
CERN-LCGAPP-2005-05

July 2005

A brief introduction to

PYTHIA 8.040

T. Sjöstrand

CERN/PH, CH–1211 Geneva 23, Switzerland

and

Department of Theoretical Physics, Lund University,

Sölvegatan 14A, SE–223 62 Lund, Sweden

Abstract

The Pythia program is a standard tool for the generation of high-energy col-
lisions. While previous versions were written in Fortran, Pythia 8 represents
a complete rewrite in C++. This is a project still very much under develop-
ment, and will not offer a production-run-quality replacement for some time
to come. Nevertheless, enough of the basic structure is in place that the pro-
gram can be tried out. Early feedback, e.g. on interoperability with LHC
software, could avoid problems later on. The current introduction should
provide enough details to get going with such an exploratory phase.

1 Introduction

The development of Jetset [1], containing several of the components that later were
merged with Pythia [2], was begun in 1978. Thus the current Pythia 6 generator [3] is
the product of more than a quarter of a century of development, and some of the code has
not been touched in a very long time. New options have been added, but old ones seldom
removed. The basic structure has been expanded in different directions, well beyond what
it was once intended for, making it rather cumbersome by now.

From the onset, all code has been written in Fortran 77. For the LHC era, the exper-
imental community has made the decision to move heavy computing completely to C++.
Fortran support may be poor to non-existing, and young experimenters will not be conver-
sant in Fortran any longer. Therefore it is logical to move Pythia to C++, in the process
cleaning up and modernizing various aspects.

A first attempt in this direction was the Pythia 7 project [4]. However, after the
Herwig++ [5] group decided to join in the development of a common administrative
structure, ThePEG [6], work on the physics aspects stalled.

Pythia 8 is a clean new start, to provide a successor to Pythia 6. In a return to
the traditional Pythia spirit, it is a completely standalone generator, thus not relying on
ThePEG or any other external library. Some hooks for links to other programs are already
provided, however, and others may be added. Work on Pythia 8 was begun from scratch
in September 2004, so far as a one-person effort, with a three-year “road map”.

The first public version, presented here, clearly is not yet developed enough to provide
a realistic alternative to Pythia 6. Instead it it made public to allow early feedback
from the experimental community, especially within the context of LHC software activities.
It is intended that all subversions in the 8.0xx series should be viewed as development
snapshots, with 8.100, sometime in early 2007, the first one to be taken seriously. Even
so, that version will not be a complete replacement in all respects, but strongly focused on
LHC applications.

Further, with the rise of automatic matrix-element code generation and phase-space
sampling, input of process-level events via the Les Houches Accord (LHA) [7] reduces the
need to have extensive process libraries inside Pythia itself. Thus emphasis is on providing
a good description of subsequent steps of the story, involving elements such as initial- and
final-state parton showers, multiple parton–parton interactions, string fragmentation, and
decays. All the latter components now exist as C++ code, even if in a preliminary form,
with finer details to be added, and still to be better integrated and tuned. At the current
stage, however, there is not even the beginning of a Pythia 8 process library; instead an
interface is provided to Pythia 6, so that all hard processes available there can be generated
and sent on to Pythia 8, transparent to the user. This Fortran link is not intended as a
long-term solution, of course.

The current document provides an introduction to Pythia 8 usage. It is not an at-
tempt to compete with the Pythia 6 manual [3] in comprehensiveness, but is rather more
lightweight. Much of the physics aspects are unchanged relative to the Pythia 6 manual,
and so we refer to it and to other physics articles for that. Instead we here give an overview
for potential users who already have some experience with event generators in general, and
Pythia 6 in particular, who want to understand what is different about Pythia 8, and
how the new program should be used.

1

2 Program Structure

2.1 Program flow

The physics topics that have to come together in a complete event generator can crudely
be subdivided into three stages:

1. The generation of a “process” that decides the nature of the event. Often it would
be a “hard process”, such as gg → h0 → Z0Z0 → µ+µ−qq, that is calculated in
perturbation theory, but a priori we impose no requirement that a hard scale must
be involved. Only a very small set of partons/particles is defined at this level, so only
the main aspects of the event structure are covered.

2. The generation of all subsequent activity on the partonic level, involving initial- and
final-state radiation, multiple parton–parton interactions and the structure of beam
remnants. Much of the phenomena are under an (approximate) perturbative control,
but nonperturbative physics aspects are also important. At the end of this step,
a realistic partonic structure has been obtained, e.g. with broadened jets and an
underlying-event activity.

3. The hadronization of this parton configuration, by string fragmentation, followed by
the decays of unstable particles. This part is almost completely nonperturbative, and
so requires extensive modelling and tuning or, especially for decays, parametrizations
of existing data. It is only at the end of this step that realistic events are available,
as they could be observed by a detector.

This division of tasks is not watertight — parton distributions span and connect the two
first steps, to give one example — but it still helps to focus the discussion.

The structure of the Pythia 8 generator, as illustrated in Fig. 1, is based on this
subdivision. The main class for all user interaction is called Pythia. It calls on the three
classes ProcessLevel, PartonLevel and HadronLevel, corresponding to points 1, 2 and 3
above. Each of these, in their turn, call on further classes that perform the separate kinds
of physics tasks.

Information is flowing between the different program elements in various ways, the most
important being the event record, represented by the Event class. Actually, there are two
objects of this class, one called process, that only covers the few partons of the “hard”
process, and another called event, that covers the full story from the incoming beams to
the final hadrons.

There are also two incoming BeamParticles, that keep track of the partonic content
left in the beams after a number of interactions and initial-state radiations, and rescales
parton distributions accordingly.

Finally, a number of utilities can be used just about anywhere, for Lorentz four-vectors,
random numbers and simple histograms, for setting and getting various parameters and
particle data, and for a number of other “minor” tasks.

