
hep-ph/0108264
LU TP 01–21
August 2001

PYTHIA 6.2
Physics and Manual

Torbjörn Sjöstrand, Leif Lönnblad
Department of Theoretical Physics,
Lund University, Sölvegatan 14A,

S-223 62 Lund, Sweden

Stephen Mrenna
Physics Department,

University of California at Davis,
One Shields Avenue,

Davis, CA 95616, USA

......
:::!!:::::::::::

::::::!!::::::::::::::
::::::::!!::::::::::::::::

:::::::::!!:::::::::::::::::
:::::::::!!:::::::::::::::::
::::::::!!::::::::::::::::!

::::::!!:::::::::::::: !!
!! *:::!!:::::::::::* !!
!! !* -><- * !!
!! !! !!
!! !! !!
!! !!
!! ep !!
!! !!
!! pp !!
!! e+e- !!
!! !!
!!

Abstract

The Pythia program can be used to generate high-energy-physics ‘events’,
i.e. sets of outgoing particles produced in the interactions between two in-
coming particles. The objective is to provide as accurate as possible a
representation of event properties in a wide range of reactions, with empha-
sis on those where strong interactions play a rôle, directly or indirectly, and
therefore multihadronic final states are produced. The physics is then not
understood well enough to give an exact description; instead the program
has to be based on a combination of analytical results and various QCD-
based models. This physics input is summarized here, for areas such as hard
subprocesses, initial- and final-state parton showers, beam remnants and un-
derlying events, fragmentation and decays, and much more. Furthermore,
extensive information is provided on all program elements: subroutines and
functions, switches and parameters, and particle and process data. This
should allow the user to tailor the generation task to the topics of interest.

The information in this edition of the manual refers to Pythia version
6.200, of 31 August 2001.

The official reference to the latest published version is
T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna and
E. Norrbin, Computer Physics Commun. 135 (2001) 238.

Preface

The Pythia program is frequently used for event generation in high-energy physics. The
emphasis is on multiparticle production in collisions between elementary particles. This
in particular means hard interactions in e+e−, pp and ep colliders, although also other
applications are envisaged. The program is intended to generate complete events, in as
much detail as experimentally observable ones, within the bounds of our current under-
standing of the underlying physics. Many of the components of the program represents
original research, in the sense that models have been developed and implemented for a
number of aspects not covered by standard theory.

Historically, the family of event generators from the Lund group was begun with
Jetset in 1978. The Pythia program followed a few years later. With time, the two
programs so often had to be used together that it made sense to merge them. There-
fore Pythia 5.7 and Jetset 7.4 were the last versions to appear individually; as of
Pythia 6.1 all the code is collected under the Pythia heading. At the same time, the
SPythia sideline of Pythia was reintegrated. Both programs have a long history, and
several manuals have come out. The most recent one is

T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna and E. Norrbin,
Computer Physics Commun. 135 (2001) 238,

so please use this for all official references. Additionally remember to cite the original lit-
erature on the physics topics of particular relevance for your studies. (There is no reason
to omit references to good physics papers simply because some of their contents have also
been made available as program code.)

Event generators often have a reputation for being ‘black boxes’; if nothing else, this
report should provide you with a glimpse of what goes on inside the program. Some such
understanding may be of special interest for new users, who have no background in the
field. An attempt has been made to structure the report sufficiently well so that many of
the sections can be read independently of each other, so you can pick the sections that
interest you. We have tried to keep together the physics and the manual sections on
specific topics, where practicable.

A large number of persons should be thanked for their contributions. Bo Andersson
and Gösta Gustafson are the originators of the Lund model, and strongly influenced the
early development of the programs. Hans-Uno Bengtsson is the originator of the Pythia
program. Mats Bengtsson is the main author of the final-state parton-shower algorithm.
Patrik Edén has contributed an improved popcorn scenario for baryon production. Chris-
ter Friberg has helped develop the expanded photon physics machinery, Emanuel Norrbin
the new matrix-element matching of the final-state parton shower algorithm and the han-
dling of low-mass strings, and Gabriela Miu the matching of initial-state showers. Peter
Skands has contributed the code for lepton-number-violating decays in supersymmetry.

Further comments on the programs and smaller pieces of code have been obtained from
users too numerous to be mentioned here, but who are all gratefully acknowledged. To
write programs of this size and complexity would be impossible without a strong support
and user feedback. So, if you find errors, please let us know.

The moral responsibility for any remaining errors clearly rests with the authors. How-
ever, kindly note that this is a ‘University World’ product, distributed ‘as is’, free of
charge, without any binding guarantees. And always remember that the program does
not represent a dead collection of established truths, but rather one of many possible
approaches to the problem of multiparticle production in high-energy physics, at the
frontline of current research. Be critical!

Contents

1 Introduction 1

2 Physics Overview 9
2.1 Hard Processes and Parton Distributions 9
2.2 Initial- and Final-State Radiation . 13
2.3 Beam Remnants and Multiple Interactions 16
2.4 Hadronization . 17

3 Program Overview 21
3.1 Update History . 21
3.2 Program Installation . 24
3.3 Program Philosophy . 26
3.4 Manual Conventions . 27
3.5 Getting Started with the Simple Routines 28
3.6 Getting Started with the Event Generation Machinery 33

4 Monte Carlo Techniques 40
4.1 Selection From a Distribution . 40
4.2 The Veto Algorithm . 42
4.3 The Random Number Generator . 44

5 The Event Record 48
5.1 Particle Codes . 48
5.2 The Event Record . 56
5.3 How The Event Record Works . 59
5.4 The HEPEVT Standard . 62

6 The Old e+e− Annihilation Routines 66
6.1 Annihilation Events in the Continuum . 66
6.2 Decays of Onia Resonances . 75
6.3 Routines and Common Block Variables . 76
6.4 Examples . 83

7 Process Generation 85
7.1 Parton Distributions . 85
7.2 Kinematics and Cross Section for a 2→ 2 Process 91
7.3 Resonance Production . 93
7.4 Cross-section Calculations . 98
7.5 2→ 3 and 2→ 4 Processes . 104
7.6 Resonance Decays . 105
7.7 Nonperturbative Processes . 108

8 Physics Processes 116
8.1 The Process Classification Scheme . 116
8.2 QCD Processes . 125
8.3 Physics with Incoming Photons . 130
8.4 Electroweak Gauge Bosons . 136
8.5 Higgs Production . 140
8.6 Non-Standard Physics . 145
8.7 Supersymmetry . 153
8.8 Polarization . 157
8.9 Main Processes by Machine . 157

9 The Process Generation Program Elements 160
9.1 The Main Subroutines . 160
9.2 Switches for Event Type and Kinematics Selection 164
9.3 The General Switches and Parameters . 171
9.4 Further Couplings . 194
9.5 Supersymmetry Common Blocks and Routines 198
9.6 General Event Information . 203
9.7 How to Generate Weighted Events . 208
9.8 How to Run with Varying Energies . 212
9.9 How to Include External Processes . 215
9.10 Interfaces to Other Generators . 235
9.11 Other Routines and Common Blocks . 239

10 Initial- and Final-State Radiation 256
10.1 Shower Evolution . 256
10.2 Final-State Showers . 259
10.3 Initial-State Showers . 269
10.4 Routines and Common Block Variables . 279

11 Beam Remnants and Underlying Events 288
11.1 Beam Remnants . 288
11.2 Multiple Interactions . 291
11.3 Pile-up Events . 299
11.4 Common Block Variables . 300

12 Fragmentation 306
12.1 Flavour Selection . 306
12.2 String Fragmentation . 312
12.3 Independent Fragmentation . 319
12.4 Other Fragmentation Aspects . 322

13 Particles and Their Decays 329
13.1 The Particle Content . 329
13.2 Masses, Widths and Lifetimes . 330
13.3 Decays . 332

14 The Fragmentation and Decay Program Elements 337
14.1 Definition of Initial Configuration or Variables 337
14.2 The Physics Routines . 340
14.3 The General Switches and Parameters . 342
14.4 Further Parameters and Particle Data . 357
14.5 Miscellaneous Comments . 364
14.6 Examples . 366

15 Event Study and Analysis Routines 370
15.1 Event Study Routines . 370
15.2 Event Shapes . 375
15.3 Cluster Finding . 379
15.4 Event Statistics . 384
15.5 Routines and Common Block Variables . 385
15.6 Histograms . 395

16 Summary and Outlook 399

References 400

Subprocess Summary Table 414

Index of Subprograms and Common Block Variables 417

1 Introduction

Multiparticle production is the most characteristic feature of current high-energy physics.
Today, observed particle multiplicities are typically between ten and a hundred, and with
future machines this range will be extended upwards. The bulk of the multiplicity is found
in jets, i.e. in collimated bunches of hadrons (or decay products of hadrons) produced
by the hadronization of partons, i.e. quarks and gluons. (For some applications it will
be convenient to extend the parton concept also to some non-coloured but showering
particles, such as electrons and photons.)

The Complexity of High-Energy Processes

To first approximation, all processes have a simple structure at the level of interactions
between the fundamental objects of nature, i.e. quarks, leptons and gauge bosons. For
instance, a lot can be understood about the structure of hadronic events at LEP just from
the ‘skeleton’ process e+e− → Z0 → qq. Corrections to this picture can be subdivided,
arbitrarily but conveniently, into three main classes.

Firstly, there are bremsstrahlung-type modifications, i.e. the emission of additional
final-state particles by branchings such as e → eγ or q → qg. Because of the largeness
of the strong coupling constant αs, and because of the presence of the triple gluon ver-
tex, QCD emission off quarks and gluons is especially prolific. We therefore speak about
‘parton showers’, wherein a single initial parton may give rise to a whole bunch of par-
tons in the final state. Also photon emission may give sizeable effects in e+e− and ep
processes. The bulk of the bremsstrahlung corrections are universal, i.e. do not depend
on the details of the process studied, but only on one or a few key numbers, such as the
momentum transfer scale of the process. Such universal corrections may be included to
arbitrarily high orders, using a probabilistic language. Alternatively, exact calculations
of bremsstrahlung corrections may be carried out order by order in perturbation the-
ory, but rapidly the calculations then become prohibitively complicated and the answers
correspondingly lengthy.

Secondly, we have ‘true’ higher-order corrections, which involve a combination of loop
graphs and the soft parts of the bremsstrahlung graphs above, a combination needed to
cancel some divergences. In a complete description it is therefore not possible to consider
bremsstrahlung separately, as assumed here. The necessary perturbative calculations are
usually very difficult; only rarely have results been presented that include more than one
non-‘trivial’ order, i.e. more than one loop. As above, answers are usually very lengthy,
but some results are sufficiently simple to be generally known and used, such as the
running of αs, or the correction factor 1 + αs/π + · · · in the partial widths of Z0 → qq
decay channels. For high-precision studies it is imperative to take into account the results
of loop calculations, but usually effects are minor for the qualitative aspects of high-energy
processes.

Thirdly, quarks and gluons are confined. In the two points above, we have used a
perturbative language to describe the short-distance interactions of quarks, leptons and
gauge bosons. For leptons and colourless bosons this language is sufficient. However, for
quarks and gluons it must be complemented with the structure of incoming hadrons, and
a picture for the hadronization process, wherein the coloured partons are transformed
into jets of colourless hadrons, photons and leptons. The hadronization can be further
subdivided into fragmentation and decays, where the former describes the way the creation
of new quark-antiquark pairs can break up a high-mass system into lower-mass ones,
ultimately hadrons. (The word ‘fragmentation’ is also sometimes used in a broader sense,
but we will here use it with this specific meaning.) This process is still not yet understood
from first principles, but has to be based on models. In one sense, hadronization effects
are overwhelmingly large, since this is where the bulk of the multiplicity comes from. In

1

another sense, the overall energy flow of a high-energy event is mainly determined by the
perturbative processes, with only a minor additional smearing caused by the hadronization
step. One may therefore pick different levels of ambition, but in general detailed studies
require a detailed modelling of the hadronization process.

The simple structure that we started out with has now become considerably more
complex — instead of maybe two final-state partons we have a hundred final particles.
The original physics is not gone, but the skeleton process has been dressed up and is no
longer directly visible. A direct comparison between theory and experiment is therefore
complicated at best, and impossible at worst.

Event Generators

It is here that event generators come to the rescue. In an event generator, the objective
strived for is to use computers to generate events as detailed as could be observed by a
perfect detector. This is not done in one step, but rather by ‘factorizing’ the full prob-
lem into a number of components, each of which can be handled reasonably accurately.
Basically, this means that the hard process is used as input to generate bremsstrahlung
corrections, and that the result of this exercise is thereafter left to hadronize. This sounds
a bit easier than it really is — else this report would be a lot thinner. However, the basic
idea is there: if the full problem is too complicated to be solved in one go, try to subdivide
it into smaller tasks of manageable proportions. In the actual generation procedure, most
steps therefore involve the branching of one object into two, or at least into a very small
number, with the daughters free to branch in their turn. A lot of book-keeping is involved,
but much is of a repetitive nature, and can therefore be left for the computer to handle.

As the name indicates, the output of an event generator should be in the form of
‘events’, with the same average behaviour and the same fluctuations as real data. In
the data, fluctuations arise from the quantum mechanics of the underlying theory. In
generators, Monte Carlo techniques are used to select all relevant variables according to
the desired probability distributions, and thereby ensure randomness in the final events.
Clearly some loss of information is entailed: quantum mechanics is based on amplitudes,
not probabilities. However, only very rarely do (known) interference phenomena appear
that cannot be cast in a probabilistic language. This is therefore not a more restraining
approximation than many others.

Once there, an event generator can be used in many different ways. The five main
applications are probably the following:
• To give physicists a feeling for the kind of events one may expect/hope to find, and

at what rates.
• As a help in the planning of a new detector, so that detector performance is opti-

mized, within other constraints, for the study of interesting physics scenarios.
• As a tool for devising the analysis strategies that should be used on real data, so

that signal-to-background conditions are optimized.
• As a method for estimating detector acceptance corrections that have to be applied

to raw data, in order to extract the ‘true’ physics signal.
• As a convenient framework within which to interpret the observed phenomena in

terms of a more fundamental underlying theory (usually the Standard Model).
Where does a generator fit into the overall analysis chain of an experiment? In ‘real

life’, the machine produces interactions. These events are observed by detectors, and the
interesting ones are written to tape by the data acquisition system. Afterwards the events
may be reconstructed, i.e. the electronics signals (from wire chambers, calorimeters, and
all the rest) may be translated into a deduced setup of charged tracks or neutral energy
depositions, in the best of worlds with full knowledge of momenta and particle species.
Based on this cleaned-up information, one may proceed with the physics analysis. In the
Monte Carlo world, the rôle of the machine, namely to produce events, is taken by the

2

event generators described in this report. The behaviour of the detectors — how particles
produced by the event generator traverse the detector, spiral in magnetic fields, shower
in calorimeters, or sneak out through cracks, etc. — is simulated in programs such as
Geant [Bru89]. Traditionally, this latter activity is called event simulation, which is
somewhat unfortunate since the same words could equally well be applied to what, here,
we call event generation. A more appropriate term is detector simulation. Ideally, the
output of this simulation has exactly the same format as the real data recorded by the
detector, and can therefore be put through the same event reconstruction and physics
analysis chain, except that here we know what the ‘right answer’ should be, and so can
see how well we are doing.

Since the full chain of detector simulation and event reconstruction is very time-
consuming, one often does ‘quick and dirty’ studies in which these steps are skipped
entirely, or at least replaced by very simplified procedures which only take into account
the geometric acceptance of the detector and other trivial effects. One may then use the
output of the event generator directly in the physics studies.

There are still many holes in our understanding of the full event structure, despite
an impressive amount of work and detailed calculations. To put together a generator
therefore involves making a choice on what to include, and how to include it. At best,
the spread between generators can be used to give some impression of the uncertainties
involved. A multitude of approximations will be discussed in the main part of this report,
but already here is should be noted that many major approximations are related to the
almost complete neglect of the second point above, i.e. of the non-‘trivial’ higher-order
effects. It can therefore only be hoped that the ‘trivial’ higher order parts give the bulk of
the experimental behaviour. By and large, this seems to be the case; for e+e− annihilation
it even turns out to be a very good approximation.

The necessity to make compromises has one major implication: to write a good event
generator is an art, not an exact science. It is therefore essential not to blindly trust
the results of any single event generator, but always to make several cross-checks. In
addition, with computer programs of tens of thousands of lines, the question is not whether
bugs exist, but how many there are, and how critical their positions. Further, an event
generator cannot be thought of as all-powerful, or able to give intelligent answers to ill-
posed questions; sound judgement and some understanding of a generator are necessary
prerequisites for successful use. In spite of these limitations, the event generator approach
is the most powerful tool at our disposal if we wish to gain a detailed and realistic
understanding of physics at current or future high-energy colliders.

The Origins of the JETSET and PYTHIA Programs

Over the years, many event generators have appeared. Surveys of generators for e+e−

physics in general and LEP in particular may be found in [Kle89, Sjö89, Kno96, Lön96],
for high-energy hadron–hadron (pp) physics in [Ans90, Sjö92, Kno93, LHC00], and for
ep physics in [HER92, HER99]. We refer the reader to those for additional details and
references. In this particular report, the two closely connected programs Jetset and
Pythia, now merged under the Pythia label, will be described.

Jetset has its roots in the efforts of the Lund group to understand the hadroniza-
tion process, starting in the late seventies [And83]. The so-called string fragmentation
model was developed as an explicit and detailed framework, within which the long-range
confinement forces are allowed to distribute the energies and flavours of a parton config-
uration among a collection of primary hadrons, which subsequently may decay further.
This model, known as the Lund string model, or ‘Lund’ for short, contained a number of
specific predictions, which were confirmed by data from PETRA and PEP, whence the
model gained a widespread acceptance. The Lund string model is still today the most
elaborate and widely used fragmentation model at our disposal. It remains at the heart

3

of the Pythia program.
In order to predict the shape of events at PETRA/PEP, and to study the fragmentation

process in detail, it was necessary to start out from the partonic configurations that
were to fragment. The generation of complete e+e− hadronic events was therefore added,
originally based on simple γ exchange and first-order QCD matrix elements, later extended
to full γ∗/Z0 exchange with first-order initial-state QED radiation and second-order QCD
matrix elements. A number of utility routines were also provided early on, for everything
from event listing to jet finding.

By the mid-eighties it was clear that the matrix-element approach had reached the
limit of its usefulness, in the sense that it could not fully describe the multijet topologies of
the data. (Later on, the use of optimized perturbation theory was to lead to a resurgence
of the matrix-element approach, but only for specific applications.) Therefore a parton-
shower description was developed [Ben87a] as an alternative to the matrix-element one.
The combination of parton showers and string fragmentation has been very successful,
and forms the main approach to the description of hadronic Z0 events.

In recent years, the Jetset part of the code has been a fairly stable product, covering
the four main areas of fragmentation, final-state parton showers, e+e− event generation
and general utilities.

The successes of string fragmentation in e+e− made it interesting to try to extend this
framework to other processes, and explore possible physics consequences. Therefore a
number of other programs were written, which combined a process-specific description of
the hard interactions with the general fragmentation framework of Jetset. The Pythia
program evolved out of early studies on fixed-target proton–proton processes, addressed
mainly at issues related to string drawing.

With time, the interest shifted towards higher energies, first to the SPS pp collider,
and later to the Tevatron, SSC and LHC, in the context of a number of workshops in
the USA and Europe. Parton showers were added, for final-state radiation by making
use of the Jetset routine, for initial-state one by the development of the concept of
‘backwards evolution’, specifically for Pythia [Sjö85]. Also a framework was developed
for minimum-bias and underlying events [Sjö87a].

Another main change was the introduction of an increasing number of hard processes,
within the Standard Model and beyond. A special emphasis was put on the search for
the Standard Model Higgs, in different mass ranges and in different channels, with due
respect to possible background processes.

The bulk of the machinery developed for hard processes actually depended little on the
choice of initial state, as long as the appropriate parton distributions were there for the
incoming partons and particles. It therefore made sense to extend the program from being
only a pp generator to working also for e+e− and ep. This process was only completed in
1991, again spurred on by physics workshop activities. Currently Pythia should therefore
work equally well for a selection of different possible incoming beam particles.

An effort independent of the Lund group activities got going to include supersymmetric
event simulation in Pythia. This resulted in the SPythia program.

While Jetset was independent of Pythia until 1996, their ties had grown much
stronger over the years, and the border-line between the two programs had become more
and more artificial. It was therefore decided to merge the two, and also include the
SPythia extensions, starting from Pythia 6.1. The different origins in part still are
reflected in this manual, but the strive is towards a seamless merger.

The tasks of including new processes, and of improving the simulation of parton show-
ers and other aspects of already present processes, are never-ending. Work therefore
continues apace.

4

About this Report

As we see, Jetset and Pythia started out as very ideologically motivated programs, de-
veloped to study specific physics questions in enough detail that explicit predictions could
be made for experimental quantities. As it was recognized that experimental imperfec-
tions could distort the basic predictions, the programs were made available for general use
by experimentalists. It thus became feasible to explore the models in more detail than
would otherwise have been possible. As time went by, the emphasis came to shift some-
what, away from the original strong coupling to a specific fragmentation model, towards a
description of high-energy multiparticle production processes in general. Correspondingly,
the use expanded from being one of just comparing data with specific model predictions,
to one of extensive use for the understanding of detector performance, for the deriva-
tion of acceptance correction factors, for the prediction of physics at future high-energy
accelerators, and for the design of related detectors.

While the ideology may be less apparent, it is still there, however. This is not some-
thing unique to the programs discussed here, but inherent in any event generator, or at
least any generator that attempts to go beyond the simple parton level skeleton descrip-
tion of a hard process. Do not accept the myth that everything available in Monte Carlo
form represents ages-old common knowledge, tested and true. Ideology is present by
commissions or omissions in any number of details. A programs like Pythia represents
a major amount of original physics research, often on complicated topics where no simple
answers are available. As a (potential) program user you must be aware of this, so that
you can form your own opinion, not just about what to trust and what not to trust, but
also how much to trust a given prediction, i.e. how uncertain it is likely to be. Pythia
is particularly well endowed in this respect, since a number of publications exist where
most of the relevant physics is explained in considerable detail. In fact, the problem may
rather be the opposite, to find the relevant information among all the possible places.
One main objective of the current report is therefore to collect much of this information
in one single place. Not all the material found in specialized papers is reproduced, by a
wide margin, but at least enough should be found here to understand the general picture
and to know where to go for details.

The current report is therefore intended to update and extend the previous round of
published physics descriptions and program manuals [Sjö86, Sjö87, Ben87, Sjö94, Mre97,
Sjö01]. Make all references to the most recent published one in [Sjö01]. Further speci-
fication could include a statement of the type ‘We use Pythia version X.xxx’. (If you
are a LATEX fan, you may want to know that the program name in this report has been
generated by the command \textsc{Pythia}.) Kindly do not refer to Pythia as ‘un-
published’, ‘private communication’ or ‘in preparation’: such phrases are incorrect and
only create unnecessary confusion.

In addition, remember that many of the individual physics components are docu-
mented in separate publications. If some of these contain ideas that are useful to you,
there is every reason to cite them. A reasonable selection would vary as a function of the
physics you are studying. The criterion for which to pick should be simple: imagine that
a Monte Carlo implementation had not been available. Would you then have cited a given
paper on the grounds of its physics contents alone? If so, do not punish the extra effort
of turning these ideas into publicly available software. (Monte Carlo manuals are good
for nothing in the eyes of many theorists, so often only the acceptance of ‘mainstream’
publications counts.) Here follows a list of some main areas where the Pythia programs
contain original research:
• The string fragmentation model [And83, And98].
• The string effect [And80].
• Baryon production (diquark/popcorn) [And82, And85, Edé97].
• Small-mass string fragmentation [Nor98].

5

• Fragmentation of multiparton systems [Sjö84].
• Colour rearrangement [Sjö94a] and Bose-Einstein effects [Lön95].
• Fragmentation effects on αs determinations [Sjö84a].
• Initial-state parton showers [Sjö85, Miu99].
• Final-state parton showers [Ben87a, Nor01].
• Photon radiation from quarks [Sjö92c]
• Deeply Inelastic Scattering [And81a, Ben88].
• Photoproduction [Sch93a], γγ [Sch94a] and γ∗p/γ∗γ/γ∗γ∗ [Fri00] physics.
• Parton distributions of the photon [Sch95, Sch96].
• Colour flow in hard scatterings [Ben84].
• Elastic and diffractive cross sections [Sch94].
• Minijets (multiple parton–parton interactions) [Sjö87a].
• Rapidity gaps [Dok92].
• Jet clustering in k⊥ [Sjö83].
In addition to a physics survey, the current report also contains a complete manual

for the program. Such manuals have always been updated and distributed jointly with
the programs, but have grown in size with time. A word of warning may therefore be in
place. The program description is fairly lengthy, and certainly could not be absorbed in
one sitting. This is not even necessary, since all switches and parameters are provided
with sensible default values, based on our best understanding (of the physics, and of what
you expect to happen if you do not specify any options). As a new user, you can therefore
disregard all the fancy options, and just run the program with a minimum ado. Later
on, as you gain experience, the options that seem useful can be tried out. No single user
is ever likely to find need for more than a fraction of the total number of possibilities
available, yet many of them have been added to meet specific user requests.

In some instances, not even this report will provide you with all the information you
desire. You may wish to find out about recent versions of the program, know about related
software, pick up a few sample main programs to get going, or get hold of related physics
papers. Some such material can be found on the Pythia web page:

http://www.thep.lu.se/∼torbjorn/Pythia.html .

Disclaimer

At all times it should be remembered that this is not a commercial product, developed
and supported by professionals. Instead it is a ‘University World’ product, developed by
a very few physicists (mainly the current first author) originally for their own needs, and
supplied to other physicists on an ‘as-is’ basis, free of charge. No guarantees are therefore
given for the proper functioning of the program, nor for the validity of physics results.
In the end, it is always up to you to decide for yourself whether to trust a given result
or not. Usually this requires comparison either with analytical results or with results of
other programs, or with both. Even this is not necessarily foolproof: for instance, if an
error is made in the calculation of a matrix element for a given process, this error will be
propagated both into the analytical results based on the original calculation and into all
the event generators which subsequently make use of the published formulae. In the end,
there is no substitute for a sound physics judgement.

This does not mean that you are all on your own, with a program nobody feels respon-
sible for. Attempts are made to check processes as carefully as possible, to write programs
that do not invite unnecessary errors, and to provide a detailed and accurate documen-
tation. All of this while maintaining the full power and flexibility, of course, since the
physics must always take precedence in any conflict of interests. If nevertheless any errors
or unclarities are found, please do communicate them to e-mail torbjorn@thep.lu.se, or to
another person in charge. For instance, all questions on the supersymmetric machinery

6

are better directed to mrenna@physics.ucdavis.edu. Every attempt will be made to solve
problems as soon as is reasonably possible, given that this support is by a few persons,
who mainly have other responsibilities.

However, in order to make debugging at all possible, we request that any sample
code you want to submit as evidence be completely self-contained, and peeled off from all
irrelevant aspects. Use simple write statements or the Pythia histogramming routines to
make your point. Chances are that, if the error cannot be reproduced by fifty lines of code,
in a main program linked only to Pythia, the problem is sitting elsewhere. Numerous
errors have been caused by linking to other (flawed) libraries, e.g. collaboration-specific
frameworks for running Pythia. Then you should put the blame elsewhere.

Appendix: The Historical Pythia

The ‘Pythia’ label may need some explanation.
The myth tells how Apollon, the God of Wisdom, killed the powerful dragon-like

monster Python, close to the village of Delphi in Greece. To commemorate this victory,
Apollon founded the Pythic Oracle in Delphi, on the slopes of Mount Parnassos. Here
men could come to learn the will of the Gods and the course of the future. The oracle
plays an important rôle in many of the other Greek myths, such as those of Heracles and
of King Oedipus.

Questions were to be put to the Pythia, the ‘Priestess’ or ‘Prophetess’ of the Oracle. In
fact, she was a local woman, usually a young maiden, of no particular religious schooling.
Seated on a tripod, she inhaled the obnoxious vapours that seeped up through a crevice in
the ground. This brought her to a trance-like state, in which she would scream seemingly
random words and sounds. It was the task of the professional priests in Delphi to record
those utterings and edit them into the official Oracle prophecies, which often took the
form of poems in perfect hexameter. In fact, even these edited replies were often less than
easy to interpret. The Pythic oracle acquired a reputation for ambiguous answers.

The Oracle existed already at the beginning of the historical era in Greece, and was
universally recognized as the foremost religious seat. Individuals and city states came to
consult, on everything from cures for childlessness to matters of war. Lavish gifts allowed
the temple area to be built and decorated. Many states supplied their own treasury halls,
where especially beautiful gifts were on display. Sideshows included the Omphalos, a
stone reputedly marking the centre of the Earth, and the Pythic games, second only to
the Olympic ones in importance.

Strife inside Greece eventually led to a decline in the power of the Oracle. A serious
blow was dealt when the Oracle of Zeus Ammon (see below) declared Alexander the Great
to be the son of Zeus. The Pythic Oracle lived on, however, and was only closed by a
Roman Imperial decree in 390 ad, at a time when Christianity was ruthlessly destroying
any religious opposition. Pythia then had been at the service of man and Gods for a
millennium and a half.

The rôle of the Pythic Oracle prophecies on the course of history is nowhere better
described than in ‘The Histories’ by Herodotus [Herbc], the classical and captivating
description of the Ancient World at the time of the Great War between Greeks and
Persians. Especially famous is the episode with King Croisus of Lydia. Contemplating a
war against the upstart Persian Empire, he resolves to ask an oracle what the outcome
of a potential battle would be. However, to have some guarantee for the veracity of any
prophecy, he decides to send embassies to all the renowned oracles of the known World.
The messengers are instructed to inquire the various divinities, on the hundredth day
after their departure, what King Croisus is doing at that very moment. From the Pythia
the messengers bring back the reply

I know the number of grains of sand as well as the expanse of the sea,
And I comprehend the dumb and hear him who does not speak,

7

There came to my mind the smell of the hard-shelled turtle,
Boiled in copper together with the lamb,
With copper below and copper above.

The veracity of the Pythia is thus established by the crafty ruler, who had waited until
the appointed day, slaughtered a turtle and a lamb, and boiled them together in a copper
cauldron with a copper lid. Also the Oracle of Zeus Ammon in the Libyan desert is able
to give a correct reply (lost to posterity), while all others fail. King Croisus now sends a
second embassy to Delphi, inquiring after the outcome of a battle against the Persians.
The Pythia answers

If Croisus passes over the Halys he will dissolve a great Empire.

Taking this to mean he would win, the King collects his army and crosses the border river,
only to suffer a crushing defeat and see his Kingdom conquered. When the victorious King
Cyrus allows Croisus to send an embassy to upbraid the Oracle, the God Apollon answers
through his Prophetess that he has correctly predicted the destruction of a great empire
— Croisus’ own — and that he cannot be held responsible if people choose to interpret
the Oracle answers to their own liking.

The history of the Pythia program is neither as long nor as dignified as that of
its eponym. However, some points of contact exist. You must be very careful when
you formulate the questions: any ambiguities will corrupt the reply you get. And you
must be even more careful not to misinterpret the answers; in particular not to pick the
interpretation that suits you before considering the alternatives. Finally, even a perfect
God has servants that are only human: a priest might mishear the screams of the Pythia
and therefore produce an erroneous oracle reply; the current author might unwittingly let
a bug free in the program Pythia.

8

2 Physics Overview

In this section we will try to give an overview of the main physics features of Pythia, and
also to introduce some terminology. The details will be discussed in subsequent sections.

For the description of a typical high-energy event, an event generator should contain
a simulation of several physics aspects. If we try to follow the evolution of an event in
some semblance of a time order, one may arrange these aspects as follows:

1. Initially two beam particles are coming in towards each other. Normally each par-
ticle is characterized by a set of parton distributions, which defines the partonic
substructure in terms of flavour composition and energy sharing.

2. One shower initiator parton from each beam starts off a sequence of branchings,
such as q→ qg, which build up an initial-state shower.

