, at most 8.

• product(i) : a list of the decay products, 8 products 0 ≤i< 8, with trailing unused
ones set to 0.

The original particle data and decay table is read in from the ParticleData.xml file.
Like for the Settings class, the two most convenient methods to change that data are
the readString(...) and readFile(...) methods in the Pythia class. There is also
a readString(...) method in the ParticleDataTable class, but it would only under-
stand commands specific to this class, while the Pythia methods allow a free mixture
of commands to Settings and ParticleDataTable. Comments about case-insensitivity,
alternative notation for bool values, and more, also carry over.

It is thus only the form of the particle properties that needs to be specified slightly
differently from those of the Settings variables. The general form is id:property =

value. The id part is the standard PDG particle code, and property is one of the
ones already described above, with a few minor differences: name, antiName, spinType,
chargeType, colType, m0, mWidth, mMin, mMax, tau0, mayDecay, isResonance, isVisible,
and externalDecay. A few examples would be:

111:name = piZero

3122:mayDecay = false ! Lambda0 stable

431:tau0 = 0.15 ! D s proper lifetime

For major changes of the properties of a particle, the above one-at-a-time changes can
become rather cumbersome. Therefore a few extended input formats are available, where
a whole set of properties can be given after the equal sign, separated by blanks and/or by
commas. One line like

id:all = name antiName spinTp chargeTp colTp m0 mWidth mMin mMax tau0

replaces all the current information on the particle itself, but keeps its decay channels, if

13

any, while using new instead of all also removes any previous decay channels. (The flags
mayDecay, isResonance, isVisible, and externalDecay are in either case reset to their
defaults and would have to be changed separately.)

In order to change the decay data, the decay channel number needs to be given right after
the particle number, i.e. the command form becomes id:channel:property = value.
Recognized properties are onMode, bRatio, meMode and products, where the latter expects
a list of all the decay products, separated by blanks, up until the end of the line, or until
a non-number is encountered. The property all will replace all the information on the
channel, i.e.

id:channel:all = onMode bRatio meMode products

To add a new channel at the end, use
id:addChannel = onMode bRatio meMode products

To remove all existing channels and force decays into one new channel, use
id:oneChannel = onMode bRatio meMode products

A first oneChannel command could be followed by several subsequent addChannel ones, to
build up a completely new decay table for an existing particle.
It is currently not possible to remove a channel selectively, but setting its branching ratio
vanishing is as effective.

Often one may want to allow only a specific subset of decay channels for a particle. This
can be achieved e.g. by a repeated use of id:channel:onMode commands, but there also is
a set of commands that initiates a loop over all decay channels and allows a matching to be
carried out. The id:onMode command can switch on or off all channels. The id:onIfAny

and id:offIfAny will switch on/off all channels that contain any of the enumerated parti-
cles. For instance

23:onMode = off

23:onIfAny = 1 2 3 4 5

first switches off all Z0 decay modes and then switches back on any that contains one of the
five lighter quarks. Other methods are id:onIfAll and id:offIfAll, and id:onIfMatch

and id:offIfMatch, where all the enumerated products must be present for a decay chan-
nel to be switched on/off. The difference is that the former two allow further non-matched
particles in a decay channel while the latter two do not. In none of the methods does the
matching take into account the sign of a particle.

When a particle is to be decayed, the branching ratios of the allowed channels is always
rescaled to unity. There are also methods for by-hand rescaling of branching ratios.

You may obtain a listing of all the particle data by calling
ParticleDataTable::listAll(). The listing is by increasing id number. To list
only those particles that have been changed, instead use listChanged(). To list only one
specific particle id, use list(id). It is also possible to list a vector<int> of id’s.

3.5 Links to external programs

While Pythia 8 is intended to be self-contained, to the extent that you can run it without
reference to any external library, often you do want to make use of other programs that
are specialized on some aspect of the generation process. The HTML/PHP pages contain
full information on how the different links should be set up. Here the purpose is mainly to
point out the possibilities that exist.

14

3.5.1 The Les Houches interface

The LHA [8] for user processes is the standard way to input parton-level information from
a matrix-elements based generator into Pythia. The conventions for which information
should be stored has been defined in a Fortran context, as two commonblocks. Here a C++
equivalent is defined, as two separate classes.