Orthogonally to the subdivision above, there is another, more technical classification,
whereby the user interaction with the generator occurs in three phases:

• Initialization, where the tasks to be performed are specified.

• Generation of individual events (the “event loop”).

• Finishing, where final statistics is made available.

2

The User (≈ Main Program)

Pythia

Event process Event event

ProcessLevel

LHAinit

LHAevnt

(Pythia 6.3)

(. . . ??)

PartonLevel

TimeShower

SpaceShower

MultipleInteractions

BeamRemnants

HadronLevel

StringFragmentation

MiniStringFrag...

ParticleDecays

(. . . ??)

BeamParticle

Vec4, Random, Hist, Settings, ParticleData, StandardModel, ...

Figure 1: The relationship between the main classes in Pythia 8. The thick arrows show
the flow of commands to carry out different physics tasks, whereas the thinner show the
flow of information between the tasks. The bottom box contains common utilities that may
be used anywhere. Obviously the picture is strongly simplified.

Again the subdivision (and orthogonality) is not strict, with many utilities and tasks stretch-
ing across the borders, and with no finishing step required for many aspects. Nevertheless,
as a rule, these three phases are represented by different methods inside the class of a
specific physics task.

2.2 Program files

Based on the principles above, the code has been subdivided into a set of files, mainly by
physics task. The files normally come in quartets:

1. A header file, .h, where the public interface of the class is declared, and inline methods
are defined.

2. A source code file, .cc, where most of the methods are implemented.

3. A manual file, .man, containing a brief summary of the role of each class, and with
documentation on the flags, modes and parameters free to be set/changed by the

3

user. Much of the material in the current document comes from these .man files, but
here in an abbreviated version.

4. At compilation, a .o file is created.

Sometimes such a quartet of files only corresponds to a single class, but often there is one
key class, with the same name as the file, or closely related, and then one or a few auxiliary
classes that serve no useful purpose on their own, and therefore would only make the code
less readable if put in separate files.

The different files defined so far, with main tasks, are as follows:

• Pythia : this is the main class, that administrates the whole event generation process
by making use of all the others classes. Objects of most other classes reside (directly or
indirectly) inside Pythia, so only a Pythia object needs to be explicitly instantiated
and addressed by the user.

• Event : contains the event record, which basically is a vector of particles. This file
also contains the Particle class, used by Event. Pythia uses two Event objects, one
for the process-level record (process) and one for the complete event (event).

• ProcessLevel : handles the generation of the (hard) process that sets the character
of the event. Currently this involves an interface to the Fortran Pythia 6 process
library, alternatively routines for reading in LHA events, and will need to be expanded
in the future.

• PartonLevel : turns the (hard) process above into a complete set of partons, by
adding initial- and final-state radiation, multiple parton–parton interactions, and
beam remnants.

• HadronLevel : turns the parton-level event above into a set of outgoing particles,
by applying string fragmentation (with special treatment for low-mass systems) and
secondary decays.

• Pythia6 : is an anomaly, namely the “good old” Fortran Pythia 6.3 program, used
as a process library until further notice. Thus there is no Pythia6.cc file but instead a
Pythia6.f one. The header file contains the required wrappers to access the relevant
parts of the Fortran code from C++.

• LesHouches : gives the possibility to feed in parton configurations for the subsequent
event generation. Two containers are defined, one for initialization and one for events,
that can be read from Pythia. Should be linked to external programs or files.

• TimeShower : performs timelike final-state transverse-momentum-ordered shower evo-
lution.

• SpaceShower : performs spacelike initial-state transverse-momentum-ordered shower
evolution.

• MultipleInteractions : performs multiple parton–parton interactions.

• SigmaProcess : contains the differential cross section for QCD 2 → 2 processes.
Currently only used by MultipleInteractions. It is not clear how this class should
evolve in the future.

• SigmaTotal : contains parametrizations of total, elastic and diffractive hadronic cross
sections. Currently only used by MultipleInteractions.

• Beams : contains information on all partons extracted from the beams. Defines mod-
ified parton distributions accordingly during the showering and multiple interactions
processing, and afterwards sets up beam remnants.

4

• PartonDistributions : contains parton distribution functions for the proton and
electron. Currently very simple, with only two p parametrizations available, but it is
possible to link in external sets.

• StringFragmentation : performs string fragmentation of a given set of partons.

• MiniStringFragmentation : performs string fragmentation in cases where the colour
singlet subsystem mass is so small that one or at most two primary hadrons should
be produced from it.

• FragmentationFlavZpT : contains the classes for describing the fragmentation steps
in flavour and in longitudinal and transverse momentum.

• FragmentationSystems : defines some containers of parton systems, for use in the
fragmentation routines.

• ParticleDecays : performs the decays of all “normal” unstable hadrons and lep-
tons, i.e. in mass up to and including bb systems. (It is not intended for decays of
electroweak “resonances”, like Z0.)

• StandardModel : contains the running αs, with Λ matching at flavour thresholds, and
also a few other parameters such as αem and sin2 θW .

• Settings : contains a database of all flags, modes and parameters that determine the
performance of the generator. Initial values are set from the contents of the respective
.man files, but these can then be changed by the user. Also contains a small database
for errors and warnings encountered during program execution.

• ParticleData : contains a database of all necessary particle data (masses, names, ..)
and decay channels.

• Basics : contains some basic facilities of general use: a random number generator
Rndm, a four-vector class Vec4, and a histogram class Hist.

• Stdlib : is only a .h file, containing all the Stdlib headers used in Pythia 8, with
using directives. Also inlines pow2(x) — pow5(x) for fast powers of small integers,
sqrtpos(x) to avoid that roundoff gives the square root of a negative number, and
tolower(string) for producing a lowercase string.

• Main : only exists as a .man file. Does not have to be used at all, but defines variables
that a user might want to read in and use in his/her main program, such as the
number of events to generate.