3. One incoming parton from each of the two showers enters the hard process, where
then a number of outgoing partons are produced, usually two. It is the nature of
this process that determines the main characteristics of the event.

4. The hard process may produce a set of short-lived resonances, like the Z0/W± gauge
bosons, whose decay to normal partons has to be considered in close association with
the hard process itself.

5. The outgoing partons may branch, just like the incoming did, to build up final-state
showers.

6. In addition to the hard process considered above, further semihard interactions may
occur between the other partons of two incoming hadrons.

7. When a shower initiator is taken out of a beam particle, a beam remnant is left
behind. This remnant may have an internal structure, and a net colour charge that
relates it to the rest of the final state.

8. The QCD confinement mechanism ensures that the outgoing quarks and gluons are
not observable, but instead fragment to colour neutral hadrons.

9. Normally the fragmentation mechanism can be seen as occurring in a set of separate
colour singlet subsystems, but interconnection effects such as colour rearrangement
or Bose–Einstein may complicate the picture.

10. Many of the produced hadrons are unstable and decay further.
Conventionally, only quarks and gluons are counted as partons, while leptons and

photons are not. If pushed ad absurdum this may lead to some unwieldy terminology. We
will therefore, where it does not matter, speak of an electron or a photon in the ‘partonic’
substructure of an electron, lump branchings e→ eγ together with other ‘parton shower’
branchings such as q → qg, and so on. With this notation, the division into the above
seven points applies equally well to an interaction between two leptons, between a lepton
and a hadron, and between two hadrons.

In the following sections, we will survey the above ten aspects, not in the same order
as given here, but rather in the order in which they appear in the program execution, i.e.
starting with the hard process.

2.1 Hard Processes and Parton Distributions

In the original Jetset code, only two hard processes are available. The first and main
one is e+e− → γ∗/Z0 → qq. Here the ‘∗’ of γ∗ is used to denote that the photon must be
off the mass shell. The distinction is of some importance, since a photon on the mass shell
cannot decay. Of course also the Z0 can be off the mass shell, but here the distinction is
less relevant (strictly speaking, a Z0 is always off the mass shell). In the following we may
not always use ‘∗’ consistently, but the rule of thumb is to use a ‘∗’ only when a process is
not kinematically possible for a particle of nominal mass. The quark q in the final state
of e+e− → γ∗/Z0 → qq may be u, d, s, c, b or t; the flavour in each event is picked at

9

random, according to the relative couplings, evaluated at the hadronic c.m. energy. Also
the angular distribution of the final qq pair is included. No parton-distribution functions
are needed.

The other original Jetset process is a routine to generate ggg and γgg final states,
as expected in onium 1−− decays such as Υ. Given the large top mass, toponium de-
cays weakly much too fast for these processes to be of any interest, so therefore no new
applications are expected.

2.1.1 Hard Processes

The current Pythia contains a much richer selection, with around 240 different hard
processes. These may be classified in many different ways.

One is according to the number of final-state objects: we speak of ‘2 → 1’ processes,
‘2 → 2’ ones, ‘2 → 3’ ones, etc. This aspect is very relevant from a programming point
of view: the more particles in the final state, the more complicated the phase space and
therefore the whole generation procedure. In fact, Pythia is optimized for 2 → 1 and
2→ 2 processes. There is currently no generic treatment of processes with three or more
particles in the final state, but rather a few different machineries, each tailored to the
pole structure of a specific class of graphs.

Another classification is according to the physics scenario. This will be the main theme
of section 8. The following major groups may be distinguished:
• Hard QCD processes, e.g. qg→ qg.
• Soft QCD processes, such as diffractive and elastic scattering, and minimum-bias

events. Hidden in this class is also process 96, which is used internally for the
merging of soft and hard physics, and for the generation of multiple interactions.
• Heavy-flavour production, both open and hidden, e.g. gg→ tt and gg→ J/ψg.
• Prompt-photon production, e.g. qg→ qγ.
• Photon-induced processes, e.g. γg→ qq.
• Deeply Inelastic Scattering, e.g. q`→ q`.
• W/Z production, such as the e+e− → γ∗/Z0 or qq→W+W−.
• Standard model Higgs production, where the Higgs is reasonably light and narrow,

and can therefore still be considered as a resonance.
• Gauge boson scattering processes, such as WW→WW, when the Standard Model

Higgs is so heavy and broad that resonant and non-resonant contributions have to
be considered together.
• Non-standard Higgs particle production, within the framework of a two-Higgs-

doublet scenario with three neutral (h0, H0 and A0) and two charged (H±) Higgs
states. Normally associated with Susy (see below), but does not have to be.
• Production of new gauge bosons, such as a Z′, W′ and R (a horizontal boson,

coupling between generations).
• Technicolor production, as an alternative scenario to the standard picture of elec-

troweak symmetry breaking by a fundamental Higgs.
• Compositeness is a possibility not only in the Higgs sector, but may also apply to

fermions, e.g. giving d∗ and u∗ production. At energies below the threshold for new
particle production, contact interactions may still modify the standard behaviour.
• Left–right symmetric models give rise to doubly charged Higgs states, in fact one

set belonging to the left and one to the right SU(2) gauge group. Decays involve
right-handed W’s and neutrinos.
• Leptoquark (LQ) production is encountered in some beyond-the-standard-model sce-

narios.
• Supersymmetry (Susy) is probably the favourite scenario for physics beyond the

standard model. A rich set of processes are allowed, even if one obeys R-parity

10

conservation. The supersymmetric machinery and process selection is inherited
from SPythia [Mre97], however with many improvements in the event generation
chain. Many different Susy scenarios have been proposed, and the program is
flexible enough to allow input from several of these, in addition to the ones provided
internally.
• The possibility of extra dimensions at low energies has been a topic of much study in

recent years, but has still not settled down to some standard scenarios. Its inclusion
into Pythia is also only in a very first stage.

This is by no means a survey of all interesting physics. Also, within the scenarios studied,
not all contributing graphs have always been included, but only the more important
and/or more interesting ones. In many cases, various approximations are involved in the
matrix elements coded.

2.1.2 Resonance Decays

As we noted above, the bulk of the processes above are of the 2 → 2 kind, with very
few leading to the production of more than two final-state particles. This may be seen
as a major limitation, and indeed is so at times. However, often one can come quite far
with only one or two particles in the final state, since showers will add the required extra
activity. The classification may also be misleading at times, since an s-channel resonance
is considered as a single particle, even if it is assumed always to decay into two final-state
particles. Thus the process e+e− → W+W− → q1q′1 q2q′2 is classified as 2 → 2, although
the decay treatment of the W pair includes the full 2→ 4 matrix elements (in the doubly
resonant approximation, i.e. excluding interference with non-WW four-fermion graphs).

Particles which admit this close connection between the hard process and the subse-
quent evolution are collectively called resonances in this manual. It includes all particles
in mass above the b quark system, such as t, Z0, W±, h0, supersymmetric particles, and
many more. Typically their decays are given by electroweak physics, or physics beyond
the Standard Model. What characterizes a (Pythia) resonance is that partial widths
and branching ratios can be calculated dynamically, as a function of the actual mass
of a particle. Therefore not only do branching ratios change between an h0 of nominal
mass 100 GeV and one of 200 GeV, but also for a Higgs of nominal mass 200 GeV, the
branching ratios would change between an actual mass of 190 GeV and 210 GeV, say.
This is particularly relevant for reasonably broad resonances, and in threshold regions.
For an approach like this to work, it is clearly necessary to have perturbative expressions
available for all partial widths.

Decay chains can become quite lengthy, e.g. for supersymmetric processes, but follow
a straight perturbative pattern. If the simulation is restricted to only some set of decays,
the corresponding cross section reduction can easily be calculated. (Except in some rare
cases where a nontrivial threshold behaviour could complicate matters.) It is therefore
standard in Pythia to quote cross sections with such reductions already included. Note
that the branching ratios of a particle is affected also by restrictions made in the secondary
or subsequent decays. For instance, the branching ratio of h0 → W+W−, relative to
h0 → Z0Z0 and other channels, is changed if the allowed W decays are restricted.

The decay products of resonances are typically quarks, leptons, or other resonances,
e.g. W → qq′ or h0 → W+W−. Ordinary hadrons are not produced in these decays,
but only in subsequent hadronization steps. In decays to quarks, parton showers are
automatically added to give a more realistic multijet structure, and one may also allow
photon emission off leptons. If the decay products in turn are resonances, further decays
are necessary. Often spin information is available in resonance decay matrix elements.
This means that the angular orientations in the two decays of a W+W− pair are properly
correlated. In other cases, the information is not available, and then resonances decay
isotropically.

11

Of course, the above ‘resonance’ terminology is arbitrary. A ρ, for instance, could
also be called a resonance, but not in the above sense. The width is not perturbatively
calculable, it decays to hadrons by strong interactions, and so on. From a practical point
of view, the main dividing line is that the values of — or a change in — branching
ratios cannot affect the cross section of a process. For instance, if one wanted to consider
the decay Z0 → cc, with a D meson producing a lepton, not only would there then
be the problem of different leptonic branching ratios for different D’s (which means that
fragmentation and decay treatments would no longer decouple), but also that of additional
cc pair production in parton-shower evolution, at a rate that is unknown beforehand. In
practice, it is therefore next to impossible to force D decay modes in a consistent manner.

2.1.3 Parton Distributions

The cross section for a process ij → k is given by

σij→k =
∫

dx1

∫
dx2 f

1
i (x1) f 2

j (x2) σ̂ij→k . (1)

Here σ̂ is the cross section for the hard partonic process, as codified in the matrix elements
for each specific process. For processes with many particles in the final state it would
be replaced by an integral over the allowed final-state phase space. The fai (x) are the
parton-distribution functions, which describe the probability to find a parton i inside
beam particle a, with parton i carrying a fraction x of the total a momentum. Actually,
parton distributions also depend on some momentum scale Q2 that characterizes the hard
process.

Parton distributions are most familiar for hadrons, such as the proton. Hadrons are
inherently composite objects, made up of quarks and gluons. Since we do not understand
QCD, a derivation from first principles of hadron parton distributions does not yet exist,
although some progress is being made in lattice QCD studies. It is therefore necessary
to rely on parameterizations, where experimental data are used in conjunction with the
evolution equations for the Q2 dependence, to pin down the parton distributions. Several
different groups have therefore produced their own fits, based on slightly different sets of
data, and with some variation in the theoretical assumptions.

Also for fundamental particles, such as the electron, is it convenient to introduce parton
distributions. The function f e

e (x) thus parameterizes the probability that the electron that
takes part in the hard process retains a fraction x of the original energy, the rest being
radiated (into photons) in the initial state. Of course, such radiation could equally well be
made part of the hard interaction, but the parton-distribution approach usually is much
more convenient. If need be, a description with fundamental electrons is recovered for
the choice f e

e (x,Q2) = δ(x − 1). Note that, contrary to the proton case, electron parton
distributions are calculable from first principles, and reduce to the δ function above for
Q2 → 0.

The electron may also contain photons, and the photon may in its turn contain quarks
and gluons. The internal structure of the photon is a bit of a problem, since the photon
contains a point-like part, which is perturbatively calculable, and a resolved part (with
further subdivisions), which is not. Normally, the photon parton distributions are there-
fore parameterized, just as the hadron ones. Since the electron ultimately contains quarks
and gluons, hard QCD processes like qg→ qg therefore not only appear in pp collisions,
but also in ep ones (‘resolved photoproduction’) and in e+e− ones (‘doubly resolved 2γ
events’). The parton distribution function approach here makes it much easier to reuse
one and the same hard process in different contexts.

There is also another kind of possible generalization. The two processes qq→ γ∗/Z0,
studied in hadron colliders, and e+e− → γ∗/Z0, studied in e+e− colliders, are really special
cases of a common process, ff → γ∗/Z0, where f denotes a fundamental fermion, i.e. a

12

quark, lepton or neutrino. The whole structure is therefore only coded once, and then
slightly different couplings and colour prefactors are used, depending on the initial state
considered. Usually the interesting cross section is a sum over several different initial
states, e.g. uu→ γ∗/Z0 and dd→ γ∗/Z0 in a hadron collider. This kind of summation is
always implicitly done, even when not explicitly mentioned in the text.

2.2 Initial- and Final-State Radiation

In every process that contains coloured and/or charged objects in the initial or final state,
gluon and/or photon radiation may give large corrections to the overall topology of events.
Starting from a basic 2→ 2 process, this kind of corrections will generate 2→ 3, 2→ 4,
and so on, final-state topologies. As the available energies are increased, hard emission
of this kind is increasingly important, relative to fragmentation, in determining the event
structure.

Two traditional approaches exist to the modelling of perturbative corrections. One is
the matrix-element method, in which Feynman diagrams are calculated, order by order.
In principle, this is the correct approach, which takes into account exact kinematics,
and the full interference and helicity structure. The only problem is that calculations
become increasingly difficult in higher orders, in particular for the loop graphs. Only in
exceptional cases have therefore more than one loop been calculated in full, and often
we do not have any loop corrections at all at our disposal. On the other hand, we have
indirect but strong evidence that, in fact, the emission of multiple soft gluons plays a
significant rôle in building up the event structure, e.g. at LEP, and this sets a limit to
the applicability of matrix elements. Since the phase space available for gluon emission
increases with the available energy, the matrix-element approach becomes less relevant
for the full structure of events at higher energies. However, the perturbative expansion
is better behaved at higher energy scales, owing to the running of αs. As a consequence,
inclusive measurements, e.g. of the rate of well-separated jets, should yield more reliable
results at high energies.

The second possible approach is the parton-shower one. Here an arbitrary number of
branchings of one parton into two (or more) may be combined, to yield a description of
multijet events, with no explicit upper limit on the number of partons involved. This is
possible since the full matrix-element expressions are not used, but only approximations
derived by simplifying the kinematics, and the interference and helicity structure. Parton
showers are therefore expected to give a good description of the substructure of jets, but in
principle the shower approach has limited predictive power for the rate of well-separated
jets (i.e. the 2/3/4/5-jet composition). In practice, shower programs may be matched to
first-order matrix elements to describe the hard-gluon emission region reasonably well, in
particular for the e+e− annihilation process. Nevertheless, the shower description is not
optimal for absolute αs determinations.

Thus the two approaches are complementary in many respects, and both have found
use. However, because of its simplicity and flexibility, the parton-shower option is gener-
ally the first choice, while the matrix elements one is mainly used for αs determinations,
angular distribution of jets, triple-gluon vertex studies, and other specialized studies. Ob-
viously, the ultimate goal would be to have an approach where the best aspects of the
two worlds are harmoniously married. This is currently a topic of quite some study.

2.2.1 Matrix elements

Matrix elements are especially made use of in the older Jetset-originated implementation
of the process e+e− → γ∗/Z0 → qq.

For initial-state QED radiation, a first order (un-exponentiated) description has been
adopted. This means that events are subdivided into two classes, those where a photon

13

is radiated above some minimum energy, and those without such a photon. In the latter
class, the soft and virtual corrections have been lumped together to give a total event rate
that is correct up to one loop. This approach worked fine at PETRA/PEP energies, but
does not do so well for the Z0 line shape, i.e. in regions where the cross section is rapidly
varying and high precision is strived for.

For final-state QCD radiation, several options are available. The default is the parton-
shower one (see below), but the matrix-elements options are also frequently used. In the
definition of 3- or 4-jet events, a cut is introduced whereby it is required that any two
partons have an invariant mass bigger than some fraction of the c.m. energy. 3-jet events
which do not fulfil this requirement are lumped with the 2-jet ones. The first-order matrix-
element option, which only contains 3- and 2-jet events therefore involves no ambiguities.
In second order, where also 4-jets have to be considered, a main issue is what to do with
4-jet events that fail the cuts. Depending on the choice of recombination scheme, whereby
the two nearby partons are joined into one, different 3-jet events are produced. Therefore
the second-order differential 3-jet rate has been the subject of some controversy, and the
program actually contains two different implementations.

By contrast, the normal Pythia event generation machinery does not contain any full
higher-order matrix elements, with loop contributions included. There are several cases
where higher-order matrix elements are included at the Born level. Consider the case of
resonance production at a hadron collider, e.g. of a W, which is contained in the lowest-
order process qq′ →W. In an inclusive description, additional jets recoiling against the W
may be generated by parton showers. Pythia also contains the two first-order processes
qg →Wq′ and qq′ →Wg. The cross sections for these processes are divergent when the
p⊥ → 0. In this region a correct treatment would therefore have to take into account loop
corrections, which are not available in Pythia.

Even without having these accessible, we know approximately what the outcome
should be. The virtual corrections have to cancel the p⊥ → 0 singularities of the real
emission. The total cross section of W production therefore receives finite O(αs) cor-
rections to the lowest-order answer. These corrections can often be neglected to first
approximation, except when high precision is required. As for the shape of the W p⊥
spectrum, the large cross section for low-p⊥ emission has to be interpreted as allowing
more than one emission to take place. A resummation procedure is therefore necessary
to have matrix element make sense at small p⊥. The outcome is a cross section below the
naive one, with a finite behaviour in the p⊥ → 0 limit.

Depending on the physics application, one could then use Pythia in one of two
ways. In an inclusive description, which is dominated by the region of reasonably small
p⊥, the preferred option is lowest-order matrix elements combined with parton showers,
which actually is one way of achieving the required resummation. For W production as
background to some other process, say, only the large-p⊥ tail might be of interest. Then
the shower approach may be inefficient, since only few events will end up in the interesting
region, while the matrix-element alternative allows reasonable cuts to be inserted from
the beginning of the generation procedure. (One would probably still want to add showers
to describe additional softer radiation, at the cost of some smearing of the original cuts.)
Furthermore, and not less importantly, the matrix elements should give a more precise
prediction of the high-p⊥ event rate than the approximate shower procedure.

In the particular case considered here, that of W production, and a few similar pro-
cesses, actually the shower has been improved by a matching to first-order matrix ele-
ments, thus giving a decent description over the whole p⊥ range. This does not provide
the first-order corrections to the total W production rate, however, nor the possibility to
select only a high-p⊥ tail of events.

14

2.2.2 Parton showers

The separation of radiation into initial- and final-state showers is arbitrary, but very
convenient. There are also situations where it is appropriate: for instance, the process
e+e− → Z0 → qq only contains final-state QCD radiation (QED radiation, however, is
possible both in the initial and final state), while qq → Z0 → e+e− only contains initial-
state QCD one. Similarly, the distinction of emission as coming either from the q or from
the q is arbitrary. In general, the assignment of radiation to a given mother parton is a
good approximation for an emission close to the direction of motion of that parton, but
not for the wide-angle emission in between two jets, where interference terms are expected
to be important.

In both initial- and final-state showers, the structure is given in terms of branchings
a→ bc, specifically e→ eγ, q→ qg, q→ qγ, g → gg, and g → qq. (Further branchings,
like γ → e+e− and γ → qq, could also have been added, but have not yet been of interest.)
Each of these processes is characterized by a splitting kernel Pa→bc(z). The branching rate
is proportional to the integral

∫
Pa→bc(z) dz. The z value picked for a branching describes

the energy sharing, with daughter b taking a fraction z and daughter c the remaining 1−z
of the mother energy. Once formed, the daughters b and c may in turn branch, and so on.

Each parton is characterized by some virtuality scale Q2, which gives an approximate
sense of time ordering to the cascade. In the initial-state shower, Q2 values are gradually
increasing as the hard scattering is approached, while Q2 is decreasing in the final-state
showers. Shower evolution is cut off at some lower scale Q0, typically around 1 GeV for
QCD branchings. From above, a maximum scale Qmax is introduced, where the showers
are matched to the hard interaction itself. The relation between Qmax and the kinematics
of the hard scattering is uncertain, and the choice made can strongly affect the amount
of well-separated jets.

Despite a number of common traits, the initial- and final-state radiation machineries
are in fact quite different, and are described separately below.

Final-state showers are time-like, i.e. partons have m2 = E2 − p2 ≥ 0. The evolution
variable Q2 of the cascade is therefore in Pythia associated with the m2 of the branching
parton, but this choice is not unique. Starting from Q2

max, an original parton is evolved
downwards in Q2 until a branching occurs. The selected Q2 value defines the mass of the
branching parton, and the z of the splitting kernel the parton energy division between
its daughters. These daughters may now, in turn, evolve downwards, in this case with
maximum virtuality already defined by kinematics, and so on down to the Q0 cut-off.

In QCD showers, corrections to the leading-log picture, so-called coherence effects,
lead to an ordering of subsequent emissions in terms of decreasing angles. This does
not follow automatically from the mass-ordering constraint, but is implemented as an
additional requirement on allowed emissions. Photon emission is not affected by angular
ordering. It is also possible to obtain non-trivial correlations between azimuthal angles in
the various branchings, some of which are implemented as options. Finally, the theoretical
analysis strongly suggests the scale choice αs = αs(p

2
⊥) = αs(z(1− z)m2), and this is the

default in the program.
The final-state radiation machinery is normally applied in the c.m. frame of the hard

scattering or a decaying resonance. The total energy and momentum of that subsystem is
preserved, as is the direction of the outgoing partons (in their common rest frame), where
applicable.

In contrast to final-state showers, initial-state ones are space-like. This means that,
in the sequence of branchings a → bc that lead up from the shower initiator to the hard
interaction, particles a and b have m2 = E2 − p2 < 0. The ‘side branch’ particle c, which
does not participate in the hard scattering, may be on the mass shell, or have a time-like
virtuality. In the latter case a time-like shower will evolve off it, rather like the final-state
radiation described above. To first approximation, the evolution of the space-like main

15

branch is characterized by the evolution variable Q2 = −m2, which is required to be
strictly increasing along the shower, i.e. Q2

b > Q2
a. Corrections to this picture have been

calculated, but are basically absent in Pythia.
Initial-state radiation is handled within the backwards evolution scheme. In this ap-

proach, the choice of the hard scattering is based on the use of evolved parton distributions,
which means that the inclusive effects of initial-state radiation are already included. What
remains is therefore to construct the exclusive showers. This is done starting from the
two incoming partons at the hard interaction, tracing the showers ‘backwards in time’,
back to the two shower initiators. In other words, given a parton b, one tries to find the
parton a that branched into b. The evolution in the Monte Carlo is therefore in terms
of a sequence of decreasing space-like virtualities Q2 and increasing momentum fractions
x. Branchings on the two sides are interleaved in a common sequence of decreasing Q2

values.
In the above formalism, there is no real distinction between gluon and photon emission.

Some of the details actually do differ, as will be explained in the full description.
The initial- and final-state radiation shifts around the kinematics of the original hard

interaction. In Deeply Inelastic Scattering, this means that the x and Q2 values that can
be derived from the momentum of the scattered lepton do not automatically agree with
the values originally picked. In high-p⊥ processes, it means that one no longer has two
jets with opposite and compensating p⊥, but more complicated topologies. Effects of any
original kinematics selection cuts are therefore smeared out, an unfortunate side-effect of
the parton-shower approach.

2.3 Beam Remnants and Multiple Interactions

In a hadron–hadron collision, the initial-state radiation algorithm reconstructs one shower
initiator in each beam. This initiator only takes some fraction of the total beam energy,
leaving behind a beam remnant which takes the rest. For a proton beam, a u quark ini-
tiator would leave behind a ud diquark beam remnant, with an antitriplet colour charge.
The remnant is therefore colour-connected to the hard interaction, and forms part of
the same fragmenting system. It is further customary to assign a primordial transverse
momentum to the shower initiator, to take into account the motion of quarks inside the
original hadron, at least as required by the uncertainty principle by the proton size, prob-
ably augmented by unresolved (i.e. not simulated) soft shower activity. This primordial
k⊥ is selected according to some suitable distribution, and the recoil is assumed to be
taken up by the beam remnant.

Often the remnant is more complicated, e.g. a gluon initiator would leave behind a uud
proton remnant system in a colour octet state, which can conveniently be subdivided into
a colour triplet quark and a colour antitriplet diquark, each of which are colour-connected
to the hard interaction. The energy sharing between these two remnant objects, and their
relative transverse momentum, introduces additional degrees of freedom, which are not
understood from first principles.

Näıvely, one would expect an ep event to have only one beam remnant, and an e+e−

event none. This is not always correct, e.g. a γγ → qq interaction in an e+e− event would
leave behind the e+ and e− as beam remnants, and a qq → gg interaction in resolved
photoproduction in an e+e− event would leave behind one e± and one q or q in each
remnant. Corresponding complications occur for photoproduction in ep events.

There is another source of beam remnants. If parton distributions are used to resolve
an electron inside an electron, some of the original energy is not used in the hard in-
teraction, but is rather associated with initial-state photon radiation. The initial-state
shower is in principle intended to trace this evolution and reconstruct the original elec-
tron before any radiation at all took place. However, because of cut-off procedures, some
small amount may be left unaccounted for. Alternatively, you may have chosen to switch

16

off initial-state radiation altogether, but still preserved the resolved electron parton dis-
tributions. In either case the remaining energy is given to a single photon of vanishing
transverse momentum, which is then considered in the same spirit as ‘true’ beam rem-
nants.

So far we have assumed that each event only contains one hard interaction, i.e. that
each incoming particle has only one parton which takes part in hard processes, and that all
other constituents sail through unaffected. This is appropriate in e+e− or ep events, but
not necessarily so in hadron–hadron collisions. Here each of the beam particles contains
a multitude of partons, and so the probability for several interactions in one and the
same event need not be negligible. In principle these additional interactions could arise
because one single parton from one beam scatters against several different partons from
the other beam, or because several partons from each beam take place in separate 2→ 2
scatterings. Both are expected, but combinatorics should favour the latter, which is the
mechanism considered in Pythia.

The dominant 2 → 2 QCD cross sections are divergent for p⊥ → 0, and drop rapidly
for larger p⊥. Probably the lowest-order perturbative cross sections will be regularized
at small p⊥ by colour coherence effects: an exchanged gluon of small p⊥ has a large
transverse wave function and can therefore not resolve the individual colour charges of
the two incoming hadrons; it will only couple to an average colour charge that vanishes
in the limit p⊥ → 0. In the program, some effective p⊥min scale is therefore introduced,
below which the perturbative cross section is either assumed completely vanishing or at
least strongly damped. Phenomenologically, p⊥min comes out to be a number of the order
of 1.5–2.0 GeV.

In a typical ‘minimum-bias’ event one therefore expects to find one or a few scatterings
at scales around or a bit above p⊥min, while a high-p⊥ event also may have additional
scatterings at the p⊥min scale. The probability to have several high-p⊥ scatterings in the
same event is small, since the cross section drops so rapidly with p⊥.

The understanding of multiple interaction is still very primitive. Pythia therefore
contains several different options, with a fairly simple one as default. The options differ in
particular on the issue of the ‘pedestal’ effect: is there an increased probability or not for
additional interactions in an event which is known to contain a hard scattering, compared
with one that contains no hard interactions?

2.4 Hadronization

QCD perturbation theory, formulated in terms of quarks and gluons, is valid at short
distances. At long distances, QCD becomes strongly interacting and perturbation theory
breaks down. In this confinement regime, the coloured partons are transformed into
colourless hadrons, a process called either hadronization or fragmentation. In this paper
we reserve the former term for the combination of fragmentation and the subsequent decay
of unstable particles.

The fragmentation process has yet to be understood from first principles, starting from
the QCD Lagrangian. This has left the way clear for the development of a number of
different phenomenological models. Three main schools are usually distinguished, string
fragmentation (SF), independent fragmentation (IF) and cluster fragmentation (CF), but
many variants and hybrids exist. Being models, none of them can lay claims to being
‘correct’, although some may be better founded than others. The best that can be aimed
for is internal consistency, a good representation of existing data, and a predictive power
for properties not yet studied or results at higher energies.

17

2.4.1 String Fragmentation

The original Jetset program is intimately connected with string fragmentation, in the
form of the time-honoured ‘Lund model’. This is the default for all Pythia applications,
but independent fragmentation options also exist, for applications where one wishes to
study the importance of string effects.

All current models are of a probabilistic and iterative nature. This means that the
fragmentation process as a whole is described in terms of one or a few simple underlying
branchings, of the type jet → hadron + remainder-jet, string → hadron + remainder-
string, and so on. At each branching, probabilistic rules are given for the production of
new flavours, and for the sharing of energy and momentum between the products.

To understand fragmentation models, it is useful to start with the simplest possible
system, a colour-singlet qq 2-jet event, as produced in e+e− annihilation. Here lattice
QCD studies lend support to a linear confinement picture (in the absence of dynamical
quarks), i.e. the energy stored in the colour dipole field between a charge and an anticharge
increases linearly with the separation between the charges, if the short-distance Coulomb
term is neglected. This is quite different from the behaviour in QED, and is related to
the presence of a triple-gluon vertex in QCD. The details are not yet well understood,
however.

The assumption of linear confinement provides the starting point for the string model.
As the q and q partons move apart from their common production vertex, the physical
picture is that of a colour flux tube (or maybe a colour vortex line) being stretched between
the q and the q. The transverse dimensions of the tube are of typical hadronic sizes,
roughly 1 fm. If the tube is assumed to be uniform along its length, this automatically
leads to a confinement picture with a linearly rising potential. In order to obtain a Lorentz
covariant and causal description of the energy flow due to this linear confinement, the most
straightforward way is to use the dynamics of the massless relativistic string with no
transverse degrees of freedom. The mathematical, one-dimensional string can be thought
of as parameterizing the position of the axis of a cylindrically symmetric flux tube. From
hadron spectroscopy, the string constant, i.e. the amount of energy per unit length, is
deduced to be κ ≈ 1 GeV/fm. The expression ‘massless’ relativistic string is somewhat
of a misnomer: κ effectively corresponds to a ‘mass density’ along the string.

Let us now turn to the fragmentation process. As the q and q move apart, the potential
energy stored in the string increases, and the string may break by the production of a
new q′q′ pair, so that the system splits into two colour-singlet systems qq′ and q′q. If the
invariant mass of either of these string pieces is large enough, further breaks may occur.
In the Lund string model, the string break-up process is assumed to proceed until only
on-mass-shell hadrons remain, each hadron corresponding to a small piece of string with
a quark in one end and an antiquark in the other.

In order to generate the quark–antiquark pairs q′q′ which lead to string break-ups, the
Lund model invokes the idea of quantum mechanical tunnelling. This leads to a flavour-
independent Gaussian spectrum for the p⊥ of q′q′ pairs. Since the string is assumed to
have no transverse excitations, this p⊥ is locally compensated between the quark and the
antiquark of the pair. The total p⊥ of a hadron is made up out of the p⊥ contributions
from the quark and antiquark that together form the hadron. Some contribution of very
soft perturbative gluon emission may also effectively be included in this description.

The tunnelling picture also implies a suppression of heavy-quark production, u : d : s :
c ≈ 1 : 1 : 0.3 : 10−11. Charm and heavier quarks hence are not expected to be produced
in the soft fragmentation, but only in perturbative parton-shower branchings g→ qq.

When the quark and antiquark from two adjacent string breaks are combined to form
a meson, it is necessary to invoke an algorithm to choose between the different allowed
possibilities, notably between pseudoscalar and vector mesons. Here the string model
is not particularly predictive. Qualitatively one expects a 1 : 3 ratio, from counting

18

the number of spin states, multiplied by some wave-function normalization factor, which
should disfavour heavier states.

A tunnelling mechanism can also be used to explain the production of baryons. This
is still a poorly understood area. In the simplest possible approach, a diquark in a
colour antitriplet state is just treated like an ordinary antiquark, such that a string can
break either by quark–antiquark or antidiquark–diquark pair production. A more complex
scenario is the ‘popcorn’ one, where diquarks as such do not exist, but rather quark–
antiquark pairs are produced one after the other. This latter picture gives a less strong
correlation in flavour and momentum space between the baryon and the antibaryon of a
pair.