The LHAinit and LHAevnt classes are base classes, containing reading and printout
methods, plus each a pure virtual method set(). Derived classes have to provide these two
virtual methods to do the actual work. Currently the only derived classes are for reading
information at runtime from the respective Fortran commonblock or for reading it from a
Les Houches Event File (LHEF) [9].

The LHAinit class stores information equivalent to the /HEPRUP/ commonblock, as
required to initialize the event-generation chain. The LHAevnt class stores information
equivalent to the /HEPEUP/ commonblock, as required to hand in the next parton-level
configuration for complete event generation.

The LHAinitFortran and LHAevntFortran are two derived classes, containing set()

members that read the respective LHA Fortran commonblock for initialization and event
information. This can be used for a runtime link to a Fortran library, and is the mechanism
used to link to the Pythia 6.4 process library, see below.

The LHAinitLHEF and LHAevntLHEF are two other derived classes, that can read a file
with initialization and event information, assuming that the file has been written in the
LHEF format. You do not need to declare these classes yourself, since a shortcut is provided
by the pythia.init(fileName) command.

If you create LHAinit and LHAevnt objects yourself, pointers to those should be handed
in with the init(...) call, then of the form pythia.init(LHAinit*, LHAevnt*).

3.5.2 PYTHIA 6

In order to give access to the Fortran Pythia process library at runtime (and not only by
writing/reading event files) an interface is provided to C++. This interface is residing in
Pythia6Interface.h, and in addition the Pythia 6.4 library must be linked.

The following routines have been interfaced: pygive(command), pyinit(frame,

beam, target, wIn), pyupin(), pyupev(), pylist(mode) and pystat(mode). Details
on allowed arguments are given in the Pythia 6.4 manual [4].

These methods can be used in context of the LHAinitFortran and LHAevntFortran

classes. The existing code there takes care of converting HEPRUP and HEPEUP common-
block information from Fortran to C++, and of making it available to the Pythia 8
methods. What needs to be supplied are the two LHAinitFortran::fillHepRup() and
LHAinitFortran::fillHepEup() methods. The first can contain an arbitrary number of
pygive(...), followed by pyinit(...) and pyupin() in that order. The second only
needs to contain pyupev(). Finally, the use of pylist(...) and pystat(...) is entirely
optional, and calls are best put directly in the main program.

All hard Pythia 6.4 processes should be available, at least to the extent that they
are defined for beams of protons and antiprotons, or for e+e− annihilation, which are the
only ones fully implemented in Pythia 8 so far. Soft processes, i.e. elastic and diffractive
scattering, as well as minimum-bias events, require a different kinematics machinery, and
are implemented directly in Pythia 8.

15

3.5.3 Parton distribution functions

The PDF class is the base class for all parton distribution function parametrizations, from
which specific PDF classes are derived. The choice of which PDF to use is made by a switch
in the Pythia class. Currently the selection is very limited; for protons only CTEQ 5L
(default) and GRV 94L are available. However, a built-in interface to LhaPdf library [11]
allows a much broader selection, if only LhaPdf is linked together with Pythia.

Should this not be enough, it is possible to write your own derived class. The constructor
requires the incoming beam species to be given: even if used for a proton PDF, one needs to
know whether the beam is actually an antiproton. The xfUpdate(...) member is called
to do the actual updating of PDF’s. This is the only pure virtual method, that therefore
must be implemented in any derived class.

Once you have created two distinct PDF objects, pdfA and pdfB, you should supply
pointers to these as arguments in a setPDFPtr method call

pythia.setPDFPtr(pdfA*, pdfB*);

This has to be made before the pythia.init(...) call.
A word of warning: to switch to a new PDF set implies that a complete retuning of the

generator may be required, since the underlying-event activity from multiple interactions
and parton showers is changed. There is an option that allows a replacement of the PDF
for the hard process only, so that this is not required. Inconsistent but convenient.