• Makefile : is there to simplify the compilation and linking of the program. Will have
to be improved for professional use.

Important warnings

The .man files are set read-only, and should not be tampered with. (Neither should the .h or
.cc ones, of course, but there it is much more apparent that changes will have consequences.)
Interspersed in them, there are lines beginning with <flag>, <mode>, <parameter>, or
<file>. They contain instructions from which Settings builds up its database of user-
accessible variables, see further below. Any stupid changes here will cause difficult-to-track
errors!

Further, sometimes you will see two question marks, “??”, in the text or code. This is
for internal usage, to indicate loose ends or preliminary thoughts. Please disregard.

5

3 Key Program Elements

3.1 The event record

The Event class for event records is nothing but a wrapper for a vector of Particles, to
first approximation. This vector can expand to fit the event size. The index operator is
overloaded, so that event[i] corresponds to the i’th particle of an Event object called
event. For instance, given that the PDG identity code [8] of a particle is provided by the
id() method, event[i].id() returns the identity of the i’th particle.

In this section, first the Particle methods are surveyed, and then the further aspects
of the event record. More details are found in the Event.man file.

3.1.1 The particle

A Particle corresponds to one entry/slot/line in the event record. Its properties therefore
is a mix of ones belonging to a particle-as-such, like its identity code or four-momentum,
and ones related to the event-as-a-whole, like which mother it has.

The following properties are stored for each particle, listed by the member functions
you can use to extract the information:

• id() : the identity of a particle, according to the PDG particle codes.

• status() : status code. The full set of codes provides info on where and why a
given particle was produced. The key feature, however, is that positive status codes
correspond to remaining particles of the event, while negative codes give ones that
have been processed further. If the latter has happened, the reason can be gleaned
by considering the status code of daughters.

• mother1(), mother2() : the indices in the event record where the first and last
mothers are stored, if any. A few different cases are possible, to allow for one or many
mothers. The motherList(i) method of the Event class can return a vector with all
the mothers, based on this info.

• daughter1(), daughter2() : the indices in the event record where the first and
last daughters are stored, if any. A few different cases are possible, to allow for one
or many daughters. The daughterList(i) method of the Event class can return a
vector with all the daughters, based on this info.

• col(), acol() : the colour and anticolour tags, LHA style.

• px(), py(), pz(), e() : the particle four-momentum components (in GeV/c or
GeV), alternatively extracted as a Vec4 p().

• m() : the particle mass (in GeV/c2).

• scale() : the scale at which a parton was produced (in GeV); model-specific but
relevant in the processing of an event.

• xProd(), yProd(), zProd(), tProd() : the production vertex coordinates (in mm
or mm/c), alternatively extracted as a Vec4 vProd().

• tau() : the proper lifetime (in mm/c).

The same method names, with a value inserted between the brackets, set these quantities.
In addition, a number of derived quantities can easily be obtained, but cannot be set,

such as:

• statusAbs() : the absolute value of the status code.

6

• remains() : true for a remaining particle, i.e. one with positive status code, else
false.

• pT(), pT2() : (squared) transverse momentum.

• mT(), mT2() : (squared) transverse mass.

• pAbs(), pAbs2() : (squared) three-momentum magnitude.

• theta(), phi() : polar and azimuthal angle.

• thetaXZ() : angle in the (px, pz) plane, relative to +z axis, between −π and +π.

• pPlus(), pMinus() : E ± pz.

• y(), eta() : rapidity and pseudorapidity.

• xDec(), yDec(), zDec(), tDec() : the decay vertex coordinates, alternatively ex-
tracted as a Vec4 vDec().

Each Particle contains a pointer to the respective ParticleDataEntry object in the
particle data tables. This gives access to properties of the particle species as such. It is
there mainly for convenience, and should be thrown if an event is written to disk, to avoid
any problems of object persistency. This pointer is used by member functions such as:

• name() : the name of the particle, as a string.

• nameWithStatus() : as above, but for negative-status particles the name is given in
brackets, to emphasize that they are intermediaries.

• m0() : the nominal mass of the particle species (while mass() selects a new mass,
according to a Breit–Wigner, where relevant).

• colType() : 0 for colour singlets, 1 for triplets, −1 for antitriplets and 2 for octets.

• charge(), icharge() : charge, and three times it to make an integer.

• isCharged(), isNeutral() : bools whether icharge() is different from 0 or not.

3.1.2 Other methods in the event record

While the Particle vector is the key component of an Event, a few further methods are
available. The event size can be found with size(), i.e. valid particles are stored in the
range 0 ≤i< event.size(). Line 0 is used to represent the event as a whole, with its total
four-momentum and invariant mass, but does not form part of the event history. It is only
with lines 1 and 2, which contain the two incoming beams, that the history tracing begins.
That way unassigned mother and daughter indices can be put 0 without ambiguity.

A listing of the whole event is obtained with list(). The basic identity, status, mother,
daughter, colour, four-momentum and mass data are always given, but switches can be set
to provide further information, on the complete lists of mothers and daughters, and on
production vertices.

The user would normally be concerned with the Event object that is a public mem-
ber event of the Pythia class. Thus, having declared a Pythia object called pythia,
pythia.event[i].id() would be used to return the identity of the i’th particle, and
pythia.event.size() to give the size of the event record.

A Pythia object contains a second event record for the hard process alone, similar to the
LHA process specification, called process, used as input for the generation of the complete
event. Thus one may e.g. call either pythia.process.list() or pythia.event.list().
To distinguish those two rapidly at visual inspection, the “Pythia Event Listing” header is
printed out differently, adding either “(hard process)” or “(complete event)”.