In general, the different string breaks are causally disconnected. This means that it is
possible to describe the breaks in any convenient order, e.g. from the quark end inwards.
One therefore is led to write down an iterative scheme for the fragmentation, as follows.
Assume an initial quark q moving out along the +z axis, with the antiquark going out
in the opposite direction. By the production of a q1q1 pair, a meson with flavour content
qq1 is produced, leaving behind an unpaired quark q1. A second pair q2q2 may now be
produced, to give a new meson with flavours q1q2, etc. At each step the produced hadron
takes some fraction of the available energy and momentum. This process may be iterated
until all energy is used up, with some modifications close to the q end of the string in
order to make total energy and momentum come out right.

The choice of starting the fragmentation from the quark end is arbitrary, however.
A fragmentation process described in terms of starting at the q end of the system and
fragmenting towards the q end should be equivalent. This ‘left–right’ symmetry constrains
the allowed shape of the fragmentation function f(z), where z is the fraction of the
remaining light-cone momentum E ± pz (+ for the q jet, − for the q one) taken by
each new particle. The resulting ‘Lund symmetric fragmentation function’ has two free
parameters, which are determined from data.

If several partons are moving apart from a common origin, the details of the string
drawing become more complicated. For a qqg event, a string is stretched from the q
end via the g to the q end, i.e. the gluon is a kink on the string, carrying energy and
momentum. As a consequence, the gluon has two string pieces attached, and the ratio of
gluon to quark string force is 2, a number which can be compared with the ratio of colour
charge Casimir operators, NC/CF = 2/(1 − 1/N2

C) = 9/4. In this, as in other respects,
the string model can be viewed as a variant of QCD where the number of colours NC

is not 3 but infinite. Note that the factor 2 above does not depend on the kinematical
configuration: a smaller opening angle between two partons corresponds to a smaller
string length drawn out per unit time, but also to an increased transverse velocity of the
string piece, which gives an exactly compensating boost factor in the energy density per
unit string length.

The qqg string will fragment along its length. To first approximation this means
that there is one fragmenting string piece between q and g and a second one between g
and q. One hadron is straddling both string pieces, i.e. sitting around the gluon corner.
The rest of the particles are produced as in two simple qq strings, but strings boosted
with respect to the overall c.m. frame. When considered in detail, the string motion
and fragmentation is more complicated, with the appearance of additional string regions
during the time evolution of the system. These corrections are especially important for
soft and collinear gluons, since they provide a smooth transition between events where
such radiation took place and events where it did not. Therefore the string fragmentation
scheme is ‘infrared safe’ with respect to soft or collinear gluon emission.

For events that involve many partons, there may be several possible topologies for
their ordering along the string. An example would be a qqg1g2 (the gluon indices are here
used to label two different gluon-momentum vectors), where the string can connect the
partons in either of the sequences q−g1−g2−q and q−g2−g1−q. The matrix elements

19

that are calculable in perturbation theory contain interference terms between these two
possibilities, which means that the colour flow is not always well-defined. Fortunately, the
interference terms are down in magnitude by a factor 1/N2

C , where NC = 3 is the number
of colours, so approximate recipes can be found. In the leading log shower description,
on the other hand, the rules for the colour flow are well-defined.

A final comment: in the argumentation for the importance of colour flows there is
a tacit assumption that soft-gluon exchanges between partons will not normally mess
up the original colour assignment. Colour rearrangement models provide toy scenarios
wherein deviations from this rule could be studied. Of particular interest has been the
process e+e− → W+W− → q1q2q3q4, where the original singlets q1q2 and q3q4 could
be rearranged to q1q4 and q3q2. So far, there are no experimental evidence for dramatic
effects of this kind, but the more realistic models predict effects sufficiently small that these
have not been ruled out. Another example of nontrivial effects is that of Bose–Einstein
correlations between identical final-state particles, which reflect the true quantum nature
of the hadronization process.

2.4.2 Decays

A large fraction of the particles produced by fragmentation are unstable and subsequently
decay into the observable stable (or almost stable) ones. It is therefore important to in-
clude all particles with their proper mass distributions and decay properties. Although
involving little deep physics, this is less trivial than it may sound: while a lot of ex-
perimental information is available, there is also very much that is missing. For charm
mesons, it is necessary to put together measured exclusive branching ratios with some
inclusive multiplicity distributions to obtain a consistent and reasonably complete set of
decay channels, a rather delicate task. For bottom even less is known, and for some B
baryons only a rather simple phase-space type of generator has been used for hadronic
decays.

Normally it is assumed that decay products are distributed according to phase space,
i.e. that there is no dynamics involved in their relative distribution. However, in many
cases additional assumptions are necessary, e.g. for semileptonic decays of charm and
bottom hadrons one needs to include the proper weak matrix elements. Particles may
also be produced polarized and impart a non-isotropic distribution to their decay products.
Many of these effects are not at all treated in the program. In fact, spin information is
not at all carried along, but has to be reconstructed explicitly when needed.

This normal decay treatment makes use of a set of tables where branching ratios
and decay modes are stored. It encompasses all hadrons made out of d, u, s, c and b
quarks, and also the leptons. The decay products are hadrons, leptons and photons.
Some bb states are sufficiently heavy that they are allowed to decay to partonic states,
like Υ→ ggg, which subsequently fragment, but these are exceptions.

You may at will change the particle properties, decay channels or branching ratios of
the above particles. There is no censorship what is allowed or not allowed, beyond energy–
momentum and (electrical and colour) charge conservation. There is also no impact e.g. on
the cross section of processes, since there is no way of knowing e.g. if the restriction to one
specific decay of a particle is because that decay is of particular interest to us, or because
recent measurement have shown that this indeed is the only channel. Furthermore, the
number of particles produced of each species in the hadronization process is not known
beforehand, and so cannot be used to correctly bias the preceding steps of the generation
chain. All of this contrasts with the class of ‘resonances’ described above, in section 2.1.2.

20

3 Program Overview

This section contains a diverse collection of information. The first part is an overview of
previous Jetset and Pythia versions. The second gives instructions for installation of
the program and describes its philosophy: how it is constructed and how it is supposed
to be used. It also contains some information on how to read this manual. The third and
final part contains several examples of pieces of code or short programs, to illustrate the
general style of program usage. This last part is mainly intended as an introduction for
completely new users, and can be skipped by more experienced ones.

The combined Pythia package is completely self-contained. Interfaces to externally
defined subprocesses, parton-distribution function libraries, τ decay libraries, and a time
routine are provided, however, plus a few other optional interfaces.

Many programs written by other persons make use of Pythia, especially the string
fragmentation machinery. It is not the intention to give a complete list here. A majority of
these programs are specific to given collaborations, and therefore not publicly distributed.
Below we give a list of a few public programs from the ‘Lund group’, which may have a
somewhat wider application. None of them are supported by the Pythia author team,
so any requests should be directed to the persons mentioned.
• Ariadne is a generator for dipole emission, written mainly by L. Lönnblad [Pet88].
• Aroma is a generator for heavy-flavour processes in leptoproduction, written by

G. Ingelman and G. Schuler [Ing88].
• Fritiof is a generator for hadron–hadron, hadron–nucleus and nucleus–nucleus

collisions [Nil87].
• Lepto is a leptoproduction event generator, written mainly by G. Ingelman [Ing80].

It can generate parton configurations in Deeply Inelastic Scattering according to a
number of possibilities.
• Pompyt is a generator for pomeron interactions written by G. Ingelman and col-

laborators [Bru96].
One should also note that a version of Pythia has been modified to include the effects
of longitudinally polarized incoming protons. This is the work of St. Güllenstern et al.
[Gül93].

3.1 Update History

For the record, in Tables 1 and 2 we list the official main versions of Jetset and Pythia,
respectively, with some brief comments.

All versions preceding Pythia 6.1 should now be considered obsolete, and are no
longer maintained. For stable applications, the earlier combination Jetset 7.4 and
Pythia 5.7 could still be used, however. (A note on backwards compatibility: per-
sons who have code that relies on the old /LUJETS/ single precision commonblock could
easily write a translation routine to copy the /PYJETS/ double precision information to
/LUJETS/. In fact, among the old Jetset 7 routines, only LUGIVE and LULOGO routines
have access to some Pythia commonblocks, and therefore these are the only ones that
need to be modified if one, for some reason, would like to combine Pythia 6 with the old
Jetset 7 routines.)

The move from Jetset 7.4 and Pythia 5.7 to Pythia 6.1 was a major one. For
reasons of space, individual points are therefore not listed separately below, but only the
main ones. The Pythia web page contains complete update notes, where all changes are
documented by topic and subversion.

The main new features of Pythia 6.1, either present from the beginning or added
later on, include:
• Pythia and Jetset have been merged.

21

Table 1: The main versions of Jetset, with their date of appearance, published
manuals, and main changes from previous versions.

No. Date Publ. Main new or improved features

1 Nov 78 [Sjö78] single-quark jets

2 May 79 [Sjö79] heavy-flavour jets

3.1 Aug 79 — 2-jets in e+e−, preliminary 3-jets

3.2 Apr 80 [Sjö80] 3-jets in e+e− with full matrix elements,

toponium → ggg decays

3.3 Aug 80 — softer fragmentation spectrum

4.1 Apr 81 — baryon production and diquark fragmentation,

fourth-generation quarks, larger jet systems

4.2 Nov 81 — low-p⊥ physics

4.3 Mar 82 [Sjö82] 4-jets and QFD structure in e+e−,

Jul 82 [Sjö83] event-analysis routines

5.1 Apr 83 — improved string fragmentation scheme, symmetric

fragmentation, full 2nd order QCD for e+e−

5.2 Nov 83 — momentum-conservation schemes for IF,

initial-state photon radiation in e+e−

5.3 May 84 — ‘popcorn’ model for baryon production

6.1 Jan 85 — common blocks restructured, parton showers

6.2 Oct 85 [Sjö86] error detection

6.3 Oct 86 [Sjö87] new parton-shower scheme

7.1 Feb 89 — new particle codes and common block structure,

more mesons, improved decays, vertex information,

Abelian gluon model, Bose–Einstein effects

7.2 Nov 89 — interface to new standard common block,

photon emission in showers

7.3 May 90 [Sjö92d] expanded support for non-standard particles

7.4 Dec 93 [Sjö94] updated particle data and defaults

• All real variables are declared in double precision.
• The internal mapping of particle codes has changed.
• The supersymmetric process machinery of SPythia has been included and further

improved, with several new processes.
• Many new processes of beyond-the-standard-model physics, in areas such as techni-

color and doubly-charged Higgses.
• An expanded description of QCD processes in virtual-photon interactions, combined

with a new machinery for the flux of virtual photons from leptons.
• Initial-state parton showers are matched to the next-to-leading order matrix ele-

ments for gauge boson production.
• Final-state parton showers are matched to a number of different first-order matrix

elements for gluon emission, including full mass dependence.
• The hadronization description of low-mass strings has been improved, with conse-

quences especially for heavy-flavour production.

22

Table 2: The main versions of Pythia, with their date of appearance, published
manuals, and main changes from previous versions.

No. Date Publ. Main new or improved features

1 Dec 82 [Ben84] synthesis of predecessors Compton, Highpt and

Kassandra

2 —

3.1 —

3.2 —

3.3 Feb 84 [Ben84a] scale-breaking parton distributions

3.4 Sep 84 [Ben85] more efficient kinematics selection

4.1 Dec 84 initial- and final-state parton showers, W and Z

4.2 Jun 85 multiple interactions

4.3 Aug 85 WW, WZ, ZZ and R processes

4.4 Nov 85 γW, γZ, γγ processes

4.5 Jan 86 H0 production, diffractive and elastic events

4.6 May 86 angular correlation in resonance pair decays

4.7 May 86 Z′0 and H+ processes

4.8 Jan 87 [Ben87] variable impact parameter in multiple interactions

4.9 May 87 gH+ process

5.1 May 87 massive matrix elements for heavy quarks

5.2 Jun 87 intermediate boson scattering

5.3 Oct 89 new particle and subprocess codes, new common block

structure, new kinematics selection, some

lepton–lepton and lepton–hadron interactions,

new subprocesses

5.4 Jun 90 s-dependent widths, resonances not on the mass shell,

new processes, new parton distributions

5.5 Jan 91 improved e+e− and ep, several new processes

5.6 Sep 91 [Sjö92d] reorganized parton distributions, new processes,

user-defined external processes

5.7 Dec 93 [Sjö94] new total cross sections, photoproduction, top decay

6.1 Mar 97 [Sjö01] merger with Jetset, double precision, supersymmetry,

technicolor, extra dimensions, etc. new processes,

improved initial- and final-state showers,

baryon production, virtual photon processes

6.1 Aug 01 this user processes, lepton number violation

23

• An alternative baryon production model has been introduced.
• Colour rearrangement is included as a new option, and several alternative Bose-

Einstein descriptions are added.
By comparison, the move from Pythia 6.1 to Pythia 6.2 was rather less dramatic.

Again update notes tell the full story. Some of the main new features, which partly break
backwards compatibility, are:
• A new machinery to handle user-defined external processes, according to the stan-

dard in [Boo01]. The old machinery is no longer available. Some of the alternatives
for the FRAME argument in the PYINIT call have also been renamed to make way for
a new ’USER’ option.
• The maximum size of the decay channel table has been increased from 4000 to 8000,

affecting the MDME, BRAT and KFDP arrays in the PYDAT3 common block.
• Lepton-number-violating decay channels have been included for supersymmetric

particles [Ska01]. Thus the decay tables have grown considerably longer.
• The PYSHOW timelike showering routine has been expanded to allow showering inside

systems consisting of up to seven particles, which can be made use of in some
resonance decays and in user-defined processes.
• Some exotic particles and QCD effective states have been moved from temporary

flavour codes to a PDG-consistent naming, and a few new codes have been intro-
duced.
• The maximum number of documentation lines in the beginning of the event record

has been expanded from 50 to 100.
• The default parton distribution set for the proton is now CTEQ 5L.
• The default Standard Model Higgs mass has been changed to 115 GeV.

3.2 Program Installation

The Pythia ‘master copy’ is the one found on the web page

http://www.thep.lu.se/∼torbjorn/Pythia.html

There you have, for several subversions xx:

pythia62xx.f the Pythia 6.2xx code,
pythia62xx.tex this Pythia manual, and
pythia62xx.update plain text update notes to the manual.

In addition to these, one may also find older versions of the program and manuals, sample
main programs and other pieces of related software, and other physics papers.

The program is written essentially entirely in standard Fortran 77, and should run on
any platform with such a compiler. To a first approximation, program compilation should
therefore be straightforward.

Unfortunately, experience with many different compilers has been uniform: the op-
tions available for obtaining optimized code may actually produce erroneous code (e.g.
operations inside DO loops are moved out before them, where some of the variables have
not yet been properly set). Therefore the general advice is to use a low optimization level.
Note that this is often not the default setting.

SAVE statements have been included in accordance with the Fortran standard.
All default settings and particle and process data are stored in BLOCK DATA PYDATA.

This subprogram must be linked for a proper functioning of the other routines. On some
platforms this is not done automatically but must be forced by you, e.g. by having a line

EXTERNAL PYDATA

24

at the beginning of your main program. This applies in particular if Pythia is main-
tained as a library from which routines are to be loaded only when they are needed. In
this connection we note that the library approach does not give any significant space
advantages over a loading of the packages as a whole, since a normal run will call on most
of the routines anyway, directly or indirectly.

With the move towards higher energies, e.g. for LHC applications, single-precision (32
bit) real arithmetic has become inappropriate. Therefore a declaration IMPLICIT DOUBLE
PRECISION(A-H,O-Z) at the beginning of each subprogram is inserted to ensure double-
precision (64 bit) real arithmetic. Remember that this also means that all calls to Pythia
routines have to be done with real variables declared correspondingly in the user-written
calling program. An IMPLICIT INTEGER(I-N) is also included to avoid problems on some
compilers. Integer functions beginning with PY have to be declared explicitly. In total,
therefore all routines begin with

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP

and you are recommended to do the same in your main programs. Note that, in running
text and in description of commonblock default valuess, the more cumbersome double-
precision notation is not always made explicit, but code examples should be correct.

On a machine where DOUBLE PRECISION would give 128 bits, it may make sense to
use compiler options to revert to 64 bits, since the program is anyway not constructed to
make use of 128 bit precision.

Fortran 77 makes no provision for double-precision complex numbers. Therefore com-
plex numbers have been used only sparingly. However, some matrix element expressions,
mainly for supersymmetric and technicolor processes, simplify considerably when written
in terms of complex variables. In order to achieve a uniform precision, such variables
have been declared COMPLEX*16, and are manipulated with functions such as DCMPLX
and DCONJG. Affected are PYSIGH, PYWIDT and several of the supersymmetry routines.
Should the compiler not accept this deviation from the standard, or some simple equiv-
alent thereof (like DOUBLE COMPLEX instead of COMPLEX*16) these code pieces could be
rewritten to ordinary COMPLEX, also converting the real numbers involved to and from
single precision, with some drop in accuracy for the affected processes. PYRESD already
contains some ordinary COMPLEX variables, and should not cause any problems.

Several compilers report problems when an odd number of integers precede a double-
precision variable in a commonblock. Therefore an extra integer has been introduced as
padding in a few instances, e.g. NPAD, MSELPD and NGENPD.

Since Fortran 77 provides no date-and-time routine, PYTIME allows a system-specific
routine to be interfaced, with some commented-out examples given in the code. This
routine is only used for cosmetic improvements of the output, however, so can be left at
the default with time 0 given.

A test program, PYTEST, is included in the Pythia package. It is disguised as a
subroutine, so you have to run a main program

CALL PYTEST(1)
END

This program will generate over a thousand events of different types, under a variety of
conditions. If Pythia has not been properly installed, this program is likely to crash, or
at least generate a number of erroneous events. This will then clearly be marked in the
output, which otherwise will just contain a few sample event listings and a table of the
number of different particles produced. To switch off the output of normal events and

25

final table, use PYTEST(0) instead of PYTEST(1). The final tally of errors detected should
read 0.

For a program written to run Pythia 5 and Jetset 7, most of the conversion required
for Pythia 6 is fairly straightforward, and can be automatized. Both a simple Fortran
routine and a more sophisticated Perl [Gar98] script exist to this end, see the Pythia
web page. Some manual checks and interventions may still be required.

3.3 Program Philosophy

The Monte Carlo program is built as a slave system, i.e. you, the user, have to supply
the main program. From this the various subroutines are called on to execute specific
tasks, after which control is returned to the main program. Some of these tasks may be
very trivial, whereas the ‘high-level’ routines by themselves may make a large number of
subroutine calls. Many routines are not intended to be called directly by you, but only
from higher-level routines such as PYEXEC, PYEEVT, PYINIT or PYEVNT.

Basically, this means that there are three ways by which you communicate with the
programs. First, by setting common block variables, you specify the details of how the
programs should perform specific tasks, e.g. which subprocesses should be generated,
which particle masses should be assumed, which coupling constants used, which fragmen-
tation scenarios, and so on with hundreds of options and parameters. Second, by calling
subroutines you tell the programs to generate events according to the rules established
above. Normally there are few subroutine arguments, and those are usually related to
details of the physical situation, such as what c.m. energy to assume for events. Third,
you can either look at the common block PYJETS to extract information on the generated
event, or you can call on various functions and subroutines to analyse the event further
for you.

It should be noted that, while the physics content is obviously at the centre of at-
tention, the Pythia package also contains a very extensive setup of auxiliary service
routines. The hope is that this will provide a comfortable working environment, where
not only events are generated, but where you also linger on to perform a lot of the subse-
quent studies. Of course, for detailed studies, it may be necessary to interface the output
directly to a detector simulation program.

The general rule is that all routines have names that are six characters long, beginning
with PY. There are three exceptions the length rules: PYK, PYP and PYR. The former two
functions are strongly coupled to the K and P matrices in the PYJETS common block, the
latter is very frequently used. Also common block names are six characters long and start
with PY. There are three integer functions, PYK,PYCHGE and PYCOMP. In all routines where
they are to be used, they have to be declared INTEGER.

On the issue of initialization, the routines of different origin and functionality behave
quite differently. Routines that are intended to be called from many different places, such
as showers, fragmentation and decays, require no specific initialization (except for the
one implied by the presence of BLOCK DATA PYDATA, see above), i.e. each event and each
task stands on its own. Current common block values are used to perform the tasks in
specific ways, and those rules can be changed from one event to the next (or even within
the generation of one and the same event) without any penalty. The random-number
generator is initialized at the first call, but usually this is transparent.

In the core process generation machinery (e.g. selection of the hard process kinematics),
on the other hand, a sizeable amount of initialization is performed in the PYINIT call, and
thereafter the events generated by PYEVNT all obey the rules established at that point.
This improves the efficiency of the generation process, and also ties in with the Monte
Carlo integration of the process cross section over many events. Therefore common block
variables that specify methods and constraints to be used have to be set before the PYINIT
call and then not be changed afterwards, with few exceptions. Of course, it is possible

26

to perform several PYINIT calls in the same run, but there is a significant time overhead
involved, so this is not something one would do for each new event. The two older separate
process generation routines PYEEVT (and some of the routines called by it) and PYONIA
also contain some elements of initialization, where there are a few advantages if events are
generated in a coherent fashion. The cross section is not as complicated here, however, so
the penalty for reinitialization is small, and also does not require any special user calls.

Apart from writing a title page, giving a brief initialization information, printing error
messages if need be, and responding to explicit requests for listings, all tasks of the
program are performed ‘silently’. All output is directed to unit MSTU(11), by default 6,
and it is up to you to set this unit open for write. The only exceptions are PYRGET, PYRSET
and PYUPDA where, for obvious reasons, the input/output file number is specified at each
call. Here you again have to see to it that proper read/write access is set.

The programs are extremely versatile, but the price to be paid for this is having a
large number of adjustable parameters and switches for alternative modes of operation.
No single user is ever likely to need more than a fraction of the available options. Since
all these parameters and switches are assigned sensible default values, there is no reason
to worry about them until the need arises.

Unless explicitly stated (or obvious from the context) all switches and parameters can
be changed independently of each other. One should note, however, that if only a few
switches/parameters are changed, this may result in an artificially bad agreement with
data. Many disagreements can often be cured by a subsequent retuning of some other
parameters of the model, in particular those that were once determined by a comparison
with data in the context of the default scenario. For example, for e+e− annihilation, such
a retuning could involve one QCD parameter (αs or Λ), the longitudinal fragmentation
function, and the average transverse momentum in fragmentation.

The program contains a number of checks that requested processes have been imple-
mented, that flavours specified for jet systems make sense, that the energy is sufficient to
allow hadronization, that the memory space in PYJETS is large enough, etc. If anything
goes wrong that the program can catch (obviously this may not always be possible), an
error message will be printed and the treatment of the corresponding event will be cut
short. In serious cases, the program will abort. As long as no error messages appear on
the output, it may not be worthwhile to look into the rules for error checking, but if but
one message appears, it should be enough cause for alarm to receive prompt attention.
Also warnings are sometimes printed. These are less serious, and the experienced user
might deliberately do operations which go against the rules, but still can be made to
make sense in their context. Only the first few warnings will be printed, thereafter the
program will be quiet. By default, the program is set to stop execution after ten errors,
after printing the last erroneous event.

It must be emphasized that not all errors will be caught. In particular, one tricky ques-
tion is what happens if an integer-valued common block switch or subroutine/function
argument is used with a value that is not defined. In some subroutine calls, a prompt
return will be expedited, but in most instances the subsequent action is entirely unpre-
dictable, and often completely haywire. The same goes for real-valued variables that are
assigned values outside the physically sensible range. One example will suffice here: if
PARJ(2) is defined as the s/u suppression factor, a value > 1 will not give more profuse
production of s than of u, but actually a spillover into c production. Users, beware!

3.4 Manual Conventions

In the manual parts of this report, some conventions are used. All names of subprograms,
common blocks and variables are given in upper-case ‘typewriter’ style, e.g. MSTP(111)=0.
Also program examples are given in this style.

If a common block variable must have a value set at the beginning of execution, then

27

a default value is stored in the block data subprogram PYDATA. Such a default value is
usually indicated by a ‘(D=. . .)’ immediately after the variable name, e.g.
MSTJ(1) : (D=1) choice of fragmentation scheme.

All variables in the fragmentation-related common blocks (with very few exceptions,
clearly marked) can be freely changed from one event to the next, or even within the
treatment of one single event; see discussion on initialization in the previous section. In
the process generation machinery common blocks the situation is more complicated. The
values of many switches and parameters are used already in the PYINIT call, and cannot
be changed after that. The problem is mentioned in the preamble to the afflicted common
blocks, which in particular means /PYPARS/ and /PYSUBS/. For the variables which may
still be changed from one event to the next, a ‘(C)’ is added after the ‘(D=. . .)’ statement.

Normally, variables internal to the program are kept in separate common blocks and
arrays, but in a few cases such internal variables appear among arrays of switches and
parameters, mainly for historical reasons. These are denoted by ‘(R)’ for variables you
may want to read, because they contain potentially interesting information, and by ‘(I)’
for purely internal variables. In neither case may the variables be changed by you.

In the description of a switch, the alternatives that this switch may take are often
enumerated, e.g.
MSTJ(1) : (D=1) choice of fragmentation scheme.

= 0 : no jet fragmentation at all.
= 1 : string fragmentation according to the Lund model.
= 2 : independent fragmentation, according to specification in MSTJ(2) and

MSTJ(3).
If you then use any value other than 0, 1 or 2, results are undefined. The action could
even be different in different parts of the program, depending on the order in which the
alternatives are identified.

It is also up to you to choose physically sensible values for parameters: there is no
check on the allowed ranges of variables. We gave an example of this at the end of the
preceding section.

Subroutines you are expected to use are enclosed in a box at the point where they are
defined:

CALL PYLIST(MLIST)

This is followed by a description of input or output parameters. The difference between
input and output is not explicitly marked, but should be obvious from the context. In
fact, the event-analysis routines of section 15.5 return values, while all the rest only have
input variables.

Routines that are only used internally are not boxed in. However, we use boxes for all
common blocks, so as to enhance the readability.

In running text, often specific switches and parameters will be mentioned, without a
reference to the place where they are described further. The Index at the very end of the
document allows you to find this place. Tables 3 and 4 gives a brief summary of almost
all common blocks and the variables stored there. Often names for switches begin with
MST and parameters with PAR. No common block variables begin with PY. There is thus
no possibility to confuse an array element with a function or subroutine call.

3.5 Getting Started with the Simple Routines

Normally Pythia is expected to take care of the full event generation process. At times,
however, one may want to access the more simple underlying routines, which allow a large

28

Table 3: An almost complete list of common blocks, with brief comments on their
main functions. The listing continues in Table 4.

C...The event record.
COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

C...Parameters.
COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

C...Particle properties + some flavour parameters.
COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)

C...Decay information.
COMMON/PYDAT3/MDCY(500,3),MDME(8000,2),BRAT(8000),KFDP(8000,5)

C...Particle names
COMMON/PYDAT4/CHAF(500,2)
CHARACTER CHAF*16

C...Random number generator information.
COMMON/PYDATR/MRPY(6),RRPY(100)

C...Selection of hard scattering subprocesses.
COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

C...Parameters.
COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

C...Internal variables.
COMMON/PYINT1/MINT(400),VINT(400)

C...Process information.
COMMON/PYINT2/ISET(500),KFPR(500,2),COEF(500,20),ICOL(40,4,2)

C...Parton distributions and cross sections.
COMMON/PYINT3/XSFX(2,-40:40),ISIG(1000,3),SIGH(1000)

C...Resonance width and secondary decay treatment.
COMMON/PYINT4/MWID(500),WIDS(500,5)

C...Generation and cross section statistics.
COMMON/PYINT5/NGENPD,NGEN(0:500,3),XSEC(0:500,3)

C...Process names.
COMMON/PYINT6/PROC(0:500)
CHARACTER PROC*28

C...Total cross sections.
COMMON/PYINT7/SIGT(0:6,0:6,0:5)

C...Photon parton distributions: total and valence only.
COMMON/PYINT8/XPVMD(-6:6),XPANL(-6:6),XPANH(-6:6),XPBEH(-6:6),

&XPDIR(-6:6)
COMMON/PYINT9/VXPVMD(-6:6),VXPANL(-6:6),VXPANH(-6:6),VXPDGM(-6:6)

C...Supersymmetry parameters.
COMMON/PYMSSM/IMSS(0:99),RMSS(0:99)

C...Supersymmetry mixing matrices.
COMMON/PYSSMT/ZMIX(4,4),UMIX(2,2),VMIX(2,2),SMZ(4),SMW(2),

&SFMIX(16,4),ZMIXI(4,4),UMIXI(2,2),VMIXI(2,2)
C...R-parity-violating couplings in supersymmetry.

COMMON/PYMSRV/RVLAM(3,3,3), RVLAMP(3,3,3), RVLAMB(3,3,3)
C...Internal parameters for R-parity-violating processes.

COMMON/PYRVNV/AB(2,16,2),RMS(0:3),RES(6,5),IDR,IDR2,DCMASS,KFR(3)
COMMON/PYRVPM/RM(0:3),A(2),B(2),RESM(2),RESW(2),MFLAG
LOGICAL MFLAG

29

Table 4: Continuation of Table 3.

C...Parameters for Gauss integration of supersymmetric widths.
COMMON/PYINTS/XXM(20)
COMMON/PYG2DX/X1

C...Histogram information.
COMMON/PYBINS/IHIST(4),INDX(1000),BIN(20000)

C...HEPEVT commonblock.
PARAMETER (NMXHEP=4000)
COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),

&JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP)
DOUBLE PRECISION PHEP,VHEP

C...User process initialization commonblock.
INTEGER MAXPUP
PARAMETER (MAXPUP=100)
INTEGER IDBMUP,PDFGUP,PDFSUP,IDWTUP,NPRUP,LPRUP
DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP
COMMON/HEPRUP/IDBMUP(2),EBMUP(2),PDFGUP(2),PDFSUP(2),

&IDWTUP,NPRUP,XSECUP(MAXPUP),XERRUP(MAXPUP),XMAXUP(MAXPUP),
&LPRUP(MAXPUP)

C...User process event common block.
INTEGER MAXNUP
PARAMETER (MAXNUP=500)
INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP
DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP
COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,IDUP(MAXNUP),

&ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),PUP(5,MAXNUP),
&VTIMUP(MAXNUP),SPINUP(MAXNUP)

flexibility to ‘do it yourself’. We therefore start with a few cases of this kind, at the same
time introducing some of the more frequently used utility routines.

As a first example, assume that you want to study the production of uu 2-jet systems
at 20 GeV energy. To do this, write a main program

IMPLICIT DOUBLE PRECISION(A-H, O-Z)
CALL PY2ENT(0,2,-2,20D0)
CALL PYLIST(1)
END

and run this program, linked together with Pythia. The routine PY2ENT is specifically
intended for storing two entries (partons or particles). The first argument (0) is a com-
mand to perform fragmentation and decay directly after the entries have been stored, the
second and third that the two entries are u (2) and u (−2), and the last that the c.m.
energy of the pair is 20 GeV, in double precision. When this is run, the resulting event is
stored in the PYJETS common block. This information can then be read out by you. No
output is produced by PY2ENT itself, except for a title page which appears once for every
Pythia run.

Instead the second command, to PYLIST, provides a simple visible summary of the
information stored in PYJETS. The argument (1) indicates that the short version should
be used, which is suitable for viewing the listing directly on an 80-column terminal screen.
It might look as shown here.