3.5.4 External decays

While Pythia is set up to handle any particle decays, decay products are often (but not
always) distributed isotropically in phase space, i.e. polarization effects and nontrivial ma-
trix elements usually are neglected. Especially for the τ lepton and for some B mesons it
is therefore common practice to rely on dedicated decay packages.

To this end, DecayHandler is a base class for the external handling of decays. The
user-written derived class is called if a pointer to it has been given with the

pythia.setDecayPtr(DecayHandler*, vector<int>)

method. The second argument to this method should contain the id codes of all the
particles that should be decayed by the external program. It is up to the author of the
derived class to send different of these particles on to separate packages, if so desired.

There is only one pure virtual method in DecayHandler, to do the decay:
decay(idProd, mProd, pProd, iDec, event).

When the decay method is called, idProd[0], mProd[0] and pProd[0] contain information
on the particle that is to be decayed. When the decay is done, these vectors should have
increased by the addition of all the decay products, starting at index 1.

The routine should return true if it managed to do the decay and false otherwise. In
the latter case Pythia will try to do the decay itself. Thus one may implement some decay
channels externally and leave the rest for Pythia, assuming the Pythia decay tables are
adjusted accordingly.

Note that the decay vertex is always set by Pythia, and that B–B oscillations have al-
ready been taken into account, if they were switched on. Thus the decaying code idProd[0]
may be the opposite to the produced one, stored in event[iDec].id().

16

3.5.5 User hooks

Sometimes it may be convenient to step in during the generation process: to modify the
built-in cross sections, to veto undesirable events or simply to collect statistics at various
stages of the evolution. There is a base class UserHooks that gives you this access at a few
selected places. This class in itself does nothing; the idea is that you should write your
own derived class for your task. A few very simple derived classes come with the program,
mainly as illustration.

There are four distinct sets of routines. Ordered by increasing complexity, rather than
by their appearance in the event-generation sequence, they are:

• Ones that gives you access to the event record in between the process-level and parton-
level steps, or in between the parton-level and hadron-level ones. You can study the
event record and decide whether to veto this event.

• Ones that allow you to set a scale at with the combined parton-level MI+ISR+FSR
downwards evolution in pT is temporarily interrupted, so the event can be studied
and either vetoed or allowed to continue the evolution.

• Similar ones that instead gives you access after the first few ISR or FSR branchings
of the hardest subprocess.

• Ones that gives you access to the properties of the trial hard process, so that you can
modify the internal Pythia cross section by your own correction factors.

3.5.6 Random-number generators

RndmEngine is a base class for the external handling of random-number generation.
The user-written derived class is called if a pointer to it has been handed in with the
pythia.setRndmEnginePtr(RndmEngine*) method. Since the default Marsaglia-Zaman
algorithm is quite good, there is absolutely no physics reason to replace it, but this may
still be required for consistency with other program elements in big experimental frame-
works.

3.5.7 The HepMC event format

The HepMC event format [10] is a standard format for the storage of events in several
major experiments. The translation from the Pythia 8 Event format should be done after
pythia.next() has generated an event. Therefore there is no need for a tight linkage,
but only to call the HepMC::I Pythia8::fill next event(pythia.event, hepmcevt)

conversion routine from the main program written by the user. Version 1 of HepMC makes
use of the CLHep library [13] for four-vectors, while version 2 is standalone; this requires
some adjustments in the interface code based on which version is used.

3.5.8 Parton showers

It is possible to replace the existing timelike and/or spacelike showers in the program by
your own. This is truly for experts, since it requires a rather strict adherence to a wide set
of rules.

17

4 Getting Going

After you downloaded the pythia8080.tgz package from the Pythia webpage,
http://www.thep.lu.se/∼torbjorn/Pythia.html

link “Future”, you can unpack it with tar xvfz pythia8080.tgz, into a new subdirectory
pythia8080. The rest of the installation procedure is described in the README file in that
directory. It is assumed you are on a Linux system; so far there is no multiplatform support.

After this, the main program is up to the user to write. However, sample main pro-
grams are provided in the examples subdirectory. These programs are included to serve as
inspiration when starting to write your own program, by illustrating the principles involved.