7

There are also a few methods with an individual particle index i as input, but requiring
some search operations in the event record, and therefore not possible to define as methods
of the Particle class. An incomplete list is:

• motherList(i), daughterList(i), sisterList() : returns a vector<int> con-
taining a list of all the mothers, daughters or sisters of a particle. This list may be
empty or arbitrarily large, and is given in ascending order.

• iTopCopy(i), iBotCopy(i) : traces “carbon copies” (i.e. the same particle, but
shifted by various recoil effects) of the particle at index i up to its top mother or
down to its bottom daughter. If there are no such carbon copies, i itself will be
returned.

• iTopCopyId(i), iBotCopyId(i) : also trace top mother and bottom daughter, but
do not require carbon copies, only that one can find an unbroken chain, of mothers
or daughters, with the same flavour id code. The behaviour for common quarks and
gluons may be unpredictable (what to do in a g → gg branching?), but should work
well for “rare” particles.

One data member in an Event object is used to keep track of the largest col() or
acol() tag set so far, so that new ones do not clash.

The event record also contains a vector of junctions, which often is empty or else contains
only a very few per event. Methods are available to add further junctions or query the
current junction list. This is only for the expert user, however, and is not discussed further
here.

3.2 Databases

Inevitably one wants to be able to modify the default behaviour of a generator. Currently
there are two Pythia 8 databases with modifiable values. One deals with general settings,
the other specifically with particle data. In addition, Pythia 6 variables can be set for the
hard-process generation.

3.2.1 Settings

We distinguish three kinds of user-modifiable variables, by the way they have to be stored:

1. Flags are on/off switches, and are stored as bool.

2. Modes correspond to a finite enumeration of separate options, and are stored as int.

3. Parameters take a continuum of values, and are stored as double.

Collectively the three above kinds of variables are called settings (but if you have a better
term, please let me know). One could imagine strings as a fourth kind, but so far there has
been no need.

The Settings class keeps track of all the flags, modes and parameters in the pro-
gram. As such, it serves the other program elements from one central repository. The
Settings class is purely static, i.e. exists only as one global copy, that you can inter-
act with directly by Settings::command(argument). However, a settings object of the
Settings class is a public member of the Pythia class, so an alternative notation would be
pythia.settings.command(argument), assuming that pythia is an object of the Pythia

class. Further, for the most frequent user tasks, Pythia methods have been defined, so that
pythia.command(argument) would work, see further below.

8

Each variable stored in Settings is associated with a few pieces of information:

• The variable name, of the form class:name (or file:name, usually these agree), e.g.
TimeShower:pTmin. The class/file part identifies the .man file where the variable is
defined and described, and often (but not always) is also the only part of the program
where it is used.

• The default value, set in the original declaration, and intended to represent a reason-
able choice.

• The current value, which differs from the default when the user so requests.

• An allowed range of values, represented by meaningful minimum and maximum values.
This has no sense for a flag (and is not used there), is usually rather well-defined for
a mode, but less so for a parameter. Either of the minimum and maximum may be
left free, giving an open-ended range. Often the allowed range exaggerates the degree
of our current knowledge, so as not to restrict too much what the user can do.

Technically, the Settings class is implemented with the help of three separate maps, one
for each kind of variable, with the name used as key.

Many methods exist that can be used to set or get values, see the Settings.man file.
Here we only describe the two most convenient input ones, readString and readFile.

You can directly set values with Settings::readString(string), where both the vari-
able name and the value are contained inside the character string, separated by blanks
and/or an equal sign, e.g. "TimeShower:pTmin = 1.0". A string not beginning with an
alphanumeric character is considered as a comment and ignored. Therefore inserting an
initial !, #, $, %, or another such character, is a good way to comment out a command; for
reasons that will become apparent later, it is wise to avoid <. For non-commented strings,
the match of the name to the database is case-insensitive. Strings that do begin with a
letter and still are not recognized cause a warning to be issued, unless a second argument
false is used in the call. Any further text after the value is ignored, so the rest of the
string can be used for any comments. Values below the minimum or above the maximum
are set at the respective border. For bool values, the following notation may be used in-
terchangeably: true = on = yes = ok = 1, while everything else gives false (including
but not limited to false, off, no and 0).

The Pythia class contains a readString method that hands on to the similarly-named
Settings method, or to corresponding methods in ParticleData or Pythia 6, the case
being, and therefore offers the most flexible form:

pythia.readString("TimeShower:pTmin = 1.0");

The readString method is convenient for changing one or two settings, but becomes
cumbersome for more extensive modifications. In addition, a recompilation and relinking
of the main program is necessary for any change of values. Alternatively, the changes can
therefore be collected in a file, where each line corresponds to a character string (without
the quotes) of the same kind as above. Thus we could have a file, main.cmnd say, collecting
commands such as

TimeShower:pTmin = 1.0

PartonLevel:MI = off ! no multiple interactions

SpaceShower:alphaSorder = 2 ! second order running alpha-strong

The whole file can then be read and processed with Settings::readFile("main.cmnd").
A file read this way would only process commands specifically for Settings, while the

9

alternative pythia.readFile("main.cmnd") allows commands also for ParticleData and
Pythia 6 to be freely mixed in, and so is preferable.

You may obtain a listing of all variables in the database by calling
Settings::listAll();

The listing is strictly alphabetical, which at least means that names from the same file/class
are kept together, but otherwise may not be so well-structured: important and unimportant
ones will appear mixed. A more relevant alternative is

Settings::listChanged();

where you will only get those variables that differ from their defaults.

3.2.2 Particle data

The ParticleDataTable class is purely static, i.e. you can interact with it directly
by ParticleDataTable::command(argument). However, a particleData object of the
ParticleDataTable class is a public member of the Pythia class, so an alternative no-
tation would be pythia.particleData.command(argument), assuming that pythia is an
object of the Pythia class. Further, for some of the most frequent user tasks, Pythia

methods have been defined, so that pythia.command(argument) would work, see further
below.