Event listing (summary)

30

I particle/jet KS KF orig p_x p_y p_z E m

1 (u) A 12 2 0 0.000 0.000 10.000 10.000 0.006
2 (ubar) V 11 -2 0 0.000 0.000 -10.000 10.000 0.006
3 (string) 11 92 1 0.000 0.000 0.000 20.000 20.000
4 (rho+) 11 213 3 0.098 -0.154 2.710 2.856 0.885
5 (rho-) 11 -213 3 -0.227 0.145 6.538 6.590 0.781
6 pi+ 1 211 3 0.125 -0.266 0.097 0.339 0.140
7 (Sigma0) 11 3212 3 -0.254 0.034 -1.397 1.855 1.193
8 (K*+) 11 323 3 -0.124 0.709 -2.753 2.968 0.846
9 p~- 1 -2212 3 0.395 -0.614 -3.806 3.988 0.938

10 pi- 1 -211 3 -0.013 0.146 -1.389 1.403 0.140
11 pi+ 1 211 4 0.109 -0.456 2.164 2.218 0.140
12 (pi0) 11 111 4 -0.011 0.301 0.546 0.638 0.135
13 pi- 1 -211 5 0.089 0.343 2.089 2.124 0.140
14 (pi0) 11 111 5 -0.316 -0.197 4.449 4.467 0.135
15 (Lambda0) 11 3122 7 -0.208 0.014 -1.403 1.804 1.116
16 gamma 1 22 7 -0.046 0.020 0.006 0.050 0.000
17 K+ 1 321 8 -0.084 0.299 -2.139 2.217 0.494
18 (pi0) 11 111 8 -0.040 0.410 -0.614 0.751 0.135
19 gamma 1 22 12 0.059 0.146 0.224 0.274 0.000
20 gamma 1 22 12 -0.070 0.155 0.322 0.364 0.000
21 gamma 1 22 14 -0.322 -0.162 4.027 4.043 0.000
22 gamma 1 22 14 0.006 -0.035 0.422 0.423 0.000
23 p+ 1 2212 15 -0.178 0.033 -1.343 1.649 0.938
24 pi- 1 -211 15 -0.030 -0.018 -0.059 0.156 0.140
25 gamma 1 22 18 -0.006 0.384 -0.585 0.699 0.000
26 gamma 1 22 18 -0.034 0.026 -0.029 0.052 0.000

sum: 0.00 0.000 0.000 0.000 20.000 20.000

(A few blanks have been removed between the columns to make it fit into the format
of this text.) Look in the particle/jet column and note that the first two lines are the
original u and u. The parentheses enclosing the names, ‘(u)’ and ‘(ubar)’, are there as
a reminder that these partons actually have been allowed to fragment. The partons are
still retained so that event histories can be studied. Also note that the KF (flavour code)
column contains 2 in the first line and −2 in the second. These are the codes actually
stored to denote the presence of a u and a u, cf. the PY2ENT call, while the names written
are just conveniences used when producing visible output. The A and V near the end of the
particle/jet column indicate the beginning and end of a string (or cluster, or independent
fragmentation) parton system; any intermediate entries belonging to the same system
would have had an I in that column. (This gives a poor man’s representation of an
up-down arrow, l.)

In the orig (origin) column, the zeros indicate that u and u are two initial entries.
The subsequent line, number 3, denotes the fragmenting uu string system as a whole, and
has origin 1, since the first parton of this string system is entry number 1. The particles
in lines 4–10 have origin 3 to denote that they come directly from the fragmentation of
this string. In string fragmentation it is not meaningful to say that a particle comes from
only the u quark or only the u one. It is the string system as a whole that gives a ρ+, a
ρ−, a π+, a Σ0, a K∗+, a p−, and a π−. Note that some of the particle names are again
enclosed in parentheses, indicating that these particles are not present in the final state
either, but have decayed further. Thus the π− in line 13 and the π0 in line 14 have origin
5, as an indication that they come from the decay of the ρ− in line 5. Only the names
not enclosed in parentheses remain at the end of the fragmentation/decay chain, and

31

are thus experimentally observable. The actual status code used to distinguish between
different classes of entries is given in the KS column; codes in the range 1–10 correspond
to remaining entries, and those above 10 to those that have fragmented or decayed.

The columns with p x, p y, p z, E and m are quite self-explanatory. All momenta,
energies and masses are given in units of GeV, since the speed of light is taken to be c = 1.
Note that energy and momentum are conserved at each step of the fragmentation/decay
process (although there exist options where this is not true). Also note that the z axis
plays the rôle of preferred direction, along which the original partons are placed. The final
line is intended as a quick check that nothing funny happened. It contains the summed
charge, summed momentum, summed energy and invariant mass of the final entries at the
end of the fragmentation/decay chain, and the values should agree with the input implied
by the PY2ENT arguments. (In fact, warnings would normally appear on the output if
anything untoward happened, but that is another story.)

The above example has illustrated roughly what information is to be had in the event
record, but not so much about how it is stored. This is better seen by using a 132-column
format for listing events. Try e.g. the following program

IMPLICIT DOUBLE PRECISION(A-H, O-Z)
CALL PY3ENT(0,1,21,-1,30D0,0.9D0,0.7D0)
CALL PYLIST(2)
CALL PYEDIT(3)
CALL PYLIST(2)
END

where a 3-jet dgd event is generated in the first executable line and listed in the second.
This listing will contain the numbers as directly stored in the common block PYJETS

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

For particle I, K(I,1) thus gives information on whether or not a parton or particle has
fragmented or decayed, K(I,2) gives the particle code, K(I,3) its origin, K(I,4) and
K(I,5) the position of fragmentation/decay products, and P(I,1)–P(I,5) momentum,
energy and mass. The number of lines in current use is given by N, i.e. 1 ≤ I ≤ N. The
V matrix contains decay vertices; to view those PYLIST(3) has to be used. NPAD is a
dummy, needed to avoid some compiler troubles. It is important to learn the rules for
how information is stored in PYJETS.

The third executable line in the program illustrates another important point about
Pythia: a number of routines are available for manipulating and analyzing the event
record after the event has been generated. Thus PYEDIT(3) will remove everything except
stable charged particles, as shown by the result of the second PYLIST call. More advanced
possibilities include things like sphericity or clustering routines. Pythia also contains
some simple routines for histogramming, used to give self-contained examples of analysis
procedures.

Apart from the input arguments of subroutine calls, control on the doings of Pythia
may be imposed via many common blocks. Here sensible default values are always pro-
vided. A user might want to switch off all particle decays by putting MSTJ(21)=0 or
increase the s/u ratio in fragmentation by putting PARJ(2)=0.40D0, to give but two ex-
amples. It is by exploring the possibilities offered here that Pythia can be turned into
an extremely versatile tool, even if all the nice physics is already present in the default
values.

As a final, semi-realistic example, assume that the p⊥ spectrum of π+ particles is to
be studied in 91.2 GeV e+e− annihilation events, where p⊥ is to be defined with respect
to the sphericity axis. Using the internal routines for simple histogramming, a complete
program might look like

32

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP

C...Common blocks.
COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

C...Book histograms.
CALL PYBOOK(1,’pT spectrum of pi+’,100,0D0,5D0)

C...Number of events to generate. Loop over events.
NEVT=100
DO 110 IEVT=1,NEVT

C...Generate event. List first one.
CALL PYEEVT(0,91.2D0)
IF(IEVT.EQ.1) CALL PYLIST(1)

C...Find sphericity axis.
CALL PYSPHE(SPH,APL)

C...Rotate event so that sphericity axis is along z axis.
CALL PYEDIT(31)

C...Loop over all particles, but skip if not pi+.
DO 100 I=1,N

IF(K(I,2).NE.211) GOTO 100

C...Calculate pT and fill in histogram.
PT=SQRT(P(I,1)**2+P(I,2)**2)
CALL PYFILL(1,PT,1D0)

C...End of particle and event loops.
100 CONTINUE
110 CONTINUE

C...Normalize histogram properly and list it.
CALL PYFACT(1,20D0/NEVT)
CALL PYHIST

END

Study this program, try to understand what happens at each step, and run it to check
that it works. You should then be ready to look at the relevant sections of this report
and start writing your own programs.

3.6 Getting Started with the Event Generation Machinery

A run with the full Pythia event generation machinery has to be more strictly organized
than the simple examples above, in that it is necessary to initialize the generation before
events can be generated, and in that it is not possible to change switches and parameters
freely during the course of the run. A fairly precise recipe for how a run should be
structured can therefore be given.

33

Thus, the nowadays normal usage of Pythia can be subdivided into three steps.
1. The initialization step. It is here that all the basic characteristics of the coming

generation are specified. The material in this section includes the following.
• Declarations for double precision and integer variables and integer functions:

IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP

• Common blocks, at least the following, and maybe some more:
COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)
COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)
COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

• Selection of required processes. Some fixed ‘menus’ of subprocesses can be
selected with different MSEL values, but with MSEL=0 it is possible to compose
‘à la carte’, using the subprocess numbers. To generate processes 14, 18 and
29, for instance, one needs

MSEL=0
MSUB(14)=1
MSUB(18)=1
MSUB(29)=1

• Selection of kinematics cuts in the CKIN array. To generate hard scatterings
with 5 GeV ≤ p⊥ ≤ 10 GeV, for instance, use

CKIN(3)=5D0
CKIN(4)=10D0

Unfortunately, initial- and final-state radiation will shift around the kinematics
of the hard scattering, making the effects of cuts less predictable. One therefore
always has to be very careful that no desired event configurations are cut out.
• Definition of underlying physics scenario, e.g. Higgs mass.
• Selection of parton-distribution sets, Q2 definitions, and all other details of the

generation.
• Switching off of generator parts not needed for toy simulations, e.g. fragmen-

tation for parton level studies.
• Initialization of the event generation procedure. Here kinematics is set up,

maxima of differential cross sections are found for future Monte Carlo gen-
eration, and a number of other preparatory tasks carried out. Initialization
is performed by PYINIT, which should be called only after the switches and
parameters above have been set to their desired values. The frame, the beam
particles and the energy have to be specified, e.g.

CALL PYINIT(’CMS’,’p’,’pbar’,1800D0)

• Any other initial material required by you, e.g. histogram booking.
2. The generation loop. It is here that events are generated and studied. It includes

the following tasks:
• Generation of the next event, with

CALL PYEVNT

• Printing of a few events, to check that everything is working as planned, with
CALL PYLIST(1)

• An analysis of the event for properties of interest, either directly reading out in-
formation from the PYJETS common block or making use of the utility routines
in Pythia.
• Saving of events on disk or tape, or interfacing to detector simulation.

3. The finishing step. Here the tasks are:

34

• Printing a table of deduced cross sections, obtained as a by-product of the
Monte Carlo generation activity, with the command

CALL PYSTAT(1)

• Printing histograms and other user output.
To illustrate this structure, imagine a toy example, where one wants to simulate the

production of a 300 GeV Higgs particle. In Pythia, a program for this might look
something like the following.

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP

C...Common blocks.
COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)
COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)
COMMON/PYDAT3/MDCY(500,3),MDME(8000,2),BRAT(8000),KFDP(8000,5)
COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)
COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

C...Number of events to generate. Switch on proper processes.
NEV=1000
MSEL=0
MSUB(102)=1
MSUB(123)=1
MSUB(124)=1

C...Select Higgs mass and kinematics cuts in mass.
PMAS(25,1)=300D0
CKIN(1)=290D0
CKIN(2)=310D0

C...For simulation of hard process only: cut out unnecessary tasks.
MSTP(61)=0
MSTP(71)=0
MSTP(81)=0
MSTP(111)=0

C...Initialize and list partial widths.
CALL PYINIT(’CMS’,’p’,’p’,14000D0)
CALL PYSTAT(2)

C...Book histogram.
CALL PYBOOK(1,’Higgs mass’,50,275D0,325D0)

C...Generate events. Look at first few.
DO 200 IEV=1,NEV

CALL PYEVNT
IF(IEV.LE.3) CALL PYLIST(1)

C...Loop over particles to find Higgs and histogram its mass.
DO 100 I=1,N

35

IF(K(I,1).LT.20.AND.K(I,2).EQ.25) HMASS=P(I,5)
100 CONTINUE

CALL PYFILL(1,HMASS,1D0)
200 CONTINUE

C...Print cross sections and histograms.
CALL PYSTAT(1)
CALL PYHIST

END

Here 102, 123 and 124 are the three main Higgs production graphs gg → h, ZZ→ h,
and WW → h, and MSUB(ISUB)=1 is the command to switch on process ISUB. Full
freedom to combine subprocesses ‘à la carte’ is ensured by MSEL=0; ready-made ‘menus’
can be ordered with other MSEL numbers. The PMAS command sets the mass of the Higgs,
and the CKIN variables the desired mass range of the Higgs — a Higgs with a 300 GeV
nominal mass actually has a fairly broad Breit–Wigner type mass distribution. The MSTP
switches that come next are there to modify the generation procedure, in this case to
switch off initial- and final-state radiation, multiple interactions among beam jets, and
fragmentation, to give only the ‘parton skeleton’ of the hard process. The PYINIT call
initializes Pythia, by finding maxima of cross sections, recalculating the Higgs decay
properties (which depend on the Higgs mass), etc. The decay properties can be listed
with PYSTAT(2).

Inside the event loop, PYEVNT is called to generate an event, and PYLIST(1) to list
the event. The information used by PYLIST(1) is the event record, stored in the common
block PYJETS. Here one finds all produced particles, both final and intermediate ones, with
information on particle species and event history (K array), particle momenta (P array)
and production vertices (V array). In the loop over all particles produced, 1 through N,
the Higgs particle is found by its code, K(I,2)=25, and its mass is stored in P(I,5).

After all events have been generated, PYSTAT(1) gives a summary of the number of
events generated in the various allowed channels, and the inferred cross sections.

In the run above, a typical event listing might look like the following.

Event listing (summary)

I particle/jet KF p_x p_y p_z E m

1 !p+! 2212 0.000 0.000 8000.000 8000.000 0.938
2 !p+! 2212 0.000 0.000-8000.000 8000.000 0.938

==
3 !g! 21 -0.505 -0.229 28.553 28.558 0.000
4 !g! 21 0.224 0.041 -788.073 788.073 0.000
5 !g! 21 -0.505 -0.229 28.553 28.558 0.000
6 !g! 21 0.224 0.041 -788.073 788.073 0.000
7 !H0! 25 -0.281 -0.188 -759.520 816.631 300.027
8 !W+! 24 120.648 35.239 -397.843 424.829 80.023
9 !W-! -24 -120.929 -35.426 -361.677 391.801 82.579

10 !e+! -11 12.922 -4.760 -160.940 161.528 0.001
11 !nu_e! 12 107.726 39.999 -236.903 263.302 0.000
12 !s! 3 -62.423 7.195 -256.713 264.292 0.199
13 !cbar! -4 -58.506 -42.621 -104.963 127.509 1.350

==
14 (H0) 25 -0.281 -0.188 -759.520 816.631 300.027
15 (W+) 24 120.648 35.239 -397.843 424.829 80.023

36

16 (W-) -24 -120.929 -35.426 -361.677 391.801 82.579
17 e+ -11 12.922 -4.760 -160.940 161.528 0.001
18 nu_e 12 107.726 39.999 -236.903 263.302 0.000
19 s A 3 -62.423 7.195 -256.713 264.292 0.199
20 cbar V -4 -58.506 -42.621 -104.963 127.509 1.350
21 ud_1 A 2103 -0.101 0.176 7971.328 7971.328 0.771
22 d V 1 -0.316 0.001 -87.390 87.390 0.010
23 u A 2 0.606 0.052 -0.751 0.967 0.006
24 uu_1 V 2203 0.092 -0.042-7123.668 7123.668 0.771

==
sum: 2.00 0.00 0.00 0.00 15999.98 15999.98

The above event listing is abnormally short, in part because some columns of information
were removed to make it fit into this text, in part because all initial- and final-state QCD
radiation, all non-trivial beam jet structure, and all fragmentation was inhibited in the
generation. Therefore only the skeleton of the process is visible. In lines 1 and 2 one
recognizes the two incoming protons. In lines 3 and 4 are incoming partons before initial-
state radiation and in 5 and 6 after — since there is no such radiation they coincide here.
Line 7 shows the Higgs produced by gg fusion, 8 and 9 its decay products and 10–13 the
second-step decay products. Up to this point lines give a summary of the event history,
indicated by the exclamation marks that surround particle names (and also reflected in
the K(I,1) code, not shown). From line 14 onwards come the particles actually produced
in the final states, first in lines 14–16 particles that subsequently decayed, which have
their names surrounded by brackets, and finally the particles and partons left in the end,
including beam remnants. Here this also includes a number of unfragmented partons,
since fragmentation was inhibited. Ordinarily, the listing would have gone on for a few
hundred more lines, with the particles produced in the fragmentation and their decay
products. The final line gives total charge and momentum, as a convenient check that
nothing unexpected happened. The first column of the listing is just a counter, the second
gives the particle name and information on status and string drawing (the A and V), the
third the particle-flavour code (which is used to give the name), and the subsequent
columns give the momentum components.

One of the main problems is to select kinematics efficiently. Imagine for instance that
one is interested in the production of a single Z with a transverse momentum in excess of
50 GeV. If one tries to generate the inclusive sample of Z events, by the basic production
graphs qq → Z, then most events will have low transverse momenta and will have to be
discarded. That any of the desired events are produced at all is due to the initial-state
generation machinery, which can build up transverse momenta for the incoming q and
q. However, the amount of initial-state radiation cannot be constrained beforehand. To
increase the efficiency, one may therefore turn to the higher-order processes qg → Zq
and qq → Zg, where already the hard subprocess gives a transverse momentum to the
Z. This transverse momentum can be constrained as one wishes, but again initial- and
final-state radiation will smear the picture. If one were to set a p⊥ cut at 50 GeV for
the hard-process generation, those events where the Z was given only 40 GeV in the hard
process but got the rest from initial-state radiation would be missed. Not only therefore
would cross sections come out wrong, but so might the typical event shapes. In the end,
it is therefore necessary to find some reasonable compromise, by starting the generation
at 30 GeV, say, if one knows that only rarely do events below this value fluctuate up to
50 GeV. Of course, most events will therefore not contain a Z above 50 GeV, and one will
have to live with some inefficiency. It is not uncommon that only one event out of ten
can be used, and occasionally it can be even worse.

If it is difficult to set kinematics, it is often easier to set the flavour content of a process.
In a Higgs study, one might wish, for example, to consider the decay h0 → Z0Z0, with
each Z0 → e+e− or µ+µ−. It is therefore necessary to inhibit all other h0 and Z0 decay

37

channels, and also to adjust cross sections to take into account this change, all of which
is fairly straightforward. The same cannot be said for decays of ordinary hadrons, where
the number produced in a process is not known beforehand, and therefore inconsistencies
easily can arise if one tries to force specific decay channels.

In the examples given above, all run-specific parameters are set in the code (in the
main program; alternatively it could be in a subroutine called by the main program).
This approach is allowing maximum flexibility to change parameters during the course
of the run. However, in many experimental collaborations one does not want to allow
this freedom, but only one set of parameters, to be read in from an external file at the
beginning of a run and thereafter never changed. This in particular applies when Pythia
is to be linked with other libraries, such as Geant [Bru89] and detector-specific software.
While a linking of a normal-sized main program with Pythia is essentially instantaneous
on current platforms (typically less than a second), this may not hold for other libraries.
For this purpose one then needs a parser of Pythia parameters, the core of which can
be provided by the PYGIVE routine.

As an example, consider a main program of the form

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP

C...Input and output strings.
CHARACTER FRAME*12,BEAM*12,TARGET*12,PARAM*100

C...Read parameters for PYINIT call.
READ(*,*) FRAME,BEAM,TARGET,ENERGY

C...Read number of events to generate, and to print.
READ(*,*) NEV,NPRT

C...Loop over reading and setting parameters/switches.
100 READ(*,’(A)’,END=200) PARAM

CALL PYGIVE(PARAM)
GOTO 100

C...Initialize PYTHIA.
200 CALL PYINIT(FRAME,BEAM,TARGET,ENERGY)

C...Event generation loop
DO 300 IEV=1,NEV

CALL PYEVNT
IF(IEV.LE.NPRT) CALL PYLIST(1)

300 CONTINUE

C...Print cross sections.
CALL PYSTAT(1)

END

and a file indata with the contents

CMS,p,p,14000.
1000,3
! below follows commands sent to PYGIVE

38

MSEL=0 ! Mix processes freely
MSUB(102)=1 ! g + g -> h0
MSUB(123)=1 ! Z0 + Z0 -> h0
MSUB(124)=1 ! W+ + W- -> h0
PMAS(25,1)=300. ! Higgs mass
CKIN(1)=290. ! lower cutoff on mass
CKIN(2)=310. ! upper cutoff on mass
MSTP(61)=0 ! no initial-state showers
MSTP(71)=0 ! no final-state showers
MSTP(81)=0 ! no multiple interactions
MSTP(111)=0 ! no hadronization

Here the text following the exclamation marks is interpreted as a comment by PYGIVE, and
thus purely intended to allow better documentation of changes. The main program could
then be linked to Pythia, to an executable a.out, and run e.g. with a Unix command
line

a.out < indata > output

to produce results on the file output. Here the indata could be changed without requiring
a recompilation. Of course, the main program would have to be more realistic, e.g. with
events saved to disk or tape, but the principle should be clear.

39

4 Monte Carlo Techniques

Quantum mechanics introduces a concept of randomness in the behaviour of physical
processes. The virtue of event generators is that this randomness can be simulated by
the use of Monte Carlo techniques. In the process, the program authors have to use some
ingenuity to find the most efficient way to simulate an assumed probability distribution.
A detailed description of possible techniques would carry us too far, but in this section
some of the most frequently used approaches are presented, since they will appear in
discussions in subsequent sections. Further examples may be found e.g. in [Jam80].

First of all one assumes the existence of a random number generator. This is a (For-
tran) function which, each time it is called, returns a number R in the range between 0
and 1, such that the inclusive distribution of numbers R is flat in the range, and such that
different numbers R are uncorrelated. The random number generator that comes with
Pythia is described at the end of this section, and we defer the discussion until then.

4.1 Selection From a Distribution

The situation that is probably most common is that we know a function f(x) which is
non-negative in the allowed x range xmin ≤ x ≤ xmax. We want to select an x ‘at random’
so that the probability in a small interval dx around a given x is proportional to f(x) dx.
Here f(x) might be a fragmentation function, a differential cross section, or any of a
number of distributions.

One does not have to assume that the integral of f(x) is explicitly normalized to unity:
by the Monte Carlo procedure of picking exactly one accepted x value, normalization is
implicit in the final result. Sometimes the integral of f(x) does carry a physics content
of its own, as part of an overall weight factor we want to keep track of. Consider, for
instance, the case when x represents one or several phase-space variables and f(x) a
differential cross section; here the integral has a meaning of total cross section for the
process studied. The task of a Monte Carlo is then, on the one hand, to generate events
one at a time, and, on the other hand, to estimate the total cross section. The discussion
of this important example is deferred to section 7.4.

If it is possible to find a primitive function F (x) which has a known inverse F−1(x),
an x can be found as follows (method 1):

∫ x

xmin

f(x) dx = R
∫ xmax

xmin

f(x) dx

=⇒ x = F−1(F (xmin) +R(F (xmax)− F (xmin))) . (2)

The statement of the first line is that a fraction R of the total area under f(x) should be
to the left of x. However, seldom are functions of interest so nice that the method above
works. It is therefore necessary to use more complicated schemes.

Special tricks can sometimes be found. Consider e.g. the generation of a Gaussian
f(x) = exp(−x2). This function is not integrable, but if we combine it with the same
Gaussian distribution of a second variable y, it is possible to transform to polar coordinates

f(x) dx f(y) dy = exp(−x2 − y2) dx dy = r exp(−r2) dr dϕ , (3)

and now the r and ϕ distributions may be easily generated and recombined to yield x.
At the same time we get a second number y, which can also be used. For the generation
of transverse momenta in fragmentation, this is very convenient, since in fact we want to
assign two transverse degrees of freedom.

If the maximum of f(x) is known, f(x) ≤ fmax in the x range considered, a hit-or-miss
method will always yield the correct answer (method 2):

40

1. select an x with even probability in the allowed range, i.e. x = xmin+R(xmax−xmin);
2. compare a (new) R with the ratio f(x)/fmax; if f(x)/fmax ≤ R, then reject the x

value and return to point 1 for a new try;
3. otherwise the most recent x value is retained as final answer.

The probability that f(x)/fmax > R is proportional to f(x); hence the correct distribution
of retained x values. The efficiency of this method, i.e. the average probability that an
x will be retained, is (

∫
f(x) dx)/(fmax(xmax − xmin)). The method is acceptable if this

number is not too low, i.e. if f(x) does not fluctuate too wildly.
Very often f(x) does have narrow spikes, and it may not even be possible to define

an fmax. An example of the former phenomenon is a function with a singularity just
outside the allowed region, an example of the latter an integrable singularity just at the
xmin and/or xmax borders. Variable transformations may then be used to make a function
smoother. Thus a function f(x) which blows up as 1/x for x → 0, with an xmin close to
0, would instead be roughly constant if transformed to the variable y = ln x.

The variable transformation strategy may be seen as a combination of methods 1 and
2, as follows. Assume the existence of a function g(x), with f(x) ≤ g(x) over the x range
of interest. Here g(x) is picked to be a ‘simple’ function, such that the primitive function
G(x) and its inverse G−1(x) are known. Then (method 3):

1. select an x according to the distribution g(x), using method 1;
2. compare a (new) R with the ratio f(x)/g(x); if f(x)/g(x) ≤ R, then reject the x

value and return to point 1 for a new try;
3. otherwise the most recent x value is retained as final answer.

This works, since the first step will select x with a probability g(x) dx = dG(x) and the
second retain this choice with probability f(x)/g(x). The total probability to pick a value
x is then just the product of the two, i.e. f(x) dx.

If f(x) has several spikes, method 3 may work for each spike separately, but it may
not be possible to find a g(x) that covers all of them at the same time, and which still
has an invertible primitive function. However, assume that we can find a function g(x) =∑
i gi(x), such that f(x) ≤ g(x) over the x range considered, and such that the functions

gi(x) each are non-negative and simple, in the sense that we can find primitive functions
and their inverses. In that case (method 4):

1. select an i at random, with relative probability given by the integrals

∫ xmax

xmin

gi(x) dx = Gi(xmax)−Gi(xmin) ; (4)

2. for the i selected, use method 1 to find an x, i.e.

x = G−1
i (Gi(xmin) +R(Gi(xmax)−Gi(xmin))) ; (5)

3. compare a (new) R with the ratio f(x)/g(x); if f(x)/g(x) ≤ R, then reject the x
value and return to point 1 for a new try;

4. otherwise the most recent x value is retained as final answer.
This is just a trivial extension of method 3, where steps 1 and 2 ensure that, on the
average, each x value picked there is distributed according to g(x): the first step picks i
with relative probability

∫
gi(x) dx, the second x with absolute probability gi(x)/

∫
gi(x) dx

(this is one place where one must remember to do normalization correctly); the product
of the two is therefore gi(x) and the sum over all i gives back g(x).

We have now arrived at an approach that is sufficiently powerful for a large selection
of problems. In general, for a function f(x) which is known to have sharp peaks in a few
different places, the generic behaviour at each peak separately may be covered by one
or a few simple functions gi(x), to which one adds a few more gi(x) to cover the basic
behaviour away from the peaks. By a suitable selection of the relative strengths of the

41

different gi’s, it is possible to find a function g(x) that matches well the general behaviour
of f(x), and thus achieve a reasonable Monte Carlo efficiency.

The major additional complication is when x is a multidimensional variable. Usually
the problem is not so much f(x) itself, but rather that the phase-space boundaries may
be very complicated. If the boundaries factorize it is possible to pick phase-space points
restricted to the desired region. Otherwise the region may have to be inscribed in a hyper-
rectangle, with points picked within the whole hyper-rectangle but only retained if they
are inside the allowed region. This may lead to a significant loss in efficiency. Variable
transformations may often make the allowed region easier to handle.

There are two main methods to handle several dimensions, each with its set of vari-
ations. The first method is based on a factorized ansatz, i.e. one attempts to find a
function g(x) which is everywhere larger than f(x), and which can be factorized into
g(x) = g(1)(x1) g(2)(x2) · · · g(n)(xn), where x = (x1, x2, . . . , xn). Here each g(j)(xj) may

in its turn be a sum of functions g
(j)
i , as in method 4 above. First, each xj is selected

independently, and afterwards the ratio f(x)/g(x) is used to determine whether to retain
the point.

The second method is useful if the boundaries of the allowed region can be written in
a form where the maximum range of x1 is known, the allowed range of x2 only depends
on x1, that of x3 only on x1 and x2, and so on until xn, whose range may depend on all
the preceding variables. In that case it may be possible to find a function g(x) that can
be integrated over x2 through xn to yield a simple function of x1, according to which x1 is
selected. Having done that, x2 is selected according to a distribution which now depends
on x1, but with x3 through xn integrated over. In particular, the allowed range for x2 is
known. The procedure is continued until xn is reached, where now the function depends
on all the preceding xj values. In the end, the ratio f(x)/g(x) is again used to determine
whether to retain the point.

4.2 The Veto Algorithm

The ‘radioactive decay’ type of problems is very common, in particular in parton showers,
but it is also used, e.g. in the multiple interactions description in Pythia. In this kind
of problems there is one variable t, which may be thought of as giving a kind of time axis
along which different events are ordered. The probability that ‘something will happen’
(a nucleus decay, a parton branch) at time t is described by a function f(t), which is
non-negative in the range of t values to be studied. However, this näıve probability is
modified by the additional requirement that something can only happen at time t if it
did not happen at earlier times t′ < t. (The original nucleus cannot decay once again
if it already did decay; possibly the decay products may decay in their turn, but that is
another question.)

The probability that nothing has happened by time t is expressed by the function
N (t) and the differential probability that something happens at time t by P(t). The
basic equation then is

P(t) = −dN
dt

= f(t)N (t) . (6)

For simplicity, we shall assume that the process starts at time t = 0, with N (0) = 1.
The above equation can be solved easily if one notes that dN /N = d lnN :

N (t) = N (0) exp
{
−
∫ t

0
f(t′) dt′

}
= exp

{
−
∫ t

0
f(t′) dt′

}
, (7)

and thus

P(t) = f(t) exp
{
−
∫ t

0
f(t′) dt′

}
. (8)

42

With f(t) = c this is nothing but the textbook formulae for radioactive decay. In partic-
ular, at small times the correct decay probability, P(t), agrees well with the input one,
f(t), since the exponential factor is close to unity there. At larger t, the exponential
gives a dampening which ensures that the integral of P(t) never can exceed unity, even
if the integral of f(t) does. The exponential can be seen as the probability that nothing
happens between the original time 0 and the final time t. In the parton-shower language,
this corresponds to the so-called Sudakov form factor.

If f(t) has a primitive function with a known inverse, it is easy to select t values
correctly:

∫ t

0
P(t′) dt′ = N (0)−N (t) = 1− exp

{
−
∫ t

0
f(t′) dt′

}
= 1−R , (9)

which has the solution

F (0)− F (t) = lnR =⇒ t = F−1(F (0)− lnR) . (10)

If f(t) is not sufficiently nice, one may again try to find a better function g(t), with
f(t) ≤ g(t) for all t ≥ 0. However to use method 3 with this g(t) would not work, since
the method would not correctly take into account the effects of the exponential term in
P(t). Instead one may use the so-called veto algorithm:

1. start with i = 0 and t0 = 0;
2. add 1 to i and select ti = G−1(G(ti−1) − lnR), i.e. according to g(t), but with the

constraint that ti > ti−1,
3. compare a (new) R with the ratio f(ti)/g(ti); if f(ti)/g(ti) ≤ R, then return to

point 2 for a new try;
4. otherwise ti is retained as final answer.
It may not be apparent why this works. Consider, however, the various ways in which

one can select a specific time t. The probability that the first try works, t = t1, i.e. that
no intermediate t values need be rejected, is given by

P0(t) = exp
{
−
∫ t

0
g(t′) dt′

}
g(t)

f(t)

g(t)
= f(t) exp

{
−
∫ t

0
g(t′) dt′

}
, (11)

where the exponential times g(t) comes from eq. (8) applied to g, and the ratio f(t)/g(t)
is the probability that t is accepted. Now consider the case where one intermediate time
t1 is rejected and t = t2 is only accepted in the second step. This gives

P1(t) =
∫ t

0
dt1 exp

{
−
∫ t1

0
g(t′) dt′

}
g(t1)

[
1− f(t1)

g(t1)

]
exp

{
−
∫ t

t1
g(t′) dt′

}
g(t)

f(t)

g(t)
,

(12)
where the first exponential times g(t1) gives the probability that t1 is first selected, the
square brackets the probability that t1 is subsequently rejected, the following piece the
probability that t = t2 is selected when starting from t1, and the final factor that t is
retained. The whole is to be integrated over all possible intermediate times t1. The
exponentials together give an integral over the range from 0 to t, just as in P0, and the
factor for the final step being accepted is also the same, so therefore one finds that

P1(t) = P0(t)
∫ t

0
dt1 [g(t1)− f(t1)] . (13)

This generalizes. In P2 one has to consider two intermediate times, 0 ≤ t1 ≤ t2 ≤ t3 = t,
and so

P2(t) = P0(t)
∫ t

0
dt1 [g(t1)− f(t1)]

∫ t

t1
dt2 [g(t2)− f(t2)]

= P0(t)
1

2

(∫ t

0
[g(t′)− f(t′)] dt′

)2

. (14)

43

The last equality is most easily seen if one also considers the alternative region 0 ≤ t2 ≤
t1 ≤ t, where the rôles of t1 and t2 have just been interchanged, and the integral therefore
has the same value as in the region considered. Adding the two regions, however, the
integrals over t1 and t2 decouple, and become equal. In general, for Pi, the i intermediate
times can be ordered in i! different ways. Therefore the total probability to accept t, in
any step, is

P(t) =
∞∑

i=0

Pi(t) = P0(t)
∞∑

i=0

1

i!