The information available if you open htmldoc/Welcome.html in your web browser will
help you expore the program possibilities further. If you install the phpdoc subdirectory
under a web server you will also get extra help to build a file of commands to the Settings
and ParticleDataTable machineries,to steer the execution of your main program.

Such ”cards files” are separate from the main programs proper, so that minor changes
can be made without any recompilation. It is then convenient to collect in the same place
some run parameters, such as the number of events to generate, that could be used inside
the main program. Whether they actually are used is up to the author of a main program
to decide.

The following variables (and a few more) have been defined, and can be extracted with
the Settings methods:

• Main:idBeamA, Main:idBeamB : the PDG id codes for the two incoming particles.

• Main:eCM : collision CM energy.

• Main:numberOfEvents : the number of events to be generated.

• Main:numberToList : the number of events to list, at the beginning of the run.

• Main:numberToShow : print the number of events generated so far, to show how the
run is progressing, once every numberOfEvents/numberToShow events.

• Main:timesAllowErrors : abort the event loop run after pythia.next() has failed
to generate an event this many times.

• Main:showAllSettings, Main:showChangedSettings : print a list of all or only the
changed flag/mode/parameter/word settings.

• Main:showAllParticleData, Main:showChangedParticleData : print a list of all
or only the changed particle and decay data.

5 Outlook

As already explained in the introduction, Pythia 8 is not yet quite of production quality. It
is possible to set up and run various processes and get out sensible event records, containing
all the major physics aspects, but some further development and tuning is required to
become competitive with the existing Pythia 6 code. In addition, several aspects are still
missing, notably a complete library of the most common processes of interest. Nevertheless
reasonably realistic tests could be undertaken. Any feedback — positive or negative —
would be most welcome. Some aspects could still be changed, before a first production-
quality version, hopefully before the end of 2007.

18

Acknowledgements

The support and kind hospitality of the SFT group at CERN is gratefully acknowledged.
Peter Skands has contributed the implementation of the SUSY processes and the SUSY
Les Houches Accord. Mikhail Kirsanov has developed the configure files, the makefiles and
the interface to HepMC, and made several valuable suggestions. Ben Lloyd has written the
PHP framework.

References

[1] T. Sjöstrand, Computer Physics Commun. 27 (1982) 243, 28 (1983) 229, 39 (1986)
347;
T. Sjöstrand and M. Bengtsson, Computer Physics Commun. 43 (1987) 367

[2] H.-U. Bengtsson, Computer Physics Commun. 31 (1984) 323;
H.-U. Bengtsson and G. Ingelman, Computer Physics Commun. 34 (1985) 251;
H.-U. Bengtsson and T. Sjöstrand, Computer Physics Commun. 46 (1987) 43;
T. Sjöstrand, Computer Physics Commun. 82 (1994) 74

[3] T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna and E. Norrbin,
Computer Physics Commun. 135 (2001) 238

[4] T. Sjöstrand, S. Mrenna and P. Skands, JHEP 05 (2006) 026 [hep-ph/0603175]

[5] L. Lönnblad, Computer Physics Commun. 118 (1999) 213;
M. Bertini, L. Lönnblad and T. Sjöstrand, Computer Physics Commun. 134 (2001)
365

[6] S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens and B.R. Webber, JHEP 0402

(2004) 005;
see webpage http://hepforge.cedar.ac.uk/herwig/

[7] see webpage http://www.thep.lu.se/ThePEG/

[8] E. Boos et al., in the Proceedings of the Workshop on Physics at TeV Colliders,
Les Houches, France, 21 May - 1 Jun 2001 [hep-ph/0109068]

[9] J. Alwall et al., Computer Physics Comm. 176 (2007) 300 [hep-ph/0609017]

[10] M. Dobbs and J.B. Hansen, Computer Physics Comm. 134 (2001) 41

[11] M.R. Whalley, D. Bourilkov and R.C. Group, in ‘HERA and the LHC’,
eds. A. De Roeck and H. Jung, CERN-2005-014, p. 575 [hep-ph/0508110]

[12] Particle Data Group, W.-M. Yao et al., J. Phys. G33 (2006) 1

[13] see webpage http://proj-clhep.web.cern.ch/proj-clhep/

19