This database does not have its final form, since further properties will need to be added
when processes are implemented. Currently the following particle properties are stored in
the ParticleDataTable for a given PDG particle identity code id, here presented by the
name used to access this property:

• hasAnti(id) : bool whether a distinct antiparticle exists or not.

• name(id) : particle and antiparticle names are stored separately, the sign of id

determines which of the two is returned, with ”void” used to indicate the absence of
an antiparticle.

• charge3(id) : three times the charge (to make it an integer), alternatively
charge(id), which is a double equal to charge3(id)/3.

• colType(id) : the colour type, with 0 uncoloured, 1 triplet, −1 antitriplet and 2
octet.

• m0(id) : the nominal mass m0 (in GeV).

• constituentMass(id) : the constituent mass for a quark, hardcoded as mu = md =
0.325, ms = 0.50, mc = 1.60 and mb = 5.0 GeV, for a diquark the sum of quark
constituent masses, and for everything else the same as the ordinary mass.

• width(id) : the width Γ of the Breit-Wigner distribution (in GeV).

• range(id) : the allowed mass range generated by the Breit-Wigner, |m − m0| <
range (in GeV).

• tau0(id) : the nominal proper lifetime τ0 (in mm/c).

• mayDecay(id) : a flag telling whether a particle species may decay or not, offering
the main user switch (whether a given particle of this kind then actually will decay
also depends on other flags in the ParticleDecays class).

Similar methods can also be used to set these properties.
Each particle kind in the ParticleDataTable also has a a vector of DecayChannels

associated with it. The following properties are stored for each decay channel:

10

• branchingRatio() : the branching ratio.

• modeME() : the mode of processing this channel, possibly with matrix-element infor-
mation.

• multiplicity() : the number of decay products in a channel, at most 8.

• product(i) : a list of the decay products, 8 products 0 ≤i< 8, with trailing unused
ones set to 0.

The original particle data and decay table is read in from the ParticleData.man file.
Like for the Settings class, the two most convenient methods to change that data are
called readString and readFile, and the pattern is the same: readString takes as ar-
gument a character string that contains one change, while readFile takes as argument
a file name, where many changes can be stored, one per line. If you use the meth-
ods in the ParticleDataTable class, e.g. ParticleDataTable::readFile("main.cmnd")
commands are specific to this database, while the similarly-named methods in Pythia,
e.g. pythia.readFile("main.cmnd"), allow a free mixture of commands to Settings,
ParticleDataTable and Pythia6. Comments about case-insensitivity, alternative nota-
tion for bool values, and more, also carries over.

It is thus only the form of the particle properties that needs to be specified slightly dif-
ferently from those of the Settings variables. The general form is Particle:id:property
= value. The first part, the keyword Particle: is optional, i.e. can be omitted without
any ambiguity. The id part is the standard PDG particle code, and property is one of
the ones already described above, with a few minor differences: name, antiName, names

(both the previous, separated by a blank), charge3, colType, m0, width, range, tau0 and
mayDecay. A few examples would be:

Particle:111:name = piZero

Particle:3122:mayDecay = false ! Lambda0 stable

Particle:431:tau0 = 0.15 ! D s proper lifetime

In order to change the decay data, the decay channel number needs to be given right after
the particle number, i.e. the command form becomes Particle:id:channel:property =

value. Recognized properties are branchingRatio, modeME and products, where the latter
expects a blanks-separated list of all the decay products, either up to the end of the line or
to the first non-digit.

For major changes of the properties of a particle, including its decay table, the above
one-at-a-time changes can become rather cumbersome. Therefore an alternative input
format is available, which is identical to the way the particle database itself is stored in the
ParticleData.man file. (This way, it is easy to copy and paste a particle, and then modify
as desired.) Here one line beginning with <particle> contains all the basic information
on a particle, and any subsequent line beginning with <channel> adds one further decay
channel. The formats are:

<particle> id name antiName charge3 colType m0 width range tau0 mayDecay

<channel> branchingRatio modeME products

If the particle was not defined before, it is added, else the properties of the current particle
are overwritten. It is not possible to make a partial update when choosing this format: all
particle and decay data for the given particle must be provided.

You may obtain a listing of the particle data by calling ParticleDataTable::list().
The listing is by increasing id number. To list only one specific particle, give its id as
argument; to list a few, give their id numbers as a vector<int>.

11

3.2.3 PYTHIA 6

In order to give access to the Fortran Pythia process library at runtime (and not only
by writing/reading event files) an interface is provided to C++. This interface is residing
in Pythia6.h, while the Fortran code is in Pythia6.f. The latter should normally be the
most recent Fortran Pythia version, but must be at least 6.314, since this is the first
version that allows internally generated processes to be stored in the LHA format.

The readString and readFile methods in Pythia can be used to modify the per-
formance of the Pythia 6 generator. The name of any variable must be preceded by
"Pythia6:" to distinguish it from normal Pythia 8 variables either in the Settings or
the ParticleDataTable classes. An example would be

pythia.readString("Pythia6:ckin(3) = 10.");

The first part is peeled off, to give the string "ckin(3) = 10.". This string is handed as
argument to pygive, accessed via an extern "C" pygive interface. Thus all parameters
that could be set with the Fortran routine PYGIVE can also be set by readString and
readFile. Only those commands that influence the generation of the hard process have
any impact, however, since this is the only part of the Fortran code that is used.

All hard Pythia 6 processes should be available, at least to the extent that they are
defined for beams of protons and antiprotons, which are the only ones fully implemented in
Pythia 8 so far. Soft processes, i.e. elastic and diffractive scattering, as well as minimum-
bias events, require a different kinematics machinery, and are not currently available.

3.3 The main generation class

As has already been mentioned, the Pythia class is the main means of communication
between the user and the event generation process. We here present the key methods that
should be used, put in context.