(∫ t

0
[g(t′)− f(t′)] dt′

)i

= f(t) exp
{
−
∫ t

0
g(t′) dt′

}
exp

{∫ t

0
[g(t′)− f(t′)] dt′

}

= f(t) exp
{
−
∫ t

0
f(t′) dt′

}
, (15)

which is the desired answer.
If the process is to be stopped at some scale tmax, i.e. if one would like to remain

with a fraction N (tmax) of events where nothing happens at all, this is easy to include in
the veto algorithm: just iterate upwards in t at usual, but stop the process if no allowed
branching is found before tmax.

Usually f(t) is a function also of additional variables x. The methods of the preceding
section are easy to generalize if one can find a suitable function g(t, x) with f(t, x) ≤
g(t, x). The g(t) used in the veto algorithm is the integral of g(t, x) over x. Each time
a ti has been selected also an xi is picked, according to g(ti, x) dx, and the (t, x) point is
accepted with probability f(ti, xi)/g(ti, xi).

4.3 The Random Number Generator

In recent years, progress has been made in constructing portable generators with large
periods and other good properties; see the review [Jam90]. Therefore the current version
contains a random number generator based on the algorithm proposed by Marsaglia,
Zaman and Tsang [Mar90]. This routine should work on any machine with a mantissa
of at least 48 digits, i.e. on computers with a 64-bit (or more) representation of double
precision real numbers. Given the same initial state, the sequence will also be identical
on different platforms. This need not mean that the same sequence of events will be
generated, since the different treatments of roundoff errors in numerical operations will
lead to slightly different real numbers being tested against these random numbers in IF
statements. Also code optimization may lead to a divergence of the event sequence.

Apart from nomenclature issues, the coding of PYR as a function rather than a sub-
routine, and the extension to double precision, the only difference between our code and
the code given in [Jam90] is that slightly different algorithms are used to ensure that the
random number is not equal to 0 or 1 within the machine precision. Further developments
of the algorithm has been proposed [Lüs94] to remove residual possibilities of small long-
range correlations, at the price of a slower generation procedure. However, given that
Pythia is using random numbers for so many different tasks, without any fixed cycle,
this has been deemed unnecessary.

The generator has a period of over 1043, and the possibility to obtain almost 109

different and disjoint subsequences, selected by giving an initial integer number. The
price to be paid for the long period is that the state of the generator at a given moment
cannot be described by a single integer, but requires about 100 words. Some of these
are real numbers, and are thus not correctly represented in decimal form. The old-style
procedure, which made it possible to restart the generation from a seed value written to
the run output, is therefore not convenient. The CERN library implementation keeps
track of the number of random numbers generated since the start. With this value saved,

44

in a subsequent run the random generator can be asked to skip ahead the corresponding
number of random numbers. Pythia is a heavy user of random numbers, however:
typically 30% of the full run time is spent on random number generation. Of this, half is
overhead coming from the function call administration, but the other half is truly related
to the speed of the algorithm. Therefore a skipping ahead would take place with 15% of
the time cost of the original run, i.e. an uncomfortably high figure.

Instead a different solution is chosen here. Two special routines are provided for
writing and reading the state of the random number generator (plus some initialization
information) on a sequential file, in a platform-dependent internal representation. The file
used for this purpose has to be specified by you, and opened for read and write. A state
is written as a single record, in free format. It is possible to write an arbitrary number of
states on a file, and a record can be overwritten, if so desired. The event generation loop
might then look something like:

1. save the state of the generator on file (using flag set in point 3 below),
2. generate an event,
3. study the event for errors or other reasons why to regenerate it later; set flag to

overwrite previous generator state if no errors, otherwise set flag to create new
record;

4. loop back to point 1.
With this procedure, the file will contain the state before each of the problematical events.
These events can therefore be generated in a shorter run, where further information can
be printed. (Inside Pythia, some initialization may take place in connection with the
very first event generated in a run, so it may be necessary to generate one ordinary
event before reading in a saved state to generate the interesting events.) An alternative
approach might be to save the state every 100 events or so. If the events are subsequently
processed through a detector simulation, you may have to save also other sets of seeds,
naturally.

Unfortunately, the procedure is not always going to work. For instance, if cross section
maximum violations have occured before the interesting event in the original run, there is
a possibility that another event is picked in the re-started one, where the maximum weight
estimate has not been updated. Another problem is the multiple interaction machinery,
where some of the options contain an element of learning, which again means that the
event sequence may be broken.

In addition to the service routines, the common block which contains the state of the
generator is available for manipulation, if you so desire. In particular, the initial seed
value is by default 19780503, i.e. different from the Marsaglia/CERN default 54217137.
It is possible to change this value before any random numbers have been generated, or to
force re-initialization in mid-run with any desired new seed.

It should be noted that, of course, the appearance of a random number generator
package inside Pythia does in no way preclude the use of other routines. You can easily
revert to having PYR as nothing but an interface to an arbitrary external random number
generator; e.g. to call a routine RNDM all you need to have is

FUNCTION PYR(IDUMMY)
IMPLICIT DOUBLE PRECISION(A-H, O-Z)

100 PYR=RNDM(IDUMMY)
IF(PYR.LE.0D0.OR.PYR.GE.1D0) GOTO 100
RETURN
END

The random generator subpackage consists of the following components.

R = PYR(IDUMMY)

45

Purpose: to generate a (pseudo)random number R uniformly in the range 0<R<1, i.e.
excluding the endpoints.

IDUMMY : dummy input argument; normally 0.

CALL PYRGET(LFN,MOVE)

Purpose: to dump the current state of the random number generator on a separate file,
using internal representation for real and integer numbers. To be precise, the
full contents of the PYDATR common block are written on the file, with the
exception of MRPY(6).

LFN : (logical file number) the file number to which the state is dumped. You must
associate this number with a true file (with a platform-dependent name), and
see to it that this file is open for write.

MOVE : choice of adding a new record to the file or overwriting old record(s). Normally
only options 0 or −1 should be used.

= 0 (or > 0) : add a new record to the end of the file.
= -1 : overwrite the last record with a new one (i.e. do one BACKSPACE before

the new write).
= −n : back up n records before writing the new record. The records following

after the new one are lost, i.e. the last n old records are lost and one new
added.

CALL PYRSET(LFN,MOVE)

Purpose: to read in a state for the random number generator, from which the subsequent
generation can proceed. The state must previously have been saved by a
PYRGET call. Again the full contents of the PYDATR common block are read,
with the exception of MRPY(6).

LFN : (logical file number) the file number from which the state is read. You must
associate this number with a true file previously written with a PYRGET call,
and see to it that this file is open for read.

MOVE : positioning in file before a record is read. With zero value, records are read one
after the other for each new call, while non-zero values may be used to navigate
back and forth, and e.g. return to the same initial state several times.

= 0 : read the next record.
= +n : skip ahead n records before reading the record that sets the state of the

random number generator.
= −n : back up n records before reading the record that sets the state of the

random number generator.

COMMON/PYDATR/MRPY(6),RRPY(100)

Purpose: to contain the state of the random number generator at any moment (for
communication between PYR, PYRGET and PYRSET), and also to provide you
with the possibility to initialize different random number sequences, and to
know how many numbers have been generated.

MRPY(1) : (D=19780503) the integer number that specifies which of the possible subse-
quences will be initialized in the next PYR call for which MRPY(2)=0. Allowed
values are 0≤MRPY(1)≤900 000 000, the original Marsaglia (and CERN library)
seed is 54217137. The MRPY(1) value is not changed by any of the Pythia
routines.

46

MRPY(2) : (D=0) initialization flag, put to 1 in the first PYR call of run. A re-initialization
of the random number generator can be made in mid-run by resetting MRPY(2)
to 0 by hand. In addition, any time the counter MRPY(3) reaches 1000000000,
it is reset to 0 and MRPY(2) is increased by 1.

MRPY(3) : (R) counter for the number of random numbers generated from the beginning
of the run. To avoid overflow when very many numbers are generated, MRPY(2)
is used as described above.

MRPY(4), MRPY(5) : I97 and J97 of the CERN library implementation; part of the state
of the generator.

MRPY(6) : (R) current position, i.e. how many records after beginning, in the file; used
by PYRGET and PYRSET.

RRPY(1) - RRPY(97) : the U array of the CERN library implementation; part of the
state of the generator.

RRPY(98) - RRPY(100) : C, CD and CM of the CERN library implementation; the first
part of the state of the generator, the latter two constants calculated at ini-
tialization.

47

5 The Event Record

The event record is the central repository for information about the particles produced in
the current event: flavours, momenta, event history, and production vertices. It plays a
very central rôle: without a proper understanding of what the record is and how informa-
tion is stored, it is meaningless to try to use Pythia. The record is stored in the common
block PYJETS. Almost all the routines that the user calls can be viewed as performing
some action on the record: fill a new event, let partons fragment or particles decay, boost
it, list it, find clusters, etc.

In this section we will first describe the KF flavour code, subsequently the PYJETS
common block, and then give a few comments about the rôle of the event record in the
programs.

To ease the interfacing of different event generators, a HEPEVT standard common block
structure for the event record has been agreed on. For historical reasons the standard
common blocks are not directly used in Pythia, but a conversion routine comes with the
program, and is described at the end of this section.

5.1 Particle Codes

The Particle Data Group particle code [PDG88, PDG92, PDG00] is used consistently
throughout the program. Almost all known discrepancies between earlier versions of the
PDG standard and the Pythia usage have now been resolved. The one known exception is
the (very uncertain) classification of f0(980), with f0(1370) also affected as a consequence.
There is also some slight mixup in the technicolor sector between π′0tc and ηtc. These
should not be major problems. The PDG standard, with the local Pythia extensions, is
referred to as the KF particle code. This code you have to be thoroughly familiar with. It
is described below.

The KF code is not convenient for a direct storing of masses, decay data, or other
particle properties, since the KF codes are so spread out. Instead a compressed code KC
between 1 and 500 is used here. A particle and its antiparticle are mapped to the same
KC code, but else the mapping is unique. Normally this code is only used at very specific
places in the program, not visible to the user. If need be, the correspondence can always
be obtained by using the function PYCOMP, i.e. KC = PYCOMP(KF). This mapping is not
hardcoded, but can be changed by user intervention, e.g. by introducing new particles
with the PYUPDA facility. It is therefore not intended that you should ever want or need
to know any KC codes at all. It may be useful to know, however, that for codes smaller
than 80, KF and KC agree. Normally a user would never do the inverse mapping, but we
note that this is stored as KF = KCHG(KC,4), making use of the KCHG array in the PYDAT2
common block. Of course, the sign of a particle could never be recovered by this inverse
operation.

The particle names printed in the tables in this section correspond to the ones obtained
with the routine PYNAME, which is used extensively, e.g. in PYLIST. Greek characters
are spelt out in full, with a capital first letter to correspond to a capital Greek letter.
Generically the name of a particle is made up of the following pieces:

1. The basic root name. This includes a * for most spin 1 (L = 0) mesons and spin
3/2 baryons, and a ′ for some spin 1/2 baryons (where there are two states to be
distinguished, cf. Λ–Σ0). The rules for heavy baryon naming are in accordance with
the 1986 Particle Data Group conventions [PDG86]. For mesons with one unit of
orbital angular momentum, K (D, B, . . .) is used for quark-spin 0 and K* (D*, B*,
. . .) for quark-spin 1 mesons; the convention for ‘*’ may here deviate slightly from
the one used by the PDG.

2. Any lower indices, separated from the root by a . For heavy hadrons, this is the
additional heavy-flavour content not inherent in the root itself. For a diquark, it is

48

Table 5: Quark and lepton codes.

KF Name Printed KF Name Printed

1 d d 11 e− e-

2 u u 12 νe nu e

3 s s 13 µ− mu-

4 c c 14 νµ nu mu

5 b b 15 τ− tau-

6 t t 16 ντ nu tau

7 b′ b’ 17 τ ′ tau’

8 t′ t’ 18 ν ′τ nu’ tau

9 19

10 20

the spin.
3. The characters ‘bar’ for an antiparticle, wherever the distinction between particle

and antiparticle is not inherent in the charge information.
4. Charge information: ++, +, 0, −, or−−. Charge is not given for quarks or diquarks.

Some neutral particles which are customarily given without a 0 also here lack it,
such as neutrinos, g, γ, and flavour-diagonal mesons other than π0 and ρ0. Note
that charge is included both for the proton and the neutron. While non-standard,
it is helpful in avoiding misunderstandings when looking at an event listing.

Below follows a list of KF particle codes. The list is not complete; a more extensive one
may be obtained with CALL PYLIST(11). Particles are grouped together, and the basic
rules are described for each group. Whenever a distinct antiparticle exists, it is given the
same KF code with a minus sign (whereas KC codes are always positive).

1. Quarks and leptons, Table 5.
This group contains the basic building blocks of matter, arranged according to
family, with the lower member of weak isodoublets also having the smaller code
(thus d precedes u). A fourth generation is included as part of the scenarios for
exotic physics. The quark codes are used as building blocks for the diquark, meson
and baryon codes below.

2. Gauge bosons and other fundamental bosons, Table 6.
This group includes all the gauge and Higgs bosons of the standard model, as well
as some of the bosons appearing in various extensions of it. They correspond to
one extra U(1) and one extra SU(2) group, a further Higgs doublet, a graviton,
a horizontal gauge boson R (coupling between families), and a (scalar) leptoquark
LQ.

3. Exotic particle codes.
The positions 43–80 are used as temporary sites for exotic particles that eventually
may be shifted to a separate code sequence. Currently this list is empty. The ones
not in use are at your disposal (but with no guarantees that they will remain so).

4. Various special codes, Table 7.
In a Monte Carlo, it is always necessary to have codes that do not correspond to
any specific particle, but are used to lump together groups of similar particles for
decay treatment (nowadays largely obsolete), to specify generic decay products (also
obsolete), or generic intermediate states in external processes, or additional event
record information from jet searches. These codes, which again are non-standard,
are found between numbers 81 and 100.

49

Table 6: Gauge boson and other fundamental boson codes.

KF Name Printed KF Name Printed

21 g g 31

22 γ gamma 32 Z′0 Z’0

23 Z0 Z0 33 Z′′0 Z"0

24 W+ W+ 34 W′+ W’+

25 h0 h0 35 H0 H0

26 36 A0 A0

27 37 H+ H+

28 38

29 39 G Graviton

30 40

41 R0 R0

42 LQ LQ

Table 7: Various special codes.

KF Printed Meaning

81 specflav Spectator flavour; used in decay-product listings

82 rndmflav A random u, d, or s flavour; possible decay product

83 phasespa Simple isotropic phase-space decay

84 c-hadron Information on decay of generic charm hadron

85 b-hadron Information on decay of generic bottom hadron

86

87

88

89 (internal use for unspecified resonance data)

90 system Intermediate pseudoparticle in external process

91 cluster Parton system in cluster fragmentation

92 string Parton system in string fragmentation

93 indep. Parton system in independent fragmentation

94 CMshower Four-momentum of time-like showering system

95 SPHEaxis Event axis found with PYSPHE

96 THRUaxis Event axis found with PYTHRU

97 CLUSjet Jet (cluster) found with PYCLUS

98 CELLjet Jet (cluster) found with PYCELL

99 table Tabular output from PYTABU

100

50

Table 8: Diquark codes. For brevity, diquarks containing c or b quarks are not
listed, but are defined analogously.

KF Name Printed KF Name Printed

1103 dd1 dd 1

2101 ud0 ud 0 2103 ud1 ud 1

2203 uu1 uu 1

3101 sd0 sd 0 3103 sd1 sd 1

3201 su0 su 0 3203 su1 su 1

3303 ss1 ss 1

5. Diquark codes, Table 8.
A diquark made up of a quark with code i and another with code j, where i ≥ j,
and with total spin s, is given the code

KF = 1000i+ 100j + 2s+ 1 , (16)

i.e. the tens position is left empty (cf. the baryon code below). Some of the most
frequently used codes are listed in the table. All the lowest-lying spin 0 and 1
diquarks are included in the program.

6. Meson codes, Tables 9 and 10.
A meson made up of a quark with code i and an antiquark with code −j, j 6= i,
and with total spin s, is given the code

KF = {100 max(i, j) + 10 min(i, j) + 2s+ 1} sign(i− j) (−1)max(i,j) , (17)

assuming it is not orbitally or radially excited. Note the presence of an extra − sign
if the heaviest quark is a down-type one. This is in accordance with the particle–
antiparticle distinction adopted in the 1986 Review of Particle Properties [PDG86].
It means for example that a B meson contains a b antiquark rather than a b quark.
The flavour-diagonal states are arranged in order of ascending mass. Thus the
obvious generalization of eq. (17) to KF = 110i+ 2s+ 1 is only valid for charm and
bottom. The lighter quark states can appear mixed, e.g. the π0 (111) is an equal
mixture of dd (naively code 111) and uu (naively code 221).
The standard rule of having the last digit of the form 2s+1 is broken for the K0

S–K0
L

system, where it is 0, and this convention should carry over to mixed states in the
B meson system, should one choose to define such. For higher multiplets with the
same spin, ±10000, ±20000, etc., are added to provide the extra distinction needed.
Some of the most frequently used codes are given below.
The full lowest-lying pseudoscalar and vector multiplets are included in the program,
Table 9.
Also the lowest-lying orbital angular momentum L = 1 mesons are included, Table
10: one pseudovector multiplet obtained for total quark-spin 0 (L = 1, S = 0 ⇒
J = 1) and one scalar, one pseudovector and one tensor multiplet obtained for total
quark-spin 1 (L = 1, S = 1 ⇒ J = 0, 1 or 2), where J is what is conventionally
called the spin s of the meson. Any mixing between the two pseudovector multiplets
is not taken into account. Please note that some members of these multiplets have
still not been found, and are included here only based on guesswork. Even for known
ones, the information on particles (mass, width, decay modes) is highly incomplete.
Only two radial excitations are included, the ψ′ = ψ(2S) and Υ′ = Υ(2S).

7. Baryon codes, Table 11.
A baryon made up of quarks i, j and k, with i ≥ j ≥ k, and total spin s, is given

51

Table 9: Meson codes, part 1.

KF Name Printed KF Name Printed

211 π+ pi+ 213 ρ+ rho+

311 K0 K0 313 K∗0 K*0

321 K+ K+ 323 K∗+ K*+

411 D+ D+ 413 D∗+ D*+

421 D0 D0 423 D∗0 D*0

431 D+
s D s+ 433 D∗+s D* s+

511 B0 B0 513 B∗0 B*0

521 B+ B+ 523 B∗+ B*+

531 B0
s B s0 533 B∗0s B* s0

541 B+
c B c+ 543 B∗+c B* c+

111 π0 pi0 113 ρ0 rho0

221 η eta 223 ω omega

331 η′ eta’ 333 φ phi

441 ηc eta c 443 J/ψ J/psi

551 ηb eta b 553 Υ Upsilon

130 K0
L K L0

310 K0
S K S0

the code
KF = 1000i+ 100j + 10k + 2s+ 1 . (18)

An exception is provided by spin 1/2 baryons made up of three different types of
quarks, where the two lightest quarks form a spin-0 diquark (Λ-like baryons). Here
the order of the j and k quarks is reversed, so as to provide a simple means of
distinction to baryons with the lightest quarks in a spin-1 diquark (Σ-like baryons).
For hadrons with heavy flavours, the root names are Lambda or Sigma for hadrons
with two u or d quarks, Xi for those with one, and Omega for those without u or d
quarks.
Some of the most frequently used codes are given in Table 11. The full lowest-lying
spin 1/2 and 3/2 multiplets are included in the program.

8. QCD effective states, Table 12.
We here include the pomeron IP and reggeon IR ‘particles’, which are important e.g.
in the description of diffractive scattering, but do not have a simple correspondence
with other particles in the classification scheme.
Also included are codes to be used for denoting diffractive states in Pythia, as part
of the event history. The first two digits here are 99 to denote the non-standard
character. The second, third and fourth last digits give flavour content, while the
very last one is 0, to denote the somewhat unusual character of the code. Only a
few codes have been introduced with names; depending on circumstances these also
have to double up for other diffractive states. Other diffractive codes for strange
mesons and baryon beams are also accepted by the program, but do not give nice
printouts.

9. Supersymmetric codes, Table 13.
Susy doubles the number of states of the Standard Model (at least). Fermions
have separate spartners to the left- and right-handed components. In the third
generation these are assumed to mix to nontrivial mass eigenstates, while mixing

52

Table 10: Meson codes, part 2. For brevity, states with b quark are omitted from
this listing, but are defined in the program.

KF Name Printed KF Name Printed

10213 b1 b 1+ 10211 a+
0 a 0+

10313 K0
1 K 10 10311 K∗00 K* 00

10323 K+
1 K 1+ 10321 K∗+0 K* 0+

10413 D+
1 D 1+ 10411 D∗+0 D* 0+

10423 D0
1 D 10 10421 D∗00 D* 00

10433 D+
1s D 1s+ 10431 D∗+0s D* 0s+

10113 b0
1 b 10 10111 a0

0 a 00

10223 h0
1 h 10 10221 f0

0 f 00

10333 h′01 h’ 10 10331 f ′00 f’ 00

10443 h0
1c h 1c0 10441 χ0

0c chi 0c0

20213 a+
1 a 1+ 215 a+

2 a 2+

20313 K∗01 K* 10 315 K∗02 K* 20

20323 K∗+1 K* 1+ 325 K∗+2 K* 2+

20413 D∗+1 D* 1+ 415 D∗+2 D* 2+

20423 D∗01 D* 10 425 D∗02 D* 20

20433 D∗+1s D* 1s+ 435 D∗+2s D* 2s+

20113 a0
1 a 10 115 a0

2 a 20

20223 f0
1 f 10 225 f0

2 f 20

20333 f ′01 f’ 10 335 f ′02 f’ 20

20443 χ0
1c chi 1c0 445 χ0

2c chi 2c0

100443 ψ′ psi’

100553 Υ′ Upsilon’

is not included in the first two. Note that all sparticle names begin with a tilde.
Default masses are arbitrary and branching ratios not set at all. This is taken care
of at initialization if IMSS(1) is positive.

10. Technicolor codes, Table 14.
A set of colourless and coloured technihadrons have been included, the latter specif-
ically for the case of Topcolor assisted Technicolor. Where unclear, indices 1 or 8
denote the colour multiplet. Then there are coloured technirhos and technipions that
can mix with the Coloron (or V8) associated with the breaking of SU(3)2×SU(3)3

to ordinary SU(3)C (where the 2 and 3 indices refer to the first two and the third
generation, respectively).
The ηtc belongs to an older iteration of Technicolor modelling than the rest. It was
originally given the 3000221 code, and thereby now comes to clash with the π′0tc of
the current main scenario. Since the ηtc is one-of-a-kind, it was deemed better to
move it to make way for the π′0tc. This leads to a slight inconsistency with the PDG
codes.

11. Excited fermion codes, Table 15.
A first generation of excited fermions are included.

12. Exotic particle codes, Table 16.
This section includes the excited graviton, as the first (but probably not last) man-
ifestation of the possibility of large extra dimensions. Although it is not yet in the

53

Table 11: Baryon codes. For brevity, some states with b quarks or multiple c ones
are omitted from this listing, but are defined in the program.

KF Name Printed KF Name Printed

1114 ∆− Delta-

2112 n n0 2114 ∆0 Delta0

2212 p p+ 2214 ∆+ Delta+

2224 ∆++ Delta++

3112 Σ− Sigma- 3114 Σ∗− Sigma*-

3122 Λ0 Lambda0

3212 Σ0 Sigma0 3214 Σ∗0 Sigma*0

3222 Σ+ Sigma+ 3224 Σ∗+ Sigma*+

3312 Ξ− Xi- 3314 Ξ∗− Xi*-

3322 Ξ0 Xi0 3324 Ξ∗0 Xi*0

3334 Ω− Omega-

4112 Σ0
c Sigma c0 4114 Σ∗0c Sigma* c0

4122 Λ+
c Lambda c+

4212 Σ+
c Sigma c+ 4214 Σ∗+c Sigma* c+

4222 Σ++
c Sigma c++ 4224 Σ∗++

c Sigma* c++

4132 Ξ0
c Xi c0

4312 Ξ′0c Xi’ c0 4314 Ξ∗0c Xi* c0

4232 Ξ+
c Xi c+

4322 Ξ′+c Xi’ c+ 4324 Ξ∗+c Xi* c+

4332 Ω0
c Omega c0 4334 Ω∗0c Omega* c0

5112 Σ−b Sigma b- 5114 Σ∗−b Sigma* b-

5122 Λ0
b Lambda b0

5212 Σ0
b Sigma b0 5214 Σ∗0b Sigma* b0

5222 Σ+
b Sigma b+ 5224 Σ∗+b Sigma* b+

Table 12: QCD effective states.

KF Printed Meaning

110 reggeon reggeon IR

990 pomeron pomeron IP

9900110 rho diff0 Diffractive π0/ρ0/γ state

9900210 pi diffr+ Diffractive π+ state

9900220 omega di0 Diffractive ω state

9900330 phi diff0 Diffractive φ state

9900440 J/psi di0 Diffractive J/ψ state

9902110 n diffr Diffractive n state

9902210 p diffr+ Diffractive p state

54

Table 13: Supersymmetric codes.

KF Name Printed KF Name Printed

1000001 d̃L ∼d L 2000001 d̃R ∼d R

1000002 ũL ∼u L 2000002 ũR ∼u R

1000003 s̃L ∼s L 2000003 s̃R ∼s R

1000004 c̃L ∼c L 2000004 c̃R ∼c R

1000005 b̃1 ∼b 1 2000005 b̃2 ∼b 2

1000006 t̃1 ∼t 1 2000006 t̃2 ∼t 2

1000011 ẽL ∼e L- 2000011 ẽR ∼e R-

1000012 ν̃eL ∼nu eL 2000012 ν̃eR ∼nu eR

1000013 µ̃L ∼mu L- 2000013 µ̃R ∼mu R-

1000014 ν̃µL ∼nu muL 2000014 ν̃µR ∼nu muR

1000015 τ̃1 ∼tau L- 2000015 τ̃2 ∼tau R-

1000016 ν̃τL ∼nu tauL 2000016 ν̃τR ∼nu tauR

1000021 g̃ ∼g 1000025 χ̃0
3 ∼chi 30

1000022 χ̃0
1 ∼chi 10 1000035 χ̃0

4 ∼chi 40

1000023 χ̃0
2 ∼chi 20 1000037 χ̃+

2 ∼chi 2+

1000024 χ̃+
1 ∼chi 1+ 1000039 G̃ ∼Gravitino

Table 14: Technicolor codes.

KF Name Printed KF Name Printed

3000111 π0
tc pi tc0 3100021 V8,tc V8 tc

3000211 π+
tc pi tc+ 3100111 π0

22,1,tc pi 22 1 tc

3000221 π′0tc pi’ tc0 3200111 π0
22,8,tc pi 22 8 tc

3000113 ρ0
tc rho tc0 3100113 ρ0

11,tc rho 11 tc

3000213 ρ+
tc rho tc+ 3200113 ρ0

12,tc rho 12 tc

3000223 ω0
tc omega tc0 3300113 ρ0

21,tc rho 21 tc

3000331 ηtc eta tc0 3400113 ρ0
22,tc rho 22 tc

Table 15: Excited fermion codes.

KF Name Printed KF Name Printed

4000001 u∗ d* 4000011 e∗ e*-

4000002 d∗ u* 4000012 ν∗e nu* e0

55

Table 16: Exotic particle codes.

KF Name Printed KF Name Printed

5000039 G∗ Graviton*

9900012 νRe nu Re 9900023 Z0
R Z R0

9900014 νRµ nu Rmu 9900024 W+
R W R+

9900016 νRτ nu Rtau 9900041 H++
L H L++

9900042 H++
R H R++

PDG standard, we assume that such states will go in a new series of numbers.
Included is also a set of particles associated with an extra SU(2) gauge group for
righthanded states, as required in order to obtain a left–right symmetric theory at
high energies. This includes righthanded (Majorana) neutrinos, righthanded Z0

R and
W±

R gauge bosons, and both left- and righthanded doubly charged Higgses. Such a
scenario would also contain other Higgs states, but these do not bring anything new
relative to the ones already introduced, from an observational point of view. Here
the first two digits are 99 to denote the non-standard character.

A hint on large particle numbers: if you want to avoid mistyping the number of zeros,
it may pay off to define a statement like

PARAMETER (KSUSY1=1000000,KSUSY2=2000000,KTECHN=3000000,
&KEXCIT=4000000,KDIMEN=5000000)

at the beginning of your program and then refer to particles as KSUSY1+1 = d̃L and so
on. This then also agrees with the internal notation (where feasible).

5.2 The Event Record

Each new event generated is in its entirety stored in the common block PYJETS, which
thus forms the event record. Here each parton or particle that appears at some stage
of the fragmentation or decay chain will occupy one line in the matrices. The different
components of this line will tell which parton/particle it is, from where it originates, its
present status (fragmented/decayed or not), its momentum, energy and mass, and the
space–time position of its production vertex. Note that K(I,3)–K(I,5) and the P and V
vectors may take special meaning for some specific applications (e.g. sphericity or cluster
analysis), as described in those connections.

The event history information stored in K(I,3)–K(I,5) should not be taken too lit-
erally. In the particle decay chains, the meaning of a mother is well-defined, but the
fragmentation description is more complicated. The primary hadrons produced in string
fragmentation come from the string as a whole, rather than from an individual parton.
Even when the string is not included in the history (see MSTU(16)), the pointer from
hadron to parton is deceptive. For instance, in a qgq event, those hadrons are pointing
towards the q (q) parton that were produced by fragmentation from that end of the string,
according to the random procedure used in the fragmentation routine. No particles point
to the g. This assignment seldom agrees with the visual impression, and is not intended
to.

The common block PYJETS has expanded with time, and can now house 4000 entries.
This figure may seem ridiculously large, but actually the previous limit of 2000 was
often reached in studies of high-p⊥ processes at the LHC (and SSC). This is because
the event record contains not only the final particles, but also all intermediate partons
and hadrons, which subsequently showered, fragmented or decayed. Included are also a
wealth of photons coming from π0 decays; the simplest way of reducing the size of the

56

event record is actually to switch off π0 decays by MDCY(PYCOMP(111),1)=0. Also note
that some routines, such as PYCLUS and PYCELL, use memory after the event record proper
as a working area. Still, to change the size of the common block, upwards or downwards,
is easy: just do a global substitute in the common block and change the MSTU(4) value to
the new number. If more than 10000 lines are to be used, the packing of colour information
should also be changed, see MSTU(5).

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

Purpose: to contain the event record, i.e. the complete list of all partons and particles
(initial, intermediate and final) in the current event. (By parton we here
mean the subclass of particles that carry colour, for which extra colour flow
information is then required. Normally this means quarks and gluons, which
can fragment to hadrons, but also squarks and other exotic particles fall in
this category.)

N : number of lines in the K, P and V matrices occupied by the current event. N
is continuously updated as the definition of the original configuration and the
treatment of fragmentation and decay proceed. In the following, the individual
parton/particle number, running between 1 and N, is called I.

NPAD : dummy to ensure an even number of integers before the double precision reals,
as required by some compilers.

K(I,1) : status code KS, which gives the current status of the parton/particle stored in
the line. The ground rule is that codes 1–10 correspond to currently existing
partons/particles, while larger codes contain partons/particles which no longer
exist, or other kinds of event information.

= 0 : empty line.
= 1 : an undecayed particle or an unfragmented parton, the latter being either

a single parton or the last one of a parton system.
= 2 : an unfragmented parton, which is followed by more partons in the same

colour-singlet parton system.
= 3 : an unfragmented parton with special colour flow information stored in

K(I,4) and K(I,5), such that adjacent partons along the string need
not follow each other in the event record.

= 4 : a particle which could have decayed, but did not within the allowed
volume around the original vertex.

= 5 : a particle which is to be forced to decay in the next PYEXEC call, in the
vertex position given (this code is only set by user intervention).

= 11 : a decayed particle or a fragmented parton, the latter being either a single
parton or the last one of a parton system, cf. =1.

= 12 : a fragmented parton, which is followed by more partons in the same
colour-singlet parton system, cf. =2. Further, a B meson which decayed
as a B one, or vice versa, because of B–B mixing, is marked with this
code rather than =11.

= 13 : a parton which has been removed when special colour flow information
has been used to rearrange a parton system, cf. =3.

= 14 : a parton which has branched into further partons, with special colour-
flow information provided, cf. =3.

= 15 : a particle which has been forced to decay (by user intervention), cf. =5.
= 21 : documentation lines used to give a compressed story of the event at the

beginning of the event record.
= 31 : lines with information on sphericity, thrust or cluster search.
= 32 : tabular output, as generated by PYTABU.

57

= 41 : junction (currently not fully implemented).
< 0 : these codes are never used by the program, and are therefore usually

not affected by operations on the record, such as PYROBO, PYLIST and
event-analysis routines (the exception is some PYEDIT calls, where lines
are moved but not deleted). Such codes may therefore be useful in some
connections.

K(I,2) : particle KF code, as described in section 5.1.
K(I,3) : line number of parent particle, where known, otherwise 0. Note that the

assignment of a particle to a given parton in a parton system is unphysical,
and what is given there is only related to the way the fragmentation was
generated.

K(I,4) : normally the line number of the first daughter; it is 0 for an undecayed particle
or unfragmented parton.
For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information
(for internal use only) of the form
K(I,4) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,
where ICFR and ICTO give the line numbers of the partons from which the
colour comes and to where it goes, respectively; MCFR and MCTO originally
are 0 and are set to 1 when the corresponding colour connection has been traced
in the PYPREP rearrangement procedure. (The packing may be changed with
MSTU(5).) The ‘from’ colour position may indicate a parton which branched
to produce the current parton, or a parton created together with the current
parton but with matched anticolour, while the ‘to’ normally indicates a parton
that the current parton branches into. Thus, for setting up an initial colour
configuration, it is normally only the ‘from’ part that is used, while the ‘to’
part is added by the program in a subsequent call to parton-shower evolution
(for final-state radiation; it is the other way around for initial-state radiation).
Note: normally most users never have to worry about the exact rules for
colour-flow storage, since this is used mainly for internal purposes. However,
when it is necessary to define this flow, it is recommended to use the PYJOIN
routine, since it is likely that this would reduce the chances of making a mis-
take.

K(I,5) : normally the line number of the last daughter; it is 0 for an undecayed particle
or unfragmented parton.
For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information
(for internal use only) of the form
K(I,5) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,
where ICFR and ICTO give the line numbers of the partons from which the
anticolour comes and to where it goes, respectively; MCFR and MCTO orig-
inally are 0 and are set to 1 when the corresponding colour connection has
been traced in the PYPREP rearrangement procedure. For further discussion,
see K(I,4).

P(I,1) : px, momentum in the x direction, in GeV/c.
P(I,2) : py, momentum in the y direction, in GeV/c.
P(I,3) : pz, momentum in the z direction, in GeV/c.
P(I,4) : E, energy, in GeV.
P(I,5) : m, mass, in GeV/c2. In parton showers, with space-like virtualities, i.e. where

Q2 = −m2 > 0, one puts P(I,5)= −Q.
V(I,1) : x position of production vertex, in mm.
V(I,2) : y position of production vertex, in mm.
V(I,3) : z position of production vertex, in mm.
V(I,4) : time of production, in mm/c (≈ 3.33× 10−12 s).
V(I,5) : proper lifetime of particle, in mm/c (≈ 3.33 × 10−12 s). If the particle is not

58

expected to decay, V(I,5)=0. A line with K(I,1)=4, i.e. a particle that could
have decayed, but did not within the allowed region, has the proper non-zero
V(I,5).
In the absence of electric or magnetic fields, or other disturbances, the decay
vertex VP of an unstable particle may be calculated as
VP(j) = V(I,j) + V(I,5)*P(I,j)/P(I,5), j = 1–4.

5.3 How The Event Record Works

The event record is the main repository for information about an event. In the generation
chain, it is used as a ‘scoreboard’ for what has already been done and what remains to
do. This information can be studied by you, to access information not only about the
final state, but also about what came before.

5.3.1 A simple example

The first example of section 3.5 may help to clarify what is going on. When PY2ENT is
called to generate a qq pair, the quarks are stored in lines 1 and 2 of the event record,
respectively. Colour information is set to show that they belong together as a colour
singlet. The counter N is also updated to the value of 2. At no stage is a previously
generated event removed. Lines 1 and 2 are overwritten, but lines 3 onwards still contain
whatever may have been there before. This does not matter, since N indicates where the
‘real’ record ends.

As PYEXEC is called, explicitly by you or indirectly by PY2ENT, the first entry is con-
sidered and found to be the first parton of a system. Therefore the second entry is also
found, and these two together form a colour singlet parton system, which may be allowed
to fragment. The ‘string’ that fragments is put in line 3 and the fragmentation products
in lines 4 through 10 (in this particular case). At the same time, the q and q in the first
two lines are marked as having fragmented, and the same for the string. At this stage, N
is 10. Internally in PYEXEC there is another counter with the value 2, which indicates how
far down in the record the event has been studied.

This second counter is gradually increased by one. If the entry in the corresponding
line can fragment or decay, then fragmentation or decay is performed. The fragmenta-
tion/decay products are added at the end of the event record, and N is updated accordingly.
The entry is then also marked as having been treated. For instance, when line 3 is con-
sidered, the ‘string’ entry of this line is seen to have been fragmented, and no action is
taken. Line 4, a ρ+, is allowed to decay to π+π0; the decay products are stored in lines 11
and 12, and line 4 is marked as having decayed. Next, entry 5 is allowed to decay. The
entry in line 6, π+, is a stable particle (by default) and is therefore passed by without any
action being taken.

In the beginning of the process, entries are usually unstable, and N grows faster than
the second counter of treated entries. Later on, an increasing fraction of the entries are
stable end products, and the rôles are now reversed, with the second counter growing
faster. When the two coincide, the end of the record has been reached, and the process
can be stopped. All unstable objects have now been allowed to fragment or decay. They
are still present in the record, so as to simplify the tracing of the history.

Notice that PYEXEC could well be called a second time. The second counter would then
start all over from the beginning, but slide through until the end without causing any
action, since all objects that can be treated already have been. Unless some of the relevant
switches were changed meanwhile, that is. For instance, if π0 decays were switched off
the first time around but on the second, all the π0’s found in the record would be allowed
to decay in the second call. A particle once decayed is not ‘undecayed’, however, so if the
π0 is put back stable and PYEXEC is called a third time, nothing will happen.

59

5.3.2 Complete PYTHIA events

In a full-blown event generated with Pythia, the usage of PYJETS is more complicated,
although the general principles survive. PYJETS is used extensively by many of the gener-
ation routines; indeed it provides the bridge between many of them. The Pythia event
listing begins (optionally) with a few lines of event summary, specific to the hard process
simulated and thus not described in the overview above. These specific parts are covered
in the following.

In most instances, only the particles actually produced are of interest. For
MSTP(125)=0, the event record starts off with the parton configuration existing after
hard interaction, initial- and final-state radiation, multiple interactions and beam rem-
nants have been considered. The partons are arranged in colour singlet clusters, ordered
as required for string fragmentation. Also photons and leptons produced as part of the
hard interaction (e.g. from qq→ gγ or uu→ Z0 → e+e−) appear in this part of the event
record. These original entries appear with pointer K(I,3)=0, whereas the products of the
subsequent fragmentation and decay have K(I,3) numbers pointing back to the line of
the parent.

The standard documentation, obtained with MSTP(125)=1, includes a few lines at the
beginning of the event record, which contain a brief summary of the process that has taken
place. The number of lines used depends on the nature of the hard process and is stored
in MSTI(4) for the current event. These lines all have K(I,1)=21. For all processes, lines
1 and 2 give the two incoming particles. When listed with PYLIST, these two lines will be
separated from subsequent ones by a sequence of ‘======’ signs, to improve readability.
For diffractive and elastic events, the two outgoing states in lines 3 and 4 complete the
list. Otherwise, lines 3 and 4 contain the two partons that initiate the two initial-state
parton showers, and 5 and 6 the end products of these showers, i.e. the partons that
enter the hard interaction. With initial-state radiation switched off, lines 3 and 5 and
lines 4 and 6 are identical. For a simple 2 → 2 hard scattering, lines 7 and 8 give the
two outgoing partons/particles from the hard interaction, before any final-state radiation.
For 2 → 2 processes proceeding via an intermediate resonance such as γ∗/Z0, W± or h0,
the resonance is found in line 7 and the two outgoing partons/particles in 8 and 9. In
some cases one of these may be a resonance in its own right, or both of them, so that
further pairs of lines are added for subsequent decays. If the decay of a given resonance
has been switched off, then no decay products are listed either in this initial summary
or in the subsequent ordinary listing. Whenever partons are listed, they are assumed to
be on the mass shell for simplicity. The fact that effective masses may be generated by
initial- and final-state radiation is taken into account in the actual parton configuration
that is allowed to fragment, however. The listing of the event documentation closes with
another line made up of ‘======’ signs.

A few examples may help clarify the picture. For a single diffractive event pp→ pdiffrp,
the event record will start with
I K(I,1) K(I,2) K(I,3) comment
1 21 2212 0 incoming p
2 21 -2212 0 incoming p

========================= not part of record; appears in listings
3 21 9902210 1 outgoing pdiffr

4 21 -2212 2 outgoing p
========================= again not part of record

The typical QCD 2→ 2 process would be
I K(I,1) K(I,2) K(I,3) comment
1 21 2212 0 incoming p
2 21 -2212 0 incoming p

=========================

60

3 21 2 1 u picked from incoming p
4 21 -1 2 d picked from incoming p
5 21 21 3 u evolved to g at hard scattering
6 21 -1 4 still d at hard scattering
7 21 21 0 outgoing g from hard scattering
8 21 -1 0 outgoing d from hard scattering

=========================
Note that, where well defined, the K(I,3) code does contain information as to which

side the different partons come from, e.g. above the gluon in line 5 points back to the u
in line 3, which points back to the proton in line 1. In the example above, it would have
been possible to associate the scattered g in line 7 with the incoming one in line 5, but
this is not possible in the general case, consider e.g. gg→ gg.

A special case is provided by W+W− or Z0Z0 fusion to an h0. Then the virtual W’s or
Z’s are shown in lines 7 and 8, the h0 in line 9, and the two recoiling quarks (that emitted
the bosons) in 10 and 11, followed by the Higgs decay products. Since the W’s and Z’s are
space-like, what is actually listed as the mass for them is −√−m2. Thus W+W− fusion
to an h0 in process 8 (not process 124, which is lengthier) might look like
I K(I,1) K(I,2) K(I,3) comment
1 21 2212 0 first incoming p
2 21 2212 0 second incoming p

=========================
3 21 2 1 u picked from first p
4 21 21 2 g picked from second p
5 21 2 3 still u after initial-state radiation
6 21 -4 4 g evolved to c
7 21 24 5 space-like W+ emitted by u quark
8 21 -24 6 space-like W− emitted by c quark
9 21 25 0 Higgs produced by W+W− fusion

10 21 1 5 u turned into d by emission of W+

11 21 -3 6 c turned into s by emission of W−

12 21 23 9 first Z0 coming from decay of h0

13 21 23 9 second Z0 coming from decay of h0

14 21 12 12 νe from first Z0 decay
15 21 -12 12 νe from first Z0 decay
16 21 5 13 b quark from second Z0 decay
17 21 -5 13 b antiquark from second Z0 decay
=========================

Another special case is when a spectrum of virtual photons are generated inside a
lepton beam, i.e. when PYINIT is called with one or two ’gamma/lepton’ arguments.
Then the documentation section is expanded to reflect the new layer of administration.
Positions 1 and 2 contain the original beam particles, e.g. e and p (or e+ and e−). In
position 3 (and 4 for e+e−) is (are) the scattered outgoing lepton(s). Thereafter comes
the normal documentation, but starting from the photon rather than a lepton. For ep,
this means 4 and 5 are the γ∗ and p, 6 and 7 the shower initiators, 8 and 9 the incoming
partons to the hard interaction, and 10 and 11 the outgoing ones. Thus the documentation
is 3 lines longer (4 for e+e−) than normally.

After these lines with the initial information, the event record looks the same as
for MSTP(125)=0, i.e. first comes the parton configuration to be fragmented and, after
another separator line ‘======’ in the output (but not the event record), the products
of subsequent fragmentation and decay chains. This ordinary listing begins in position
MST(4)+1. The K(I,3) pointers for the partons, as well as leptons and photons produced
in the hard interaction, are now pointing towards the documentation lines above, however.
In particular, beam remnants point to 1 or 2, depending on which side they belong to, and

61

partons emitted in the initial-state parton showers point to 3 or 4. In the second example
above, the partons produced by final-state radiation will be pointing back to 7 and 8; as
usual, it should be remembered that a specific assignment to 7 or 8 need not be unique.
For the third example, final-state radiation partons will come both from partons 10 and
11 and from partons 16 and 17, and additionally there will be a neutrino–antineutrino
pair pointing to 14 and 15.

A hadronic event may contain several (semi)hard interactions, in the multiple inter-
actions scenario. The hardest interaction of an event is shown in the initial section of the
event record, while further ones are not. Therefore these extra partons, documented in
the main section of the event, do not have a documentation copy to point back to, and
so are assigned K(I,3)=0.

There exists a third documentation option, MSTP(125)=2. Here the history of initial-
and final-state parton branchings may be traced, including all details on colour flow. This
information has not been optimized for user-friendliness, and cannot be recommended for
general usage. With this option, the initial documentation lines are the same. They are
followed by blank lines, K(I,1)=0, up to line 100 (can be changed in MSTP(126)). From
line 101 onwards each parton with K(I,1)= 3, 13 or 14 appears with special colour-flow
information in the K(I,4) and K(I,5) positions. For an ordinary 2 → 2 scattering,
the two incoming partons at the hard scattering are stored in lines 101 and 102, and
the two outgoing in 103 and 104. The colour flow between these partons has to be
chosen according to the proper relative probabilities in cases when many alternatives are
possible, see section 8.2.1. If there is initial-state radiation, the two partons in lines 101
and 102 are copied down to lines 105 and 106, from which the initial-state showers are
reconstructed backwards step by step. The branching history may be read by noting that,
for a branching a→ bc, the K(I,3) codes of b and c point towards the line number of a.
Since the showers are reconstructed backwards, this actually means that parton b would
appear in the listing before parton a and c, and hence have a pointer to a position below
itself in the list. Associated time-like partons c may initiate time-like showers, as may
the partons of the hard scattering. Again a showering parton or pair of partons will be
copied down towards the end of the list and allowed to undergo successive branchings
c → de, with d and e pointing towards c. The mass of time-like partons is properly
stored in P(I,5); for space-like partons −√−m2 is stored instead. After this section,
containing all the branchings, comes the final parton configuration, properly arranged in
colour, followed by all subsequent fragmentation and decay products, as usual.

5.4 The HEPEVT Standard

A set of common blocks was developed and agreed on within the framework of the 1989
LEP physics study, see [Sjö89]. This standard defines an event record structure which
should make the interfacing of different event generators much simpler.

It would be a major work to rewrite Pythia to agree with this standard event record
structure. More importantly, the standard only covers quantities which can be defined
unambiguously, i.e. which are independent of the particular program used. There are
thus no provisions for the need for colour-flow information in models based on string frag-
mentation, etc., so the standard common blocks would anyway have to be supplemented
with additional event information. For the moment, the adopted approach is therefore to
retain the PYJETS event record, but supply a routine PYHEPC which can convert to or from
the standard event record. Owing to a somewhat different content in the two records,
some ambiguities do exist in the translation procedure. PYHEPC has therefore to be used
with some judgement.

In this section, the standard event structure is first presented, i.e. the most important
points in [Sjö89] are recapitulated. Thereafter the conversion routine is described, with
particular attention to ambiguities and limitations.

62

The standard event record is stored in two common blocks. The second of these is
specifically intended for spin information. Since Pythia never (explicitly) makes use of
spin information, this latter common block is not addressed here. A third common block
for colour flow information has been discussed, but never formalized. Note that a CALL
PYLIST(5) can be used to obtain a simple listing of the more interesting information in
the event record.

In order to make the components of the standard more distinguishable in your pro-
grams, the three characters HEP (for High Energy Physics) have been chosen to be a part
of all names.

Originally it was not specified whether real variables should be in single or double
precision. At the time, this meant that single precision became the default choice, but
since then the trend has been towards increasing precision. In connection with the 1995
LEP 2 workshop, it was therefore agreed to adopt DOUBLE PRECISION real variables as
part of the standard, and also to extend the size from 2000 to 4000 entries [Kno96]. If, for
some reason, one would want to revert to single precision, this would only require trivial
changes to the code of the PYHEPC conversion routine described below.

PARAMETER (NMXHEP=4000)
COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),

&JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP)
DOUBLE PRECISION PHEP, VHEP

Purpose: to contain an event record in a Monte Carlo-independent format.
NMXHEP: maximum numbers of entries (particles) that can be stored in the common

block. The default value of 4000 can be changed via the parameter construc-
tion. In the translation, it is checked that this value is not exceeded.

NEVHEP: is normally the event number, but may have special meanings, according to
the description below:

> 0 : event number, sequentially increased by 1 for each call to the main event
generation routine, starting with 1 for the first event generated.

= 0 : for a program which does not keep track of event numbers, as some of
the Pythia routines.

= -1 : special initialization record; not used by Pythia.
= -2 : special final record; not used by Pythia.

NHEP: the actual number of entries stored in the current event. These are found in the
first NHEP positions of the respective arrays below. Index IHEP, 1≤IHEP≤NHEP,
is used below to denote a given entry.

ISTHEP(IHEP): status code for entry IHEP, with the following meanings:
= 0 : null entry.
= 1 : an existing entry, which has not decayed or fragmented. This is the main

class of entries, which represents the ‘final state’ given by the generator.
= 2 : an entry which has decayed or fragmented and is therefore not appearing

in the final state, but is retained for event history information.
= 3 : a documentation line, defined separately from the event history. This

could include the two incoming reacting particles, etc.
= 4 - 10 : undefined, but reserved for future standards.
= 11 - 200 : at the disposal of each model builder for constructs specific to his

program, but equivalent to a null line in the context of any other program.
= 201 - : at the disposal of users, in particular for event tracking in the detector.

IDHEP(IHEP) : particle identity, according to the PDG standard. The four additional
codes 91–94 have been introduced to make the event history more legible, see
section 5.1 and the MSTU(16) description of how daughters can point back to

63

them.
JMOHEP(1,IHEP) : pointer to the position where the mother is stored. The value is 0 for

initial entries.
JMOHEP(2,IHEP) : pointer to position of second mother. Normally only one mother

exists, in which case the value 0 is to be used. In Pythia, entries with
codes 91–94 are the only ones to have two mothers. The flavour con-
tents of these objects, as well as details of momentum sharing, have to be
found by looking at the mother partons, i.e. the two partons in positions
JMOHEP(1,IHEP) and JMOHEP(2,IHEP) for a cluster or a shower system, and
the range JMOHEP(1,IHEP)–JMOHEP(2,IHEP) for a string or an independent
fragmentation parton system.

JDAHEP(1,IHEP) : pointer to the position of the first daughter. If an entry has not
decayed, this is 0.

JDAHEP(2,IHEP) : pointer to the position of the last daughter. If an entry has not
decayed, this is 0. It is assumed that daughters are stored sequentially, so
that the whole range JDAHEP(1,IHEP)–JDAHEP(2,IHEP) contains daughters.
This variable should be set also when only one daughter is present, as in
K0 → K0

S decays, so that looping from the first daughter to the last one works
transparently. Normally daughters are stored after mothers, but in backwards
evolution of initial-state radiation the opposite may appear, i.e. that mothers
are found below the daughters they branch into. Also, the two daughters then
need not appear one after the other, but may be separated in the event record.

PHEP(1,IHEP) : momentum in the x direction, in GeV/c.
PHEP(2,IHEP) : momentum in the y direction, in GeV/c.
PHEP(3,IHEP) : momentum in the z direction, in GeV/c.
PHEP(4,IHEP) : energy, in GeV.
PHEP(5,IHEP) : mass, in GeV/c2. For space-like partons, it is allowed to use a negative

mass, according to PHEP(5,IHEP)= −√−m2.
VHEP(1,IHEP) : production vertex x position, in mm.
VHEP(2,IHEP) : production vertex y position, in mm.
VHEP(3,IHEP) : production vertex z position, in mm.
VHEP(4,IHEP) : production time, in mm/c (≈ 3.33× 10−12 s).

This completes the brief description of the standard. In Pythia, the routine PYHEPC
is provided as an interface.

CALL PYHEPC(MCONV)

Purpose: to convert between the PYJETS event record and the HEPEVT event record.
MCONV : direction of conversion.

= 1 : translates the current PYJETS record into the HEPEVT one, while leaving
the original PYJETS one unaffected.

= 2 : translates the current HEPEVT record into the PYJETS one, while leaving
the original HEPEVT one unaffected.

The conversion of momenta is trivial: it is just a matter of exchanging the order of the
indices. The vertex information is but little more complicated; the extra fifth component
present in PYJETS can be easily reconstructed from other information for particles which
have decayed. (Some of the advanced features made possible by this component, such as
the possibility to consider decays within expanding spatial volumes in subsequent PYEXEC
calls, cannot be used if the record is translated back and forth, however.) Also, the
particle codes K(I,2) and IDHEP(I) are identical, since they are both based on the PDG
codes.

64

The remaining, non-trivial areas deal with the status codes and the event history. In
moving from PYJETS to HEPEVT, information on colour flow is lost. On the other hand, the
position of a second mother, if any, has to be found; this only affects lines with K(I,2)=
91–94. Also, for lines with K(I,1)= 13 or 14, the daughter pointers have to be found. By
and large, however, the translation from PYJETS to HEPEVT should cause little problem,
and there should never be any need for user intervention. (We assume that Pythia is run
with the default MSTU(16)=1 mother pointer assignments, otherwise some discrepancies
with respect to the proposed standard event history description will be present.)

In moving from HEPEVT to PYJETS, information on a second mother is lost. Any
codes IDHEP(I) not equal to 1, 2 or 3 are translated into K(I,1)=0, and so all entries
with K(I,1)≥ 30 are effectively lost in a translation back and forth. All entries with
IDHEP(I)=2 are translated into K(I,1)=11, and so entries of type K(I,1) = 12, 13, 14
or 15 are never found. There is thus no colour-flow information available for partons
which have fragmented. For partons with IDHEP(I)=1, i.e. which have not fragmented,
an attempt is made to subdivide the partonic system into colour singlets, as required
for subsequent string fragmentation. To this end, it is assumed that partons are stored
sequentially along strings. Normally, a string would then start at a q (q) or qq (qq) entry,
cover a number of intermediate gluons, and end at a q (q) or qq (qq) entry. Particles
could be interspersed in this list with no adverse effects, i.e. a u − g − γ − u sequence
would be interpreted as a u− g−u string plus an additional photon. A closed gluon loop
would be assumed to be made up of a sequential listing of the gluons, with the string
continuing from the last gluon up back to the first one. Contrary to the previous, open
string case, the appearance of any particle but a gluon would therefore signal the end of
the gluon loop. For example, a g− g− g− g sequence would be interpreted as one single
four-gluon loop, while a g − g − γ − g − g sequence would be seen as composed of two
2-gluon systems.

If these interpretations, which are not unique, are not to your liking, it is up to you
to correct them, e.g. by using PYJOIN to tell exactly which partons should be joined, in
which sequence, to give a string. Calls to PYJOIN (or the equivalent) are also necessary if
PYSHOW is to be used to have some partons develop a shower.

For practical applications, one should note that e+e− events, which have been allowed
to shower but not to fragment, do have partons arranged in the order assumed above,
so that a translation to HEPEVT and back does not destroy the possibility to perform
fragmentation by a simple PYEXEC call. Also the hard interactions in hadronic events
fulfil this condition, while problems may appear in the multiple interaction scenario,
where several closed gg loops may appear directly following one another, and thus would
be interpreted as a single multigluon loop after translation back and forth.

65

6 The Old e+e− Annihilation Routines

From the Jetset package, Pythia inherits routines for the dedicated simulation of two
hard processes in e+e− annihilation. The process of main interest is e+e− → γ∗/Z0 → qq.
The description provided by the PYEEVT routine has been a main staple from PETRA days
up to the LEP1 era. Nowadays it is superseded by process 1 of the main Pythia event
generation machinery, see section 8.4.2. This latter process offers a better description of
flavour selection, resonance shape and initial-state radiation. It can also, optionally, be
used with the second-order matrix element machinery documented in this section. For
backwards compatibility, however, the old routines have still been retained here. There
are also a few features found in the routines in this section, and not in the other ones,
such as polarized incoming beams.

For the process e+e− → γ∗/Z0 → qq, higher-order QCD corrections can be obtained
either with parton showers or with second-order matrix elements. The details of the
parton-shower evolution are given in section 10, while this section contains the matrix-
element description, including a summary of the older algorithm for initial-state photon
radiation used here.

The other standalone hard process in this section is Υ decay to ggg or γgg, which is
briefly commented on.

The main sources of information for this chapter are refs. [Sjö83, Sjö86, Sjö89].

6.1 Annihilation Events in the Continuum

The description of e+e− annihilation into hadronic events involves a number of compo-
nents: the s dependence of the total cross section and flavour composition, multiparton
matrix elements, angular orientation of events, initial-state photon bremsstrahlung and
effects of initial-state electron polarization. Many of the published formulae have been
derived for the case of massless outgoing quarks. For each of the components described in
the following, we will begin by discussing the massless case, and then comment on what
is done to accommodate massive quarks.

6.1.1 Electroweak cross sections

In the standard theory, fermions have the following couplings (illustrated here for the first
generation):

eν = 0, vν = 1, aν = 1,

ee = −1, ve = −1 + 4 sin2θW , ae = −1,

eu = 2/3, vu = 1− 8 sin2θW/3, aν = 1,

ed = −1/3, vd = −1 + 4 sin2θW/3, ad = −1,

with e the electric charge, and v and a the vector and axial couplings to the Z0. The
relative energy dependence of the weak neutral current to the electromagnetic one is given
by

χ(s) =
1

16 sin2θW cos2θW

s

s−m2
Z + imZΓZ

, (19)

where s = E2
cm. In this section the electroweak mixing parameter sin2θW and the Z0 mass

mZ and width ΓZ are considered as constants to be given by you (while the full Pythia
event generation machinery itself calculates an s-dependent width).

Although the incoming e+ and e− beams are normally unpolarized, we have included
the possibility of polarized beams, following the formalism of [Ols80]. Thus the incoming
e+ and e− are characterized by polarizations P± in the rest frame of the particles:

P± = P±T ŝ± + P±L p̂± , (20)

66

where 0 ≤ P±T ≤ 1 and −1 ≤ P±L ≤ 1, with the constraint

(P±)2 = (P±T)2 + (P±L)2 ≤ 1 . (21)

Here ŝ± are unit vectors perpendicular to the beam directions p̂±. To be specific, we
choose a right-handed coordinate frame with p̂± = (0, 0,∓1), and standard transverse
polarization directions (out of the machine plane for storage rings) ŝ± = (0,±1, 0), the
latter corresponding to azimuthal angles ϕ± = ±π/2. As free parameters in the program

we choose P+
L , P−L , PT =

√
P+

T P
−
T and ∆ϕ = (ϕ+ + ϕ−)/2.

In the massless QED case, the probability to produce a flavour f is proportional to
e2

f , i.e up-type quarks are four times as likely as down-type ones. In lowest-order mass-
less QFD (Quantum Flavour Dynamics; part of the Standard Model) the corresponding
relative probabilities are given by [Ols80]

hf(s) = e2
e (1− P+

L P
−
L) e2

f + 2ee

{
ve(1− P+

L P
−
L)− ae(P

−
L − P+

L)
}
<χ(s) efvf +

+
{

(v2
e + a2

e)(1− P+
L P

−
L)− 2veae(P

−
L − P+

L)
}
|χ(s)|2

{
v2

f + a2
f

}
, (22)

where <χ(s) denotes the real part of χ(s). The hf(s) expression depends both on the s
value and on the longitudinal polarization of the e± beams in a non-trivial way.

The cross section for the process e+e− → γ∗/Z0 → ff may now be written as

σf(s) =
4πα2

em

3s
Rf(s) , (23)

where Rf gives the ratio to the lowest-order QED cross section for the process e+e− →
µ+µ−,

Rf(s) = NC RQCD hf(s) . (24)

The factor of NC = 3 counts the number of colour states available for the qq pair. The
RQCD factor takes into account QCD loop corrections to the cross section. For nf effective
flavours (normally nf = 5)

RQCD ≈ 1 +
αs

π
+ (1.986− 0.115nf)

(
αs

π

)2

+ · · · (25)

in the MS renormalization scheme [Din79]. Note that RQCD does not affect the relative
quark-flavour composition, and so is of peripheral interest here. (For leptons the NC

and RQCD factors would be absent, i.e. NC RQCD = 1, but leptonic final states are not
generated by this routine.)

Neglecting higher-order QCD and QFD effects, the corrections for massive quarks are

given in terms of the velocity βf of a fermion with mass mf , βf =
√

1− 4m2
f /s, as follows.

The vector quark current terms in hf (proportional to e2
f , efvf , or v2

f) are multiplied by a
threshold factor βf(3− β2

f)/2, while the axial vector quark current term (proportional to
a2

f) is multiplied by β3
f . While inclusion of quark masses in the QFD formulae decreases

the total cross section, first-order QCD corrections tend in the opposite direction [Jer81].
Näıvely, one would expect one factor of βf to get cancelled. So far, the available options
are either to include threshold factors in full or not at all.

Given that all five quarks are light at the scale of the Z0, the issue of quark masses
is not really of interest at LEP. Here, however, purely weak corrections are important, in
particular since they change the b quark partial width differently from that of the other
ones [Küh89]. No such effects are included in the program.

67

6.1.2 First-order QCD matrix elements

The Born process e+e− → qq is modified in first-order QCD by the probability for the q or
q to radiate a gluon, i.e. by the process e+e− → qqg. The matrix element is conveniently
given in terms of scaled energy variables in the c.m. frame of the event, x1 = 2Eq/Ecm,
x2 = 2Eq/Ecm, and x3 = 2Eg/Ecm, i.e. x1 + x2 + x3 = 2. For massless quarks the matrix
element reads [Ell76]

1

σ0

dσ

dx1 dx2

=
αs

2π
CF

x2
1 + x2

2

(1− x1)(1− x2)
, (26)

where σ0 is the lowest-order cross section, CF = 4/3 is the appropriate colour factor, and
the kinematically allowed region is 0 ≤ xi ≤ 1, i = 1, 2, 3. By kinematics, the xk variable
for parton k is related to the invariant mass mij of the other two partons i and j by
yij = m2

ij/E
2
cm = 1− xk.