Already at the top of the main program file you need to include the proper header file
#include "Pythia.h"

To simplify typing, it also makes sense to declare
using namespace Pythia8;

Given this, the first step in the main program is to create a generator object, e.g. with
Pythia pythia;

The Pythia constructor will initialize the default values for the Settings and the
ParticleDataTable. In addition, the old Fortran 77 Pythia 6 obtained its default values
already at the loading stage. Either of these can now be modified in a number of ways, but
most conveniently by the two methods

pythia.readString(string);

for changing a single variable, and
pythia.readFile(fileName);

for changing a set of variables, one per line in the input file. The allowed form for a
string/line has already been explained above. A short summary is that a non-alphanumeric
first non-blank character signals a comment line (except for ones beginning with <particle>

or <channel>), a Pythia6:command = value string is taken as a command to Pythia 6,
one like Particle:id:command = value, or id:command = value, or beginning with
<particle> or <channel>, as a modification to the particle database, and anything else as

12

a setting. If the database in question then fails to parse the string, a warning is normally
issued, but in the end the relevant line is again considered as a comment and ignored.

To check which changes have actually taken effect in the settings database, it is conve-
nient to insert a

pythia.settings.listChanged();

to show all settings that are changed relative to their default values, while a complete listing
with

pythia.settings.listAll();

gives a survey of all the possibilities. For the particle data there is no method only to show
what has been changed, but a complete listing is otained with

pythia.particleData.list();

and a partial by giving a particle id or a vector<int> of id’s as argument.
At this stage you can also insert hooks to some external facilities, see the next section.
At the initialization stage all remaining details of the generation are to be specified.

The init method allows a few different input formats, so you can pick the one convenient
for you:

pythia.init(idA, idB, eA, eB);

lets you specify the identities and energies of the two incoming beam particles, with A (B)
assumed moving in the +z (−z) direction.

pythia.init(idA, idB, eCM);

is similar, but you specify the CM energy, and you are assumed in the rest frame.
pythia.init(machine, eCM);

is a variant where the machine type is given as a string, currently either "pp", "pbarp",
"ppbar", "e+e-" or "e-e+", again ordered with the first moving in the +z direction,
together with the CM energy.

pythia.init(LHAinit*, LHAevnt*);

assumes LHA initialization information is available in an LHAinit class object, and that
LHA event information will be provided by the LHAevnt class object, see below.

It is when the init call is executed that all the settings values are propagated to the
various program elements, and in some cases used to precalculate quantites that will be
used at later stages of the generation. Further settings changed after the init call will
be ignored (unless methods are used to force a partial or complete re-initialization). By
contrast, the particle properties database is queried all the time, and so a later change
would take effect immediately, for better or worse.

The bulk of the code is concerned with the event generation proper. However, all
the information on how this should be done has already been specified. Therefore only a
command

pythia.next();

is required to generate the next event. This method would be located inside an event
loop, where a required number of events are to be generated. However, the pythia.next()
command returns a bool value telling whether the generation succeeded or not. This is
useful e.g. when a file of LHA events comes to an end. Other unsolvable errors may also
result in a false value, in which case that event should be skipped. Most internal warning
and error messages are related to problems that can be fixed before it gets that far, however,
e.g. by taking a step back and trying again.

The key output of the pythia.next() command is the event record found in

13

pythia.event(), see above. A process-level summary of the event is stored in
pythia.process().

At the end of the generation process, you can call
pythia.statistics();

to get some run statistics.

3.4 Hooks to external programs

While Pythia 8 is intended to be self-contained, to the extent that you can run it without
reference to any external library, often you do want to make use of other programs that are
specialized on some aspect of the generation process.

3.4.1 The Les Houches interface

The LHA [7] for user processes is the standard way to input parton-level information from
a matrix-elements based generator into Pythia. The conventions for which information
should be stored has been defined in a Fortran context, as two commonblocks. Here a C++
equivalent is defined, as two separate classes.

The LHAinit and LHAevnt classes are base classes, containing reading and printout
methods, plus a pure virtual method each. Derived classes have to provide these two
virtual methods to do the actual work. Currently the only derived classes are for reading
information at runtime from the respective Fortran commonblock or for reading it from
previously produced Pythia 6.3 files.

The LHAinit class stores information equivalent to the /HEPRUP/ commonblock, as
required to initialize the event generation chain. The main difference is that the vector
container now allows a flexible number of subprocesses to be defined. For the rest, names
have been modified, since the 6-character-limit does not apply, and variables have been
regrouped for clarity, but nothing fundamental.

The pure virtual function set() has to be implemented in the derived class, to set
relevant information when called. It should return false if it fails. Information can be set
by the following methods:

• beamA(identity, energy, pdfGroup, pdfSet) : sets the properties of the first
incoming beam (IDBMUP(1), EBMUP(1), PDFGUP(1), PDFSUP(1)), and similarly for
beamB. The parton distribution information defaults to zero, meaning that internal
sets are used.

• strategy(choice) : sets the event weighting and cross section strategy (IDWTUP of
the Fortran version).

• process(idProcess, xSec, xErr, xMax) : sets info on an allowed process (LPRUP,
XSECUP, XERRUP, XMAXUP). Each new call will append one more entry to the list of
processes.

The information can be printed using the overloaded << operator, e.g.
cout << LHAinitObject; .

The LHAevnt class stores information equivalent to the /HEPEUP/ commonblock, as
required to hand in the next parton-level configuration for complete event generation. The
main difference is that the vector container now allows a flexible number of partons to be

14

defined. For the rest, names have been modified, since the 6-character-limit does not apply,
and variables have been regrouped for clarity, but nothing fundamental.