The strong coupling constant αs is in first order given by

αs(Q
2) =

12π

(33− 2nf) ln(Q2/Λ2)
. (27)

Conventionally Q2 = s = E2
cm; we will return to this issue below. The number of flavours

nf is 5 for LEP applications, and so the Λ value determined is Λ5 (while e.g. most Deeply
Inelastic Scattering studies refer to Λ4, the energies for these experiments being below
the bottom threshold). The αs values are matched at flavour thresholds, i.e. as nf is
changed the Λ value is also changed. It is therefore the derivative of αs that changes at
a threshold, not αs itself.

In order to separate 2-jets from 3-jets, it is useful to introduce jet-resolution param-
eters. This can be done in several different ways. Most famous are the y and (ε, δ)
procedures. We will only refer to the y cut, which is the one used in the program. Here
a 3-parton configuration is called a 2-jet event if

min
i,j

(yij) = min
i,j

(
m2
ij

E2
cm

)
< y . (28)

The cross section in eq. (26) diverges for x1 → 1 or x2 → 1 but, when first-order
propagator and vertex corrections are included, a corresponding singularity with opposite
sign appears in the qq cross section, so that the total cross section is finite. In analytical
calculations, the average value of any well-behaved quantity Q can therefore be calculated
as

〈Q〉 =
1

σtot

lim
y→0

(
Q(2parton)σ2parton(y) +

∫

yij>y
Q(x1, x2)

dσ3parton

dx1 dx2

dx1 dx2

)
, (29)

where any explicit y dependence disappears in the limit y → 0.
In a Monte Carlo program, it is not possible to work with a negative total 2-jet rate,

and thus it is necessary to introduce a fixed non-vanishing y cut in the 3-jet phase space.
Experimentally, there is evidence for the need of a low y cut, i.e. a large 3-jet rate. For
LEP applications, the recommended value is y = 0.01, which is about as far down as one
can go and still retain a positive 2-jet rate. With αs = 0.12, in full second-order QCD
(see below), the 2 : 3 : 4 jet composition is then approximately 11% : 77% : 12%.

Note, however, that initial-state QED radiation may occasionally lower the c.m. energy
significantly, i.e. increase αs, and thereby bring the 3-jet fraction above unity if y is kept
fixed at 0.01 also in those events. Therefore, at PETRA/PEP energies, y values slightly
above 0.01 are needed. In addition to the y cut, the program contains a cut on the

68

invariant mass mij between any two partons, which is typically required to be larger than
2 GeV. This cut corresponds to the actual merging of two nearby parton jets, i.e. where a
treatment with two separate partons rather than one would be superfluous in view of the
smearing arising from the subsequent fragmentation. Since the cut-off mass scale

√
yEcm

normally is much larger, this additional cut only enters for events at low energies.
For massive quarks, the amount of QCD radiation is slightly reduced [Iof78]:

1

σ0

dσ

dx1 dx2

=
αs

2π
CF

{
x2

1 + x2
2

(1− x1)(1− x2)
− 4m2

q

s

(
1

1− x1

+
1

1− x2

)

− 2m2
q

s

(
1

(1− x1)2
+

1

(1− x2)2

)
− 4m4

q

s2

(
1

1− x1

+
1

1− x2

)2
}
. (30)

Properly, the above expression is only valid for the vector part of the cross section, with
a slightly different expression for the axial part, but here the one above is used for it all.
In addition, the phase space for emission is reduced by the requirement

(1− x1)(1− x2)(1− x3)

x2
3

≥ m2
q

s
. (31)

For b quarks at LEP energies, these corrections are fairly small.

6.1.3 4-jet matrix elements

Two new event types are added in second-order QCD, e+e− → qqgg and e+e− → qqq′q′.
The 4-jet cross section has been calculated by several groups [Ali80a, Gae80, Ell81, Dan82],
which agree on the result. The formulae are too lengthy to be quoted here. In one of the
calculations [Ali80a], quark masses were explicitly included, but here only the massless
expressions are included, as taken from [Ell81]. Here the angular orientation of the event
has been integrated out, so that five independent internal kinematical variables remain.
These may be related to the six yij and the four yijk variables, yij = m2

ij/s = (pi + pj)
2/s

and yijk = m2
ijk/s = (pi + pj + pk)

2/s, in terms of which the matrix elements are given.
The original calculations were for the pure γ-exchange case; it has been pointed out

[Kni89] that an additional contribution to the e+e− → qqq′q′ cross section arises from the
axial part of the Z0. This term is not included in the program, but fortunately it is finite
and small.

Whereas the way the string, i.e. the fragmenting colour flux tube, is stretched is
uniquely given in qqg event, for qqgg events there are two possibilities: q− g1 − g2 − q
or q− g2 − g1 − q. A knowledge of quark and gluon colours, obtained by perturbation
theory, will uniquely specify the stretching of the string, as long as the two gluons do not
have the same colour. The probability for the latter is down in magnitude by a factor
1/N2

C = 1/9. One may either choose to neglect these terms entirely, or to keep them for the
choice of kinematical setup, but then drop them at the choice of string drawing [Gus82].
We have adopted the latter procedure. Comparing the two possibilities, differences are
typically 10–20% for a given kinematical configuration, and less for the total 4-jet cross
section, so from a practical point of view this is not a major problem.

In higher orders, results depend on the renormalization scheme; we will use MS
throughout. In addition to this choice, several possible forms can be chosen for αs, all
of which are equivalent to that order but differ in higher orders. We have picked the
recommended standard [PDG88]

αs(Q
2) =

12π

(33− 2nf) ln(Q2/Λ2
MS

)

{
1− 6

153− 19nf
(33− 2nf)2

ln(ln(Q2/Λ2
MS

))

ln(Q2/Λ2
MS

)

}
. (32)

69

6.1.4 Second-order 3-jet matrix elements

As for first order, a full second-order calculation consists both of real parton emission
terms and of vertex and propagator corrections. These modify the 3-jet and 2-jet cross
sections. Although there was some initial confusion, everybody soon agreed on the size
of the loop corrections [Ell81, Ver81, Fab82]. In analytic calculations, the procedure
of eq. (29), suitably expanded, can therefore be used unambiguously for a well-behaved
variable.

For Monte Carlo event simulation, it is again necessary to impose some finite jet-
resolution criterion. This means that four-parton events which fail the cuts should be
reassigned either to the 3-jet or to the 2-jet event class. It is this area that caused quite a
lot of confusion in the past [Kun81, Got82, Ali82, Zhu83, Gut84, Gut87, Kra88], and where
full agreement does not exist. Most likely, agreement will never be reached, since there
are indeed ambiguous points in the procedure, related to uncertainties on the theoretical
side, as follows.

For the y-cut case, any two partons with an invariant mass m2
ij < yE2

cm should be
recombined into one. If the four-momenta are simply added, the sum will correspond
to a parton with a positive mass, namely the original mij. The loop corrections are
given in terms of final massless partons, however. In order to perform the (partial)
cancellation between the four-parton real and the 3-parton virtual contributions, it is
therefore necessary to get rid of the bothersome mass in the four-parton states. Several
recombinations are used in practice, which go under names such as ‘E’, ‘E0’, ‘p’ and
‘p0’ [OPA91]. In the ‘E’-type schemes, the energy of a recombined parton is given by
Eij = Ei + Ej, and three-momenta may have to be adjusted accordingly. In the ‘p’-
type schemes, on the other hand, three-momenta are added, pij = pi + pj, and then
energies may have to be adjusted. These procedures result in different 3-jet topologies,
and therefore in different second-order differential 3-jet cross sections.

Within each scheme, a number of lesser points remain to be dealt with, in particular
what to do if a recombination of a nearby parton pair were to give an event with a non-qqg
flavour structure.

This code contains two alternative second-order 3-jet implementations, GKS and
ERT(Zhu). The latter is the recommended one and default. Other parameterizations
have also been made available that run together with Jetset 6 (but not adopted to the
current program), see [Sjö89, Mag89].

The GKS option is based on the GKS [Gut84] calculation, where some of the original
mistakes in FKSS [Fab82] have been corrected. The GKS formulae have the advantage of
giving the second-order corrections in closed analytic form, as not-too-long functions of
x1, x2, and the y cut. However, it is today recognized, also by the authors, that important
terms are still missing, and that the matrix elements should therefore not be taken too
seriously. The option is thus kept mainly for backwards compatibility.

The ERT(Zhu) generator [Zhu83] is based on the ERT matrix elements [Ell81], with
a Monte Carlo recombination procedure suggested by Kunszt [Kun81] and developed by
Ali [Ali82]. It has the merit of giving corrections in a convenient, parameterized form.
For practical applications, the main limitation is that the corrections are only given for
discrete values of the cut-off parameter y, namely y = 0.01, 0.02, 0.03, 0.04, and 0.05. At
these y values, the full second-order 3-jet cross section is written in terms of the ‘ratio
function’ R(X, Y ; y), defined by

1

σ0

dσtot
3

dX dY
=
αs

π
A0(X,Y)

{
1 +

αs

π
R(X,Y ; y)

}
, (33)

where X = x1 − x2 = xq − xq, Y = x3 = xg, σ0 is the lowest-order hadronic cross
section, and A0(X, Y) the standard first-order 3-jet cross section, cf. eq. (26). By Monte
Carlo integration, the value of R(X,Y ; y) is evaluated in bins of (X, Y), and the result
parameterized by a simple function F (X, Y ; y). Further details are found in [Sjö89].

70

6.1.5 The matrix-element event generator scheme

The program contains parameterizations, separately, of the total first-order 3-jet rate, the
total second-order 3-jet rate, and the total 4-jet rate, all as functions of y (with αs as a
separate prefactor). These parameterizations have been obtained as follows:
• The first-order 3-jet matrix element is almost analytically integrable; some small

finite pieces were obtained by a truncated series expansion of the relevant integrand.
• The GKS second-order 3-jet matrix elements were integrated for 40 different y-cut

values, evenly distributed in ln y between a smallest value y = 0.001 and the kine-
matical limit y = 1/3. For each y value, 250 000 phase-space points were generated,
evenly in d ln(1 − xi) = dxi/(1 − xi), i = 1, 2, and the second-order 3-jet rate in
the point evaluated. The properly normalized sum of weights in each of the 40 y
points were then fitted to a polynomial in ln(y−1 − 2). For the ERT(Zhu) matrix
elements the parameterizations in eq. (33) were used to perform a corresponding
Monte Carlo integration for the five y values available.
• The 4-jet rate was integrated numerically, separately for qqgg and qqq′q′ events, by

generating large samples of 4-jet phase-space points within the boundary y = 0.001.
Each point was classified according to the actual minimum y between any two
partons. The same events could then be used to update the summed weights for
40 different counters, corresponding to y values evenly distributed in ln y between
y = 0.001 and the kinematical limit y = 1/6. In fact, since the weight sums for large
y values only received contributions from few phase-space points, extra (smaller)
subsamples of events were generated with larger y cuts. The summed weights,
properly normalized, were then parameterized in terms of polynomials in ln(y−1−5).
Since it turned out to be difficult to obtain one single good fit over the whole range
of y values, different parameterizations are used above and below y = 0.018. As
originally given, the qqq′q′ parameterization only took into account four q′ flavours,
i.e. secondary bb pairs were not generated, but this has been corrected for LEP.

In the generation stage, each event is treated on its own, which means that the αs and
y values may be allowed to vary from event to event. The main steps are the following.

1. The y value to be used in the current event is determined. If possible, this is
the value given by you, but additional constraints exist from the validity of the
parameterizations (y ≥ 0.001 for GKS, 0.01 ≤ y ≤ 0.05 for ERT(Zhu)) and an
extra (user-modifiable) requirement of a minimum absolute invariant mass between
jets (which translates into varying y cuts due to the effects of initial-state QED
radiation).

2. The αs value is calculated.
3. For the y and αs values given, the relative two/three/four-jet composition is deter-

mined. This is achieved by using the parameterized functions of y for 3- and 4-jet
rates, multiplied by the relevant number of factors of αs. In ERT(Zhu), where the
second-order 3-jet rate is available only at a few y values, intermediate results are
obtained by linear interpolation in the ratio of second-order to first-order 3-jet rates.
The 3-jet and 4-jet rates are normalized to the analytically known second-order to-
tal event rate, i.e. divided by RQCD of eq. (25). Finally, the 2-jet rate is obtained
by conservation of total probability.

4. If the combination of y and αs values is such that the total 3- plus 4-jet fraction is
larger than unity, i.e. the remainder 2-jet fraction negative, the y-cut value is raised
(for that event), and the process is started over at point 3.

5. The choice is made between generating a 2-, 3- or 4-jet event, according to the
relative probabilities.

6. For the generation of 4-jets, it is first necessary to make a choice between qqgg
and qqq′q′ events, according to the relative (parameterized) total cross sections. A
phase-space point is then selected, and the differential cross section at this point is

71

evaluated and compared with a parameterized maximum weight. If the phase-space
point is rejected, a new one is selected, until an acceptable 4-jet event is found.

7. For 3-jets, a phase-space point is first chosen according to the first-order cross sec-
tion. For this point, the weight

W (x1, x2; y) = 1 +
αs

π
R(x1, x2; y) (34)

is evaluated. Here R(x1, x2; y) is analytically given for GKS [Gut84], while it is
approximated by the parameterization F (X,Y ; y) of eq. (33) for ERT(Zhu). Again,
linear interpolation of F (X,Y ; y) has to be applied for intermediate y values. The
weight W is compared with a maximum weight

Wmax(y) = 1 +
αs

π
Rmax(y) , (35)

which has been numerically determined beforehand and suitably parameterized. If
the phase-space point is rejected, a new point is generated, etc.

8. Massive matrix elements are not available for second-order QCD (but are in the
first-order option). However, if a 3- or 4-jet event determined above falls outside the
phase-space region allowed for massive quarks, the event is rejected and reassigned
to be a 2-jet event. (The way the yij and yijk variables of 4-jet events should
be interpreted for massive quarks is not even unique, so some latitude has been
taken here to provide a reasonable continuity from 3-jet events.) This procedure
is known not to give the expected full mass suppression, but is a reasonable first
approximation.

9. Finally, if the event is classified as a 2-jet event, either because it was initially so
assigned, or because it failed the massive phase-space cuts for 3- and 4-jets, the
generation of 2-jets is trivial.

6.1.6 Optimized perturbation theory

Theoretically, it turns out that the second-order corrections to the 3-jet rate are large. It is
therefore not unreasonable to expect large third-order corrections to the 4-jet rate. Indeed,
the experimental 4-jet rate is much larger than second order predicts (when fragmentation
effects have been included), if αs is determined based on the 3-jet rate [Sjö84a, JAD88].

The only consistent way to resolve this issue is to go ahead and calculate the full next
order. This is a tough task, however, so people have looked at possible shortcuts. For
example, one can try to minimize the higher-order contributions by a suitable choice of
the renormalization scale [Ste81] — ‘optimized perturbation theory’. This is equivalent
to a different choice for the Q2 scale in αs, a scale which is not unambiguous anyway.
Indeed the standard value Q2 = s = E2

cm is larger than the natural physical scale of
gluon emission in events, given that most gluons are fairly soft. One could therefore pick
another scale, Q2 = fs, with f < 1. The O(αs) 3-jet rate would be increased by such
a scale change, and so would the number of 4-jet events, including those which collapse
into 3-jet ones. The loop corrections depend on the Q2 scale, however, and compensate
the changes above by giving a larger negative contribution to the 3-jet rate.

The possibility of picking an optimized scale f is implemented as follows [Sjö89].
Assume that the differential 3-jet rate at scale Q2 = s is given by the expression

R3 = r1αs + r2α
2
s , (36)

where R3, r1 and r2 are functions of the kinematical variables x1 and x2 and the y cut,
as implied by the second-order formulae above, see e.g. eq. (33). When the coupling is
chosen at a different scale, Q′2 = fs, the 3-jet rate has to be changed to

R′3 = r′1α
′
s + r2α

′2
s , (37)

72

where r′1 = r1,

r′2 = r2 + r1
33− 2nf

12π
ln f , (38)

and α′s = αs(fs). Since we only have the Born term for 4-jets, here the effects of a scale
change come only from the change in the coupling constant. Finally, the 2-jet cross section
can still be calculated from the difference between the total cross section and the 3- and
4-jet cross sections.

If an optimized scale is used in the program, the default value is f = 0.002, which is
favoured by the studies in ref. [Bet89]. (In fact, it is also possible to use a correspondingly
optimized RQCD factor, eq. (25), but then the corresponding f is chosen independently
and much closer to unity.) The success of describing the jet rates should not hide the fact
that one is dabbling in (educated, hopefully) guesswork, and that any conclusions based
on this method have to be taken with a pinch of salt.

One special problem associated with the use of optimized perturbation theory is that
the differential 3-jet rate may become negative over large regions of the (x1, x2) phase
space. This problem already exists, at least in principle, even for a scale f = 1, since r2 is
not guaranteed to be positive definite. Indeed, depending on the choice of y cut, αs value
and recombination scheme, one may observe a small region of negative differential 3-jet
rate for the full second-order expression. This region is centred around qqg configurations,
where the q and q are close together in one hemisphere and the g is alone in the other, i.e.
x1 ≈ x2 ≈ 1/2. It is well understood why second-order corrections should be negative in
this region [Dok89]: the q and q of a qqg state are in a relative colour octet state, and thus
the colour force between them is repulsive, which translates into a negative second-order
term.

However, as f is decreased below unity, r′2 receives a negative contribution from the ln f
term, and the region of negative differential cross section has a tendency to become larger,
also after taking into account related changes in αs. In an event-generator framework,
where all events are supposed to come with unit weight, it is clearly not possible to
simulate negative cross sections. What happens in the program is therefore that no 3-jet
events at all are generated in the regions of negative differential cross section, and that
the 3-jet rate in regions of positive cross sections is reduced by a constant factor, chosen
so that the total number of 3-jet events comes out as it should. This is a consequence
of the way the program works, where it is first decided what kind of event to generate,
based on integrated 3-jet rates in which positive and negative contributions are added up
with sign, and only thereafter the kinematics is chosen.

Based on our physics understanding of the origin of this negative cross section, the
approach adopted is as sensible as any, at least to that order in perturbation theory (what
one might strive for is a properly exponentiated description of the relevant region). It can
give rise to funny results for low f values, however, as observed by OPAL [OPA92] for
the energy–energy correlation asymmetry.

6.1.7 Angular orientation

While pure γ exchange gives a simple 1 + cos2 θ distribution for the q (and q) direction in
qq events, Z0 exchange and γ∗/Z0 interference results in a forward–backward asymmetry.
If one introduces

h′f(s) = 2ee

{
ae(1− P+

L P
−
L)− ve(P

−
L − P+

L)
}
<χ(s)efaf

+
{

2veae(1− P+
L P

−
L)− (v2

e + a2
e)(P−L − P+

L)
}
|χ(s)|2 vfaf , (39)

then the angular distribution of the quark is given by

dσ

d(cos θf)
∝ hf(s)(1 + cos2 θf) + 2h′f(s) cos θf . (40)

73

The angular orientation of a 3- or 4-jet event may be described in terms of three angles
χ, θ and ϕ; for 2-jet events only θ and ϕ are necessary. From a standard orientation, with
the q along the +z axis and the q in the xz plane with px > 0, an arbitrary orientation may
be reached by the rotations +χ in azimuthal angle, +θ in polar angle, and +ϕ in azimuthal
angle, in that order. Differential cross sections, including QFD effects and arbitrary beam
polarizations have been given for 2- and 3-jet events in refs. [Ols80, Sch80]. We use the
formalism of ref. [Ols80], with translation from their terminology according toχ→ π− χ
and ϕ− → −(ϕ+ π/2). The resulting formulae are tedious, but straightforward to apply,
once the internal jet configuration has been chosen. 4-jet events are approximated by 3-jet
ones, by joining the two gluons of a qqgg event and the q′ and q′ of a qqq′q′ event into one
effective jet. This means that some angular asymmetries are neglected [Ali80a], but that
weak effects are automatically included. It is assumed that the second-order 3-jet events
have the same angular orientation as the first-order ones, some studies on this issue may
be found in [Kör85]. Further, the formulae normally refer to the massless case; only for
the QED 2- and 3-jet cases are mass corrections available.

The main effect of the angular distribution of multijet events is to smear the lowest-
order result, i.e. to reduce any anisotropies present in 2-jet systems. In the parton-shower
option of the program, only the initial qq axis is determined. The subsequent shower
evolution then de facto leads to a smearing of the jet axis, although not necessarily in full
agreement with the expectations from multijet matrix-element treatments.

6.1.8 Initial-state radiation

Initial-state photon radiation has been included using the formalism of ref. [Ber82]. Here
each event contains either no photon or one, i.e. it is a first-order non-exponentiated
description. The main formula for the hard radiative photon cross section is

dσ

dxγ
=
αem

π

(
ln

s

m2
e

− 1

)
1 + (1− xγ)2

xγ
σ0(ŝ) , (41)

where xγ is the photon energy fraction of the beam energy, ŝ = (1 − xγ)s is the squared
reduced hadronic c.m. energy, and σ0 is the ordinary annihilation cross section at the
reduced energy. In particular, the selection of jet flavours should be done according to
expectations at the reduced energy. The cross section is divergent both for xγ → 1 and
xγ → 0. The former is related to the fact that σ0 has a 1/ŝ singularity (the real photon
pole) for ŝ → 0. An upper cut on xγ can here be chosen to fit the experimental setup.
The latter is a soft photon singularity, which is to be compensated in the no-radiation
cross section. A requirement xγ > 0.01 has therefore been chosen so that the hard-
photon fraction is smaller than unity. In the total cross section, effects from photons
with xγ < 0.01 are taken into account, together with vertex and vacuum polarization
corrections (hadronic vacuum polarizations using a simple parameterization of the more
complicated formulae of ref. [Ber82]).

The hard photon spectrum can be integrated analytically, for the full γ∗/Z0 structure
including interference terms, provided that no new flavour thresholds are crossed and that
the RQCD term in the cross section can be approximated by a constant over the range
of allowed ŝ values. In fact, threshold effects can be taken into account by standard
rejection techniques, at the price of not obtaining the exact cross section analytically, but
only by an effective Monte Carlo integration taking place in parallel with the ordinary
event generation. In addition to xγ, the polar angle θγ and azimuthal angle ϕγ of the
photons are also to be chosen. Further, for the orientation of the hadronic system, a
choice has to be made whether the photon is to be considered as having been radiated
from the e+ or from the e−.

Final-state photon radiation, as well as interference between initial- and final-state
radiation, has been left out of this treatment. The formulae for e+e− → µ+µ− cannot

74

be simply taken over for the case of outgoing quarks, since the quarks as such only live
for a short while before turning into hadrons. Another simplification in our treatment is
that effects of incoming polarized e± beams have been completely neglected, i.e. neither
the effective shift in azimuthal distribution of photons nor the reduction in polarization is
included. The polarization parameters of the program are to be thought of as the effective
polarization surviving after initial-state radiation.

6.1.9 Alternative matrix elements

The program contains two sets of ‘toy model’ matrix elements, one for an Abelian vector
gluon model and one for a scalar gluon model. Clearly both of these alternatives are
already excluded by data, and are anyway not viable alternatives for a consistent theory
of strong interactions. They are therefore included more as references to show how well
the characteristic features of QCD can be measured experimentally.

Second-order matrix elements are available for the Abelian vector gluon model. These
are easily obtained from the standard QCD matrix elements by a substitution of the
Casimir group factors: CF = 4/3 → 1, NC = 3 → 0, and TR = nf/2 → 3nf . First-order
matrix elements contain only CF ; therefore the standard first-order QCD results may be
recovered by a rescaling of αs by a factor 4/3. In second order the change of NC to 0
means that g→ gg couplings are absent from the Abelian model, while the change of TR
corresponds to an enhancement of the g → q′q′ coupling, i.e. to an enhancement of the
qqq′q′ 4-jet event rate.

The second-order corrections to the 3-jet rate turn out to be strongly negative — if
αs is fitted to get about the right rate of 4-jet events, the predicted differential 3-jet rate
is negative almost everywhere in the (x1, x2) plane. Whether this unphysical behaviour
would be saved by higher orders is unclear. It has been pointed out that the rate can
be made positive by a suitable choice of scale, since αs runs in opposite directions in an
Abelian model and in QCD [Bet89]. This may be seen directly from eq. (38), where the
term 33 = 11NC is absent in the Abelian model, and therefore the scale-dependent term
changes sign. In the program, optimized scales have not been implemented for this toy
model. Therefore the alternatives provided for you are either to generate only 4-jet events,
or to neglect second-order corrections to the 3-jet rate, or to have the total 3-jet rate set
vanishing (so that only 2- and 4-jet events are generated). Normally we would expect the
former to be the one of most interest, since it is in angular (and flavour) distributions
of 4-jet events that the structure of QCD can be tested. Also note that the ‘correct’
running of αs is not included; you are expected to use the option where αs is just given
as a constant number.

The scalar gluon model is even more excluded than the Abelian vector one, since
differences appear already in the 3-jet matrix element [Lae80]:

dσ

dx1 dx2

∝ x2
3

(1− x1)(1− x2)
(42)

when only γ exchange is included. The axial part of the Z0 gives a slightly different
shape; this is included in the program but does not make much difference. The angular
orientation does include the full γ∗/Z0 interference [Lae80], but the main interest is in the
3-jet topology as such [Ell79]. No higher-order corrections are included. It is recommended
to use the option of a fixed αs also here, since the correct running is not available.

6.2 Decays of Onia Resonances

Many different possibilities are open for the decay of heavy JPC = 1−− onia resonances.
Of special interest are the decays into three gluons or two gluons plus a photon, since

75

these offer unique possibilities to study a ‘pure sample’ of gluon jets. A routine for this
purpose is included in the program. It was written at a time where the expectations were
to find toponium at PETRA energies. Given the large value of the top mass, weak decays
dominate, to the extent that the top quark decays weakly even before a bound toponium
state is formed, and thus the routine will be of no use for top. The charm system, on the
other hand, is far too low in mass for a jet language to be of any use. The only application
is therefore likely to be for Υ, which unfortunately also is on the low side in mass.

The matrix element for qq→ ggg is (in lowest order) [Kol78]

1

σggg

dσggg

dx1 dx2

=
1

π2 − 9

{(
1− x1

x2x3

)2

+
(

1− x2

x1x3

)2

+
(

1− x3

x1x2

)2
}
, (43)

where, as before, xi = 2Ei/Ecm in the c.m. frame of the event. This is a well-defined
expression, without the kind of singularities encountered in the qqg matrix elements. In
principle, no cuts at all would be necessary, but for reasons of numerical simplicity we
implement a y cut as for continuum jet production, with all events not fulfilling this cut
considered as (effective) gg events. For ggg events, each gg invariant mass is required to
be at least 2 GeV.

Another process is qq→ γgg, obtained by replacing a gluon in qq→ ggg by a photon.
This process has the same normalized cross section as the one above, if e.g. x1 is taken to
refer to the photon. The relative rate is [Kol78]

σγgg

σggg

=
36

5

e2
q αem

αs(Q2)
. (44)

Here eq is the charge of the heavy quark, and the scale in αs has been chosen as the mass
of the onium state. If the mass of the recoiling gg system is lower than some cut-off (by
default 2 GeV), the event is rejected.

In the present implementation the angular orientation of the ggg and γgg events is
given for the e+e− → γ∗ → onium case [Kol78] (optionally with beam polarization effects
included), i.e. weak effects have not been included, since they are negligible at around
10 GeV.

It is possible to start a perturbative shower evolution from either of the two states
above. However, for Υ the phase space for additional evolution is so constrained that not
much is to be gained from that. We therefore do not recommend this possibility. The
shower generation machinery, when starting up from a γgg configuration, is constructed
such that the photon energy is not changed. This means that there is currently no
possibility to use showers to bring the theoretical photon spectrum in better agreement
with the experimental one.

In string fragmentation language, a ggg state corresponds to a closed string triangle
with the three gluons at the corners. As the partons move apart from a common origin,
the string triangle expands. Since the photon does not take part in the fragmentation,
the γgg state corresponds to a double string running between the two gluons.

6.3 Routines and Common Block Variables

6.3.1 e+e− continuum event generation

The only routine a normal user will call to generate e+e− continuum events is PYEEVT.
The other routines listed below, as well as PYSHOW (see section 10.4), are called by PYEEVT.

CALL PYEEVT(KFL,ECM)

76

Purpose: to generate a complete event e+e− → γ∗/Z0 → qq→ parton shower→ hadrons
according to QFD and QCD cross sections. As an alternative to parton show-
ers, second-order matrix elements are available for qq + qqg + qqgg + qqq′q′

production.
KFL : flavour of events generated.

= 0 : mixture of all allowed flavours according to relevant probabilities.
= 1 - 8 : primary quarks are only of the specified flavour KFL.

ECM : total c.m. energy of system.
Remark: Each call generates one event, which is independent of preceding ones, with

one exception, as follows. If radiative corrections are included, the shape of
the hard photon spectrum is recalculated only with each PYXTEE call, which
normally is done only if KFL, ECM or MSTJ(102) is changed. A change of e.g.
the Z0 mass in mid-run has to be followed either by a user call to PYXTEE or
by an internal call forced e.g. by putting MSTJ(116)=3.

SUBROUTINE PYXTEE(KFL,ECM,XTOT) : to calculate the total hadronic cross section, in-
cluding quark thresholds, weak, beam polarization, and QCD effects and ra-
diative corrections. In the process, variables necessary for the treatment of
hard photon radiation are calculated and stored.

KFL, ECM : as for PYEEVT.
XTOT : the calculated total cross section in nb.

SUBROUTINE PYRADK(ECM,MK,PAK,THEK,PHIK,ALPK) : to describe initial-state hard γ
radiation.

SUBROUTINE PYXKFL(KFL,ECM,ECMC,KFLC) : to generate the primary quark flavour in
case this is not specified by you.

SUBROUTINE PYXJET(ECM,NJET,CUT) : to determine the number of jets (2, 3 or 4) to be
generated within the kinematically allowed region (characterized by CUT = ycut)
in the matrix-element approach; to be chosen such that all probabilities are
between 0 and 1.

SUBROUTINE PYX3JT(NJET,CUT,KFL,ECM,X1,X2) : to generate the internal momentum
variables of a 3-jet event, qqg, according to first- or second-order QCD matrix
elements.

SUBROUTINE PYX4JT(NJET,CUT,KFL,ECM,KFLN,X1,X2,X4,X12,X14) : to generate the
internal momentum variables for a 4-jet event, qqgg or qqq′q′, according to
second-order QCD matrix elements.

SUBROUTINE PYXDIF(NC,NJET,KFL,ECM,CHI,THE,PHI) : to describe the angular orien-
tation of the jets. In first-order QCD the complete QED or QFD formulae are
used; in second order 3-jets are assumed to have the same orientation as in
first, and 4-jets are approximated by 3-jets.

6.3.2 A routine for onium decay

In PYONIA we have implemented the decays of heavy onia resonances into three gluons or
two gluons plus a photon, which are the dominant non-background-like decays of Υ.

CALL PYONIA(KFL,ECM)

Purpose: to simulate the process e+e− → γ∗ → 1−− onium resonance→ (ggg or ggγ)→
shower → hadrons.

KFL : the flavour of the quark giving rise to the resonance.
= 0 : generate ggg events alone.
= 1 - 8 : generate ggg and ggγ events in mixture determined by the squared

charge of flavour KFL, see eq. (44). Normally KFL= 5.

77

ECM : total c.m. energy of system.

6.3.3 Common block variables

The status codes and parameters relevant for the e+e− routines are found in the com-
mon block PYDAT1. This common block also contains more general status codes and
parameters, described elsewhere.

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters regulating the
performance of the e+e− event generation routines.