The LHA is based on Fortran arrays beginning with index 1, and mother information
is defined accordingly. In order to be compatible with this convention, the zeroth line of
the C++ particle array is kept empty, so that index 1 also here corresponds to the first
particle. One small incompatibility is that the size() method returns the full size of the
particle array, including the empty zeroth line, and thus is one larger than the true number
of particles (NUP).

The pure virtual function set() has to be implemented in the derived class, to set
relevant information when called. It should return false if it fails, e.g. if the supply of
events in a file is exhausted. Information can be set by the following methods:

• process(idProcess, weight, scale, alphaQED, alphaQCD) : tells which kind of
process occurred, with what weight, at what scale, and which αem and αs were used
(IDPRUP, XWTGUP, SCALUP, AQEDUP, AQCDUP of the Fortran version). This method also
resets the size of the particle list, and adds the empty zeroth line, so it has to be
called before the particle method below.

• particle(id, status, mother1, mother2, colourTag1, colourTag2,

p x, p y, p z, e, m, tau, spin) : gives the properties of the next particle handed
in (IDUP, ISTUP, MOTHUP(1,..), MOTHUP(2,..), ICOLUP(1,..), ICOLUP(2,..),
PUP(J,..), j from 1 through 5, VTIMUP, SPINUP) .

The information can be printed using the overloaded << operator, e.g.
cout << LHAevntObject; .

The LHAinitFortran and LHAevntFortran are two derived classes, containing set

members that read the respective Fortran commonblock for initialization and event in-
formation. This can be used for a runtime link to a Fortran library, and is the mechanism
used (transparently to the user) to link to the Pythia 6 process library.

The LHAinitPythia6 and LHAevntPythia6 are two other derived classes, that can read
files with initialization and event information, assuming that the files have been written
in the Pythia 6 format. The respective file name has to be given as argument at the
instantiation. Even if this specific implementation is not particularly interesting — the
same functionality can be obtained much simpler with the runtime interface to Pythia 6
— it can serve as a template for reading files written by more interesting other programs.

Once LHAinit and LHAevnt objects have been created, pointers to those should be
handed in with the init call, pythia.init(LHAinit*, LHAevnt*).

3.4.2 Parton distribution functions

The PDF class is the base class for all parton distribution function parametrizations, from
which specific PDF classes are derived. The choice of which PDF to use is made by a switch
in the Pythia class. Thus, a priori, there is no need for a normal user to study this class.
Currently the selection is very limited; for protons only CTEQ 5L (default) and GRV 94L
are available. It is therefore natural to want to interface to external PDF libraries, and
then the structure must be understood.

The constructor requires the incoming beam species to be given: even if used for a
proton PDF, one needs to know whether the beam is actually an antiproton. This is one
of the reasons why Pythia always defines two PDF objects in an event, one for each beam.

15

Once a PDF object has been constructed, call it pdf, the main method used in the
event generation is pdf.xf(id, x, Q2), which returns xfid(x, Q2), properly taking into
account whether the beam is an antiparticle or not.

Whenever the xf member is called with a new flavour, x or Q2, the xfUpdate member
is called to do the actual updating. This is the only pure virtual method, that therefore
must be implemented in any derived class. It may either update that particular flavour or
all flavours at this (x, Q2) point. The choice is to be made by the producer of a given set,
based on what he/she deems most effective, given that sometimes only one flavour need be
evaluated, and about equally often all flavours are needed at the same x and Q2. Anyway,
the latest value is always kept in memory. This is the other reason why Pythia has one
separate PDF object for each beam.

Once you have created two distinct PDF objects, pdfA and pdfB, you should supply
pointers to these as arguments in a PDFptr method call

pythia.PDFptr(pdfA*, pdfB*);

This has to be made before the pythia.init(...) call.

3.4.3 External decays

While Pythia is set up to handle any particle decays, decay products are often (but not
always) distributed isotropically in phase space, i.e. polarization effects and nontrivial ma-
trix elements usually are neglected. Especially for the τ lepton and for some B mesons it
is therefore common practice to rely on dedicated decay packages.

To this end, DecayHandler is a base class for the external handling of decays. The
user-written derived class is called if a pointer to it has been given with the
pythia.decayPtr(DecayHandler*, vector<int>) method. The second argument to
this method should contain the id codes of all the particles that should be decayed by
the external program. It is up to the author of the derived class to send different of these
particles on to separate packages, if so desired.

There is only one pure virtual method in DecayHandler, to do the decay:
decay(idProd, mProd, pProd, iDec, event). Here

• idProd is a vector<int> of particle PDG identity codes,

• mProd is a vector<double> of their respective masses (in GeV), and

• pProd is a vector<Vec4> of their respective four-momenta (components px(), py(),
pz() and e()),

• iDec is the position in the event record of the decaying particle, and

• event is a read-only reference to the complete event record, so that the full prehistory
of the decaying particle can be extracted, should this be of interest for the decay
treatment.

When the decay method is called, the three vectors each have size one, so that
idProd[0], mProd[0] and pProd[0] contain information on the particle that is to be
decayed. When the decay is done, the vectors should have increased by the addition of all
the decay products, starting at index 1. Even if initially defined in the rest frame of the
mother, the products should have been boosted so that their four-momenta add up to the
pProd[0] of the decaying particle. (Given a Vec4 pNew defined in the decaying particle
rest frame, the boost can be performed by pNew.bst(pProd[0]).)

The routine should return true if it managed to do the decay and false otherwise. In

16

the latter case Pythia will try to do the decay itself. Thus one may implement some decay
channels externally and leave the rest for Pythia, assuming the Pythia decay tables are
adjusted accordingly.

Note that the decay vertex is always set by Pythia, and that B–B oscillations have al-
ready been taken into account, if they were switched on. Thus the decaying code idProd[0]
may be the opposite to the produced one, stored in event[iDec].id().

3.4.4 Random number generators

RndmEngine is a base class for the external handling of random number generation.
The user-written derived class is called if a pointer to it has been handed in with the
pythia.rndmEnginePtr(RndmEngine*) method. Since the default Marsaglia-Zaman al-
gorithm is quite good, there is absolutely no physics reason to replace it, but this may still
be required for consistency with other program elements in big experimental frameworks.

There is only one pure virtual method in RndmEngine, called flat(), that should return
one random number uniformly distributed in the range between 0 and 1 each time it is called.

Note that methods for initialization are not provided in the base class, in part since
input parameters may be specific to the generator used, in part since initialization is likely
to be taken care of externally to Pythia.

4 Getting Going

The main program is up to the user to write. However, sample main programs are provided,
and will be described in the following.

Frequently commands to the Settings, ParticleDataTable or Pythia6 machineries
are collected in a single ”cards file”, separate from the main program proper, so that minor
changes can be made without any recompilation. It is then convenient to collect in the
same place some run parameters, such as the number of events to generate, that could be
used inside the main program. Whether they actually are used is up to the author of a
main program to decide.

The following variables have been defined, and can be extracted with the Settings

methods:

• Main:numberOfEvents : the number of events to be generated.

• Main:numberToList : the number of events to list, at the beginning of the run.

• Main:numberToShow : print the number of events generated so far, to show how the
run is progressing, once every numberOfEvents/numberToShow events.

• Main:timesAllowErrors : abort the run after this many errors have been found.

• Main:showChangedSettings : print a list of the changed flag/mode/parameter set-
tings.

• Main:showAllSettings : print a list of all flag/mode/parameter settings.

• Main:showParticleData : print a list of all particle and decay data.

• Main:idBeamA, Main:idBeamB : the PDG id codes for the two incoming particles.

• Main:inCMframe : whether collisions occur in the CM frame or not.

• Main:eCM : collision CM energy, if Main:inCMframe is true.

17

• Main:eBeamA, Main:eBeamB : the energies of the two incoming beam particles, mov-
ing in the ±z directions, if Main:inCMframe is false. If the particle energy is smaller
than its mass then it is assumed to be at rest.

An example of a program making use of these variables is found in main01.cc. A number
of events are generated, and a few histograms are produced on some event properties, mainly
to check that no crazy things happen.

The accompanying cards file is found in main01.cmnd.
The first section of it contains the commands above, to be used directly in the main program,
the second allows event listings to be modified,
the third sets it up so that Pythia 6.3 generates tt events (or some other process),
the fourth contains some standard on/off switches for the main generator components,
the fifth parameters that can be changed to influence the workings of these components,
the sixth simple modifications to the particle database, and
the seventh a complete replacement of data for one specific particle.
Obviously there is no particular strive for realism in the selection, but more a desire to
illustrate the spectrum of possibilities. Note the use of “!” and “#” to mark some lines as
comments only, not to be processed.

In order to run this program you need to edit the Makefile so that main program is
defined to be MAIN = main01.cc. Then typing make should produce an executable a.out

that can be run to produce the results.
As a second example, main02.cc generates events fed in via the LHA structure, assum-

ing relevant initialization information is stored in the ttsample.init file and a set of events
in the ttsample.evnt one. This program also illustrates that there is no need to have a
separate cards file for settings. Another application of the LHA is illustrated in main03.cc,
where toy model events are generated and fed in to study very specific program features.

The program main04.cc illustrates how an external program could be linked to take
care of some decays, and main05.cc how an external random number generator could be
linked.

The programs above are included in the standard distribution, to serve as inspiration
when starting to write your own program, by illustrating the principles involved. However,
clearly they are not intended to be realistic.

5 Outlook

As already explained in the introduction, Pythia 8 is still at an early stage. It is possible
to set up and run various processes and get out sensible-looking event records, containing
all the major physics aspects. However, none of the respective classes is fully developed
or debugged. Many aspects are still missing, like a library of at least the most common
processes of interest, and a coherent picture of colour flow, involving timelike and spacelike
showers, multiple interactions and beam remnants. So do not bother to contact me about
Pythia 6 features you miss in the new program; such shortcomings are already known.
However, if you have comments about what is there — positive or negative ones — then
do let me know. Several aspects could still be changed, before a first production-quality
version, hopefully sometime in early 2007.

18

Acknowledgements

The support and kind hospitality of the SFT group at CERN is gratefully acknowledged.

References

[1] T. Sjöstrand, Computer Physics Commun. 27 (1982) 243, 28 (1983) 229, 39 (1986)
347;
T. Sjöstrand and M. Bengtsson, Computer Physics Commun. 43 (1987) 367

[2] H.-U. Bengtsson, Computer Physics Commun. 31 (1984) 323;
H.-U. Bengtsson and G. Ingelman, Computer Physics Commun. 34 (1985) 251;
H.-U. Bengtsson and T. Sjöstrand, Computer Physics Commun. 46 (1987) 43;
T. Sjöstrand, Computer Physics Commun. 82 (1994) 74

[3] T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna and E. Norrbin,
Computer Physics Commun. 135 (2001) 238;
T. Sjöstrand, L. Lönnblad, S. Mrenna and P. Skands, LU TP 03–38 [hep-ph/0308153]

[4] L. Lönnblad, Computer Physics Commun. 118 (1999) 213;
M. Bertini, L. Lönnblad and T. Sjöstrand, Computer Physics Commun. 134 (2001)
365

[5] S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens and B.R. Webber, JHEP 0402 (2004)
005;
see webpage http://www.hep.phy.cam.ac.uk/theory/Herwig++/

[6] see webpage http://www.thep.lu.se/ThePEG/

[7] E. Boos et al., in the Proceedings of the Workshop on Physics at TeV Colliders, Les
Houches, France, 21 May - 1 Jun 2001 [hep-ph/0109068]

[8] Particle Data Group, S. Eidelman et al., Phys. Lett. B592 (2004) 1

19