MSTJ(101) : (D=5) gives the type of QCD corrections used for continuum events.
= 0 : only qq events are generated.
= 1 : qq + qqg events are generated according to first-order QCD.
= 2 : qq + qqg + qqgg + qqq′q′ events are generated according to second-order

QCD.
= 3 : qq + qqg + qqgg + qqq′q′ events are generated, but without second-order

corrections to the 3-jet rate.
= 5 : a parton shower is allowed to develop from an original qq pair, see

MSTJ(38) - MSTJ(50) for details.
= -1 : only qqg events are generated (within same matrix-element cuts as for

=1). Since the change in flavour composition from mass cuts or radiative
corrections is not taken into account, this option is not intended for
quantitative studies.

= -2 : only qqgg and qqq′q′ events are generated (as for =2). The same warning
as for =-1 applies.

= -3 : only qqgg events are generated (as for =2). The same warning as for =-1
applies.

= -4 : only qqq′q′ events are generated (as for =2). The same warning as for
=-1 applies.

Note 1: MSTJ(101) is also used in PYONIA, with
≤ 4 : ggg+γgg events are generated according to lowest-order matrix elements.
≥ 5 : a parton shower is allowed to develop from the original ggg or ggγ con-

figuration, see MSTJ(38) - MSTJ(50) for details.
Note 2: The default values of fragmentation parameters have been chosen to

work well with the default parton-shower approach above. If any of
the other options are used, or if the parton shower is used in non-default
mode, it is normally necessary to retune fragmentation parameters. As
an example, we note that the second-order matrix-element approach
(MSTJ(101)=2) at PETRA/PEP energies gives a better description when
the a and b parameters of the symmetric fragmentation function are set
to a =PARJ(41)=1, b =PARJ(42)=0.7, and the width of the transverse
momentum distribution to σ =PARJ(21)=0.40. In principle, one also
ought to change the joining parameter to PARJ(33)=PARJ(35)=1.1 to
preserve a flat rapidity plateau, but if this should be forgotten, it does
not make too much difference. For applications at TRISTAN or LEP,
one has to change the matrix-element approach parameters even more,
to make up for additional soft gluon effects not covered in this approach.

MSTJ(102) : (D=2) inclusion of weak effects (Z0 exchange) for flavour production, angu-
lar orientation, cross sections and initial-state photon radiation in continuum
events.

78

= 1 : QED, i.e. no weak effects are included.
= 2 : QFD, i.e. including weak effects.
= 3 : as =2, but at initialization in PYXTEE the Z0 width is calculated from

sin2θW , αem and Z0 and quark masses (including bottom and top thresh-
old factors for MSTJ(103) odd), assuming three full generations, and the
result is stored in PARJ(124).

MSTJ(103) : (D=7) mass effects in continuum matrix elements, in the form MSTJ(103)
= M1 +2M2 +4M3, where Mi = 0 if no mass effects and Mi = 1 if mass effects
should be included. Here;

M1 : threshold factor for new flavour production according to QFD result;
M2 : gluon emission probability (only applies for |MSTJ(101)|≤ 1, otherwise

no mass effects anyhow);
M3 : angular orientation of event (only applies for |MSTJ(101)|≤ 1 and

MSTJ(102)=1, otherwise no mass effects anyhow).
MSTJ(104) : (D=5) number of allowed flavours, i.e. flavours that can be produced in a

continuum event if the energy is enough. A change to 6 makes top production
allowed above the threshold, etc. Note that in qqq′q′ events only the first five
flavours are allowed in the secondary pair, produced by a gluon breakup.

MSTJ(105) : (D=1) fragmentation and decay in PYEEVT and PYONIA calls.
= 0 : no PYEXEC calls, i.e. only matrix-element and/or parton-shower treat-

ment, and collapse of small jet systems into one or two particles (in
PYPREP).

= 1 : PYEXEC calls are made to generate fragmentation and decay chain.
= -1 : no PYEXEC calls and no collapse of small jet systems into one or two

particles (in PYPREP).
MSTJ(106) : (D=1) angular orientation in PYEEVT and PYONIA.

= 0 : standard orientation of events, i.e. q along +z axis and q along −z axis
or in xz plane with px > 0 for continuum events, and g1g2g3 or γg2g3 in
xz plane with g1 or γ along the +z axis for onium events.

= 1 : random orientation according to matrix elements.
MSTJ(107) : (D=0) radiative corrections to continuum events.

= 0 : no radiative corrections.
= 1 : initial-state radiative corrections (including weak effects for MSTJ(102)=

2 or 3).
MSTJ(108) : (D=2) calculation of αs for matrix-element alternatives. The MSTU(111)

and PARU(112) values are automatically overwritten in PYEEVT or PYONIA calls
accordingly.

= 0 : fixed αs value as given in PARU(111).
= 1 : first-order formula is always used, with ΛQCD given by PARJ(121).
= 2 : first- or second-order formula is used, depending on value of MSTJ(101),

with ΛQCD given by PARJ(121) or PARJ(122).
MSTJ(109) : (D=0) gives a possibility to switch from QCD matrix elements to some

alternative toy models. Is not relevant for shower evolution, MSTJ(101)=5,
where one can use MSTJ(49) instead.

= 0 : standard QCD scenario.
= 1 : a scalar gluon model. Since no second-order corrections are available in

this scenario, one can only use this with MSTJ(101) = 1 or -1. Also note
that the event-as-a-whole angular distribution is for photon exchange
only (i.e. no weak effects), and that no higher-order corrections to the
total cross section are included.

= 2 : an Abelian vector gluon theory, with the colour factors CF = 1 (= 4/3
in QCD), NC = 0 (= 3 in QCD) and TR = 3nf (= nf/2 in QCD).
If one selects αAbelian = (4/3)αQCD, the 3-jet cross section will agree

79

with the QCD one, and differences are to be found only in 4-jets. The
MSTJ(109)=2 option has to be run with MSTJ(110)=1 and MSTJ(111)=0;
if need be, the latter variables will be overwritten by the program.
Warning: second-order corrections give a large negative contribution to
the 3-jet cross section, so large that the whole scenario is of doubtful use.
In order to make the second-order options work at all, the 3-jet cross
section is here by hand set exactly equal to zero for MSTJ(101)=2. It is
here probably better to use the option MSTJ(101)=3, although this is not
a consistent procedure either.

MSTJ(110) : (D=2) choice of second-order contributions to the 3-jet rate.
= 1 : the GKS second-order matrix elements.
= 2 : the Zhu parameterization of the ERT matrix elements, based on the pro-

gram of Kunszt and Ali, i.e. in historical sequence ERT/Kunszt/Ali/Zhu.
The parameterization is available for y = 0.01, 0.02, 0.03, 0.04 and 0.05.
Values outside this range are put at the nearest border, while those in-
side it are given by a linear interpolation between the two nearest points.
Since this procedure is rather primitive, one should try to work at one of
the values given above. Note that no Abelian QCD parameterization is
available for this option.

MSTJ(111) : (D=0) use of optimized perturbation theory for second-order matrix ele-
ments (it can also be used for first-order matrix elements, but here it only
corresponds to a trivial rescaling of the αs argument).

= 0 : no optimization procedure; i.e. Q2 = E2
cm.

= 1 : an optimized Q2 scale is chosen as Q2 = fE2
cm, where f =PARJ(128) for

the total cross section R factor, while f =PARJ(129) for the 3- and 4-jet
rates. This f value enters via the αs, and also via a term proportional
to α2

s ln f . Some constraints are imposed; thus the optimized ‘3-jet’ con-
tribution to R is assumed to be positive (for PARJ(128)), the total 3-jet
rate is not allowed to be negative (for PARJ(129)), etc. However, there is
no guarantee that the differential 3-jet cross section is not negative (and
truncated to 0) somewhere (this can also happen with f = 1, but is then
less frequent). The actually obtained f values are stored in PARJ(168)
and PARJ(169), respectively. If an optimized Q2 scale is used, then the
ΛQCD (and αs) should also be changed. With the value f = 0.002, it
has been shown [Bet89] that a ΛQCD = 0.100 GeV gives a reasonable
agreement; the parameter to be changed is PARJ(122) for a second-order
running αs. Note that, since the optimized Q2 scale is sometimes below
the charm threshold, the effective number of flavours used in αs may well
be 4 only. If one feels that it is still appropriate to use 5 flavours (one
choice might be as good as the other), it is necessary to put MSTU(113)=5.

MSTJ(115) : (D=1) documentation of continuum or onium events, in increasing order of
completeness.

= 0 : only the parton shower, the fragmenting partons and the generated
hadronic system are stored in the PYJETS common block.

= 1 : also a radiative photon is stored (for continuum events).
= 2 : also the original e+e− are stored (with K(I,1)=21).
= 3 : also the γ or γ∗/Z0 exchanged for continuum events, the onium state for

resonance events is stored (with K(I,1)=21).
MSTJ(116) : (D=1) initialization of total cross section and radiative photon spectrum

in PYEEVT calls.
= 0 : never; cannot be used together with radiative corrections.
= 1 : calculated at first call and then whenever KFL or MSTJ(102) is changed

or ECM is changed by more than PARJ(139).

80

= 2 : calculated at each call.
= 3 : everything is re-initialized in the next call, but MSTJ(116) is afterwards

automatically put =1 for use in subsequent calls.
MSTJ(119) : (I) check on need to re-initialize PYXTEE.
MSTJ(120) : (R) type of continuum event generated with the matrix-element option

(with the shower one, the result is always =1).
= 1 : qq.
= 2 : qqg.
= 3 : qqgg from Abelian (QED-like) graphs in matrix element.
= 4 : qqgg from non-Abelian (i.e. containing triple-gluon coupling) graphs in

matrix element.
= 5 : qqq′q′.

MSTJ(121) : (R) flag set if a negative differential cross section was encountered in the
latest PYX3JT call. Events are still generated, but maybe not quite according
to the distribution one would like (the rate is set to zero in the regions of
negative cross section, and the differential rate in the regions of positive cross
section is rescaled to give the ‘correct’ total 3-jet rate).

PARJ(121) : (D=1.0 GeV) Λ value used in first-order calculation of αs in the matrix-
element alternative.

PARJ(122) : (D=0.25 GeV) Λ values used in second-order calculation of αs in the matrix-
element alternative.

PARJ(123) : (D=91.187 GeV) mass of Z0 as used in propagators for the QFD case.
PARJ(124) : (D=2.489 GeV) width of Z0 as used in propagators for the QFD case.

Overwritten at initialization if MSTJ(102)=3.
PARJ(125) : (D=0.01) ycut, minimum squared scaled invariant mass of any two partons

in 3- or 4-jet events; the main user-controlled matrix-element cut. PARJ(126)
provides an additional constraint. For each new event, it is additionally
checked that the total 3- plus 4-jet fraction does not exceed unity; if so the
effective y cut will be dynamically increased. The actual y-cut value is stored
in PARJ(150), event by event.

PARJ(126) : (D=2. GeV) minimum invariant mass of any two partons in 3- or 4-jet
events; a cut in addition to the one above, mainly for the case of a radiative
photon lowering the hadronic c.m. energy significantly.

PARJ(127) : (D=1. GeV) is used as a safety margin for small colour-singlet jet systems,
cf. PARJ(32), specifically qq′ masses in qqq′q′ 4-jet events and gg mass in
onium γgg events.

PARJ(128) : (D=0.25) optimized Q2 scale for the QCD R (total rate) factor for the
MSTJ(111)=1 option is given by Q2 = fE2

cm, where f =PARJ(128). For various
reasons the actually used f value may be increased compared with the nominal
one; while PARJ(128) gives the nominal value, PARJ(168) gives the actual one
for the current event.

PARJ(129) : (D=0.002) optimized Q2 scale for the 3- and 4-jet rate for the MSTJ(111)=1
option is given by Q2 = fE2

cm, where f =PARJ(129). For various reasons the
actually used f value may be increased compared with the nominal one; while
PARJ(129) gives the nominal value, PARJ(169) gives the actual one for the
current event. The default value is in agreement with the studies of Bethke
[Bet89].

PARJ(131), PARJ(132) : (D=2*0.) longitudinal polarizations P+
L and P−L of incoming

e+ and e−.
PARJ(133) : (D=0.) transverse polarization PT =

√
P+

T P
−
T , with P+

T and P−T transverse

polarizations of incoming e+ and e−.
PARJ(134) : (D=0.) mean of transverse polarization directions of incoming e+ and e−,

81

∆ϕ = (ϕ+ + ϕ−)/2, with ϕ the azimuthal angle of polarization, leading to a
shift in the ϕ distribution of jets by ∆ϕ.

PARJ(135) : (D=0.01) minimum photon energy fraction (of beam energy) in initial-state
radiation; should normally never be changed (if lowered too much, the fraction
of events containing a radiative photon will exceed unity, leading to problems).

PARJ(136) : (D=0.99) maximum photon energy fraction (of beam energy) in initial-state
radiation; may be changed to reflect actual trigger conditions of a detector (but
must always be larger than PARJ(135)).

PARJ(139) : (D=0.2 GeV) maximum deviation of Ecm from the corresponding value at
last PYXTEE call, above which a new call is made if MSTJ(116)=1.

PARJ(141) : (R) value of R, the ratio of continuum cross section to the lowest-order
muon pair production cross section, as given in massless QED (i.e. three times
the sum of active quark squared charges, possibly modified for polarization).

PARJ(142) : (R) value of R including quark-mass effects (for MSTJ(102)=1) and/or weak
propagator effects (for MSTJ(102)=2).

PARJ(143) : (R) value of R as PARJ(142), but including QCD corrections as given by
MSTJ(101).

PARJ(144) : (R) value of R as PARJ(143), but additionally including corrections from
initial-state photon radiation (if MSTJ(107)=1). Since the effects of heavy
flavour thresholds are not simply integrable, the initial value of PARJ(144) is
updated during the course of the run to improve accuracy.

PARJ(145) - PARJ(148) : (R) absolute cross sections in nb as for the cases PARJ(141)
- PARJ(144) above.

PARJ(150) : (R) current effective matrix element cut-off ycut, as given by PARJ(125),
PARJ(126) and the requirements of having non-negative cross sections for 2-,
3- and 4-jet events. Not used in parton showers.

PARJ(151) : (R) value of c.m. energy ECM at last PYXTEE call.
PARJ(152) : (R) current first-order contribution to the 3-jet fraction; modified by mass

effects. Not used in parton showers.
PARJ(153) : (R) current second-order contribution to the 3-jet fraction; modified by

mass effects. Not used in parton showers.
PARJ(154) : (R) current second-order contribution to the 4-jet fraction; modified by

mass effects. Not used in parton showers.
PARJ(155) : (R) current fraction of 4-jet rate attributable to qqq′q′ events rather than

qqgg ones; modified by mass effects. Not used in parton showers.
PARJ(156) : (R) has two functions when using second-order QCD. For a 3-jet event,

it gives the ratio of the second-order to the total 3-jet cross section in the
given kinematical point. For a 4-jet event, it gives the ratio of the modified
4-jet cross section, obtained when neglecting interference terms whose colour
flow is not well defined, to the full unmodified one, all evaluated in the given
kinematical point. Not used in parton showers.

PARJ(157) - PARJ(159) : (I) used for cross-section calculations to include mass thresh-
old effects to radiative photon cross section. What is stored is basic cross
section, number of events generated and number that passed cuts.

PARJ(160) : (R) nominal fraction of events that should contain a radiative photon.
PARJ(161) - PARJ(164) : (I) give shape of radiative photon spectrum including weak

effects.
PARJ(168) : (R) actual f value of current event in optimized perturbation theory for R;

see MSTJ(111) and PARJ(128).
PARJ(169) : (R) actual f value of current event in optimized perturbation theory for 3-

and 4-jet rate; see MSTJ(111) and PARJ(129).
PARJ(171) : (R) fraction of cross section corresponding to the axial coupling of quark

pair to the intermediate γ∗/Z0 state; needed for the Abelian gluon model 3-jet

82

matrix element.

6.4 Examples

An ordinary e+e− annihilation event in the continuum, at a c.m. energy of 91 GeV, may
be generated with

CALL PYEEVT(0,91D0)

In this case a qq event is generated, including weak effects, followed by parton-shower
evolution and fragmentation/decay treatment. Before a call to PYEEVT, however, a number
of default values may be changed, e.g. MSTJ(101)=2 to use second-order QCD matrix
elements, giving a mixture of qq, qqg, qqgg, and qqq′q′ events, MSTJ(102)=1 to have QED
only, MSTJ(104)=6 to allow tt production as well, MSTJ(107)=1 to include initial-state
photon radiation (including a treatment of the Z0 pole), PARJ(123)=92.0 to change the
Z0 mass, PARJ(81)=0.3 to change the parton-shower Λ value, or PARJ(82)=1.5 to change
the parton-shower cut-off. If initial-state photon radiation is used, some restrictions apply
to how one can alternate the generation of events at different energies or with different
Z0 mass, etc. These restrictions are not there for efficiency reasons (the extra time for
recalculating the extra constants every time is small), but because it ties in with the
cross-section calculations (see PARJ(144)).

Most parameters can be changed independently of each other. However, if just one
or a few parameters/switches are changed, one should not be surprised to find a rather
bad agreement with the data, like e.g. a too low or high average hadron multiplicity. It
is therefore usually necessary to retune one parameter related to the perturbative QCD
description, like αs or Λ, one of the two parameters a and b of the Lund symmetric
fragmentation function (since they are so strongly correlated, it is often not necessary
to retune both of them), and the average fragmentation transverse momentum — see
Note 2 of the MSTJ(101) description for an example. For very detailed studies it may be
necessary to retune even more parameters.

The three-gluon and gluon–gluon–photon decays of Υ may be simulated by a call

CALL PYONIA(5,9.46D0)

A typical program for analysis of e+e− annihilation events at 200 GeV might look
something like

IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP
COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)
COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)
COMMON/PYDAT3/MDCY(500,3),MDME(8000,2),BRAT(8000),KFDP(8000,5)
MDCY(PYCOMP(111),1)=0 ! put pi0 stable
MSTJ(107)=1 ! include initial-state radiation
PARU(41)=1D0 ! use linear sphericity
..... ! other desired changes
CALL PYTABU(10) ! initialize analysis statistics
DO 100 IEV=1,1000 ! loop over events

CALL PYEEVT(0,200D0) ! generate new event
IF(IEV.EQ.1) CALL PYLIST(2) ! list first event
CALL PYTABU(11) ! save particle composition

! statistics
CALL PYEDIT(2) ! remove decayed particles

83

CALL PYSPHE(SPH,APL) ! linear sphericity analysis
IF(SPH.LT.0D0) GOTO 100 ! too few particles in event for

! PYSPHE to work on it (unusual)
CALL PYEDIT(31) ! orient event along axes above
IF(IEV.EQ.1) CALL PYLIST(2) ! list first treated event
..... ! fill analysis statistics
CALL PYTHRU(THR,OBL) ! now do thrust analysis
..... ! more analysis statistics

100 CONTINUE !
CALL PYTABU(12) ! print particle composition

! statistics
..... ! print analysis statistics
END

84

7 Process Generation

Much can be said about the processes in Pythia and the way they are generated. There-
fore the material has been split into three sections. In the current one the philosophy
underlying the event generation scheme is presented. Here we provide a generic descrip-
tion, where some special cases are swept under the carpet. In the next section, the
existing processes are enumerated, with some comments about applications and limita-
tions. Finally, in the third section the generation routines and common block switches
are described.

The section starts with a survey of parton distributions, followed by a detailed descrip-
tion of the simple 2→ 2 and 2→ 1 hard subprocess generation schemes, including pairs
of resonances. This is followed by a few comments on more complicated configurations,
and on nonperturbative processes.

7.1 Parton Distributions

The parton distribution function fai (x,Q2) parameterizes the probability to find a parton
i with a fraction x of the beam energy when the beam particle a is probed by a hard
scattering at virtuality scaleQ2. Usually the momentum-weighted combination xfai (x,Q2)
is used, for which the normalization condition

∑
i

∫ 1
0 dx xf

a
i (x,Q2) ≡ 1 normally applies.

The Q2 dependence of parton distributions is perturbatively calculable, see section 10.3.1.
The parton distributions in Pythia come in many shapes, as shown in the following.

7.1.1 Baryons

For protons, many sets exist on the market. These are obtained by fits to experimental
data, constrained so that the Q2 dependence is in accordance with the standard QCD
evolution equations. The current default in Pythia is GRV 94L [Glü95], a simple leading-
order fit. Several other sets are found in Pythia. The complete list is:
• EHLQ sets 1 and 2 [Eic84];
• DO sets 1 and 2 [Duk82];
• the GRV 92L (updated version) fit [Glü92];
• the CTEQ 3L, CTEQ 3M and CTEQ 3D fits [Lai95];
• the GRV 94L, GRV 94M and GRV 94D fits [Glü95]; and
• the CTEQ 5L and CTEQ 5M1 fits [Lai00].

Of these, EHLQ, DO, GRV 92L, CTEQ 3L, GRV94L and CTEQ5L are leading-order
parton distributions, while CTEQ 3D and GRV94D are in the next-to-leading-order DIS
scheme and the rest in the next-to-leading order MS scheme. The EHLQ and DO sets
are by now rather old, and are kept mainly for backwards compatibility. Since only Born-
level matrix elements are included in the program, there is no particular reason to use
higher-order parton distributions — the resulting combination is anyway only good to
leading-order accuracy. (Some higher-order corrections are effectively included by the
parton-shower treatment, but there is no exact match.)

There is a steady flow of new parton-distribution sets on the market. To keep track
of all of them is a major work on its own. Therefore Pythia contains an interface to an
external library of parton distribution functions, Pdflib [Plo93]. This is a truly ency-
clopedic collection of almost all proton, pion and photon parton distributions proposed
since the late 70’s. Three dummy routines come with the Pythia package, so as to avoid
problems with unresolved external references if Pdflib is not linked. One should also
note that Pythia does not check the results, but assumes that sensible answers will be
returned, also outside the nominal (x,Q2) range of a set. Only the sets that come with
Pythia have been suitably modified to provide reasonable answers outside their nominal
domain of validity.

85

From the proton parton distributions, those of the neutron are obtained by isospin
conjugation, i.e. fn

u = fp
d and fn

d = fp
u .

The program does allow for incoming beams of a number of hyperons: Λ0, Σ−,0,+,
Ξ−,0 and Ω−. Here one has essentially no experimental information. One could imagine
to construct models in which valence s quarks are found at larger average x values than
valence u and d ones, because of the larger s-quark mass. However, hyperon beams is a
little-used part of the program, included only for a few specific studies. Therefore a simple
approach has been taken, in which an average valence quark distribution is constructed as
fval = (fp

u,val +fp
d,val)/3, according to which each valence quark in a hyperon is assumed to

be distributed. Sea-quark and gluon distributions are taken as in the proton. Any proton
parton distribution set may be used with this procedure.

7.1.2 Mesons and photons

Data on meson parton distributions are scarce, so only very few sets have been con-
structed, and only for the π±. Pythia contains the Owens set 1 and 2 parton distribu-
tions [Owe84], which for a long time were essentially the only sets on the market, and the
more recent dynamically generated GRV LO (updated version) [Glü92a]. The latter one
is the default in Pythia. Further sets are found in Pdflib and can therefore be used by
Pythia, just as described above for protons.

Like the proton was used as a template for simple hyperon sets, so also the pion is
used to derive a crude ansatz for K±/K0

S/K
0
L. The procedure is the same, except that now

fval = (fπ
+

u,val + fπ
+

d,val
)/2.

Sets of photon parton distributions have been obtained as for hadrons; an additional
complication comes from the necessity to handle the matching of the vector meson dom-
inance (VMD) and the perturbative pieces in a consistent manner. New sets have been
produced where this division is explicit and therefore especially well suited for applications
to event generation[Sch95]. The Schuler and Sjöstand set 1D is the default. Although the
vector-meson philosophy is at the base, the details of the fits do not rely on pion data,
but only on F γ

2 data. Here follows a brief summary of relevant details.
Real photons obey a set of inhomogeneous evolution equations, where the inhomoge-

neous term is induced by γ → qq branchings. The solution can be written as the sum of
two terms,

fγa (x,Q2) = fγ,NP
a (x,Q2;Q2

0) + fγ,PT
a (x,Q2;Q2

0) , (45)

where the former term is a solution to the homogeneous evolution with a (nonperturba-
tive) input at Q = Q0 and the latter is a solution to the full inhomogeneous equation
with boundary condition fγ,PT

a (x,Q2
0;Q2

0) ≡ 0. One possible physics interpretation is to
let fγ,NP

a correspond to γ ↔ V fluctuations, where V = ρ0, ω, φ, . . . is a set of vector
mesons, and let fγ,PT

a correspond to perturbative (‘anomalous’) γ ↔ qq fluctuations. The
discrete spectrum of vector mesons can be combined with the continuous (in virtuality
k2) spectrum of qq fluctuations, to give

fγa (x,Q2) =
∑

V

4παem

f 2
V

fγ,Va (x,Q2) +
αem

2π

∑
q

2e2
q

∫ Q2

Q2
0

dk2

k2
fγ,qq
a (x,Q2; k2) , (46)

where each component fγ,V and fγ,qq obeys a unit momentum sum rule.
In sets 1 the Q0 scale is picked at a low value, 0.6 GeV, where an identification of the

nonperturbative component with a set of low-lying mesons appear natural, while sets 2
use a higher value, 2 GeV, where the validity of perturbation theory is better established.
The data are not good enough to allow a precise determination of ΛQCD. Therefore we
use a fixed value Λ(4) = 200 MeV, in agreement with conventional results for proton
distributions. In the VMD component the ρ0 and ω have been added coherently, so that
uu : dd = 4 : 1 at Q0.

86

Unlike the p, the γ has a direct component where the photon acts as an unresolved
probe. In the definition of F γ

2 this adds a component Cγ, symbolically

F γ
2 (x,Q2) =

∑
q

e2
q

[
fγq + fγq

]
⊗ Cq + fγg ⊗ Cg + Cγ . (47)

Since Cγ ≡ 0 in leading order, and since we stay with leading-order fits, it is permissible
to neglect this complication. Numerically, however, it makes a non-negligible difference.
We therefore make two kinds of fits, one DIS type with Cγ = 0 and one ms type including
the universal part of Cγ.

When jet production is studied for real incoming photons, the standard evolution
approach is reasonable also for heavy flavours, i.e. predominantly the c, but with a lower
cut-off Q0 ≈ mc for γ → cc. Moving to Deeply Inelastic Scattering, eγ → eX, there is
an extra kinematical constraint: W 2 = Q2(1 − x)/x > 4m2

c. It is here better to use the
‘Bethe-Heitler’ cross section for γ∗γ → cc. Therefore each distribution appears in two
variants. For applications to real γ’s the parton distributions are calculated as the sum of
a vector-meson part and an anomalous part including all five flavours. For applications
to DIS, the sum runs over the same vector-meson part, an anomalous part and possibly
a Cγ part for the three light flavours, and a Bethe-Heitler part for c and b.

In version 2 of the SaS distributions, which are the ones found here, the extension
from real to virtual photons was improved, and further options made available [Sch96].
The resolved components of the photon are dampened by phenomenologically motivated
virtuality-dependent dipole factors, while the direct ones are explicitly calculable. Thus
eq. (46) generalizes to

fγ
?

a (x,Q2, P 2) =
∑

V

4παem

f 2
V

(
m2
V

m2
V + P 2

)2

fγ,Va (x,Q2; Q̃2
0)

+
αem

2π

∑
q

2e2
q

∫ Q2

Q2
0

dk2

k2

(
k2

k2 + P 2

)2

fγ,qq
a (x,Q2; k2) . (48)

In addition to the introduction of the dipole form factors, note that the lower input scale
for the VMD states is here shifted from Q2

0 to some Q̃2
0 ≥ Q2

0. This is based on a study
of the evolution equation [Bor93] that shows that the evolution effectively starts ‘later’ in
Q2 for a virtual photon. Equation (48) is one possible answer. It depends on both Q2 and
P 2 in a non-trivial way, however, so that results are only obtained by a time-consuming
numerical integration rather than as a simple parametrization. Therefore several other
alternatives are offered, that are in some sense equivalent, but can be given in simpler
form.

In addition to the SaS sets, Pythia also contains the Drees–Grassie set of parton
distributions [Dre85] and, as for the proton, there is an interface to the Pdflib library
[Plo93]. These calls are made with photon virtuality P 2 below the hard process scale Q2.
Further author-recommended constrains are implemented in the interface to the GRS set
[Glü99] which, along with SaS, is among the few also to define parton distributions of
virtual photons. However, these sets do not allow a subdivision of the photon parton
distributions into one VMD part and one anomalous part. This subdivision is necessary a
sophisticated modelling of γp and γγ events, see above and section 7.7.2. As an alterna-
tive, for the VMD part alone, the ρ0 parton distribution can be found from the assumed
equality

fρ
0

i = fπ
0

i =
1

2
(fπ

+

i + fπ
−

i) . (49)

Thus any π+ parton distribution set, from any library, can be turned into a VMD ρ0 set.
The ω parton distribution is assumed the same, while the φ and J/ψ ones are handled in

87

the very crude approximation fφs,val = fπ
+

u,val and fφsea = fπ
+

sea . The VMD part needs to be
complemented by an anomalous part to make up a full photon distribution. The latter is
fully perturbatively calculable, given the lower cut-off scale Q0. The SaS parameterization
of the anomalous part is therefore used throughout for this purpose. The Q0 scale can be
set freely in the PARP(15) parameter.

The fγ,anom
i distribution can be further decomposed, by the flavour and the p⊥ of

the original branching γ → qq. The flavour is distributed according to squared charge
(plus flavour thresholds for heavy flavours) and the p⊥ according to dp2

⊥/p
2
⊥ in the range

Q0 < p⊥ < Q. At the branching scale, the photon only consists of a qq pair, with x
distribution ∝ x2 + (1 − x)2. A component fγ,qq

a (x,Q2; k2), characterized by its k ≈ p⊥
and flavour, then is evolved homogeneously from p⊥ to Q. For theoretical studies it is
convenient to be able to access a specific component of this kind. Therefore also leading-
order parameterizations of these decomposed distributions are available [Sch95].

7.1.3 Leptons

Contrary to the hadron case, there is no necessity to introduce the parton-distribution
function concept for leptons. A lepton can be considered as a point-like particle, with
initial-state radiation handled by higher-order matrix elements. However, the parton
distribution function approach offers a slightly simplified but very economical description
of initial-state radiation effects for any hard process, also those for which higher-order
corrections are not yet calculated.

Parton distributions for electrons have been introduced in Pythia, and are used also
for muons and taus, with a trivial substitution of masses. Alternatively, one is free to
use a simple ‘unresolved’ e, f e

e (x,Q2) = δ(x − 1), where the e retains the full original
momentum.

Electron parton distributions are calculable entirely from first principles, but different
levels of approximation may be used. The parton-distribution formulae in Pythia are
based on a next-to-leading-order exponentiated description, see ref. [Kle89], p. 34. The
approximate behaviour is

f e
e (x,Q2) ≈ β

2
(1− x)β/2−1 ;

β =
2αem

π

(
ln
Q2

m2
e

− 1

)
. (50)

The form is divergent but integrable for x→ 1, i.e. the electron likes to keep most of the
energy. To handle the numerical precision problems for x very close to unity, the parton
distribution is set, by hand, to zero for x > 1−10−10, and is rescaled upwards in the range
1− 10−7 < x < 1− 10−10, in such a way that the total area under the parton distribution
is preserved:

(
f e

e (x,Q2)
)

mod
=





f e
e (x,Q2) 0 ≤ x ≤ 1− 10−7

1000β/2

1000β/2 − 1
f e

e (x,Q2) 1− 10−7 < x < 1− 10−10

0 x > 1− 10−10 .

(51)

A separate issue is that electron beams may not be monochromatic, more so than for
other particles because of the small electron mass. In storage rings the main mechanism is
synchrotron radiation. For future high-luminosity linear colliders, the beam–beam interac-
tions at the collision vertex may induce a quite significant energy loss — ‘beamstrahlung’.
Note that neither of these are associated with any off-shellness of the electrons, i.e. the
resulting spectrum only depends on x and not Q2. Examples of beamstrahlung spectra

88

are provided by the Circe program [Ohl97], with a sample interface on the Pythia
webpages.

The branchings e → eγ, which are responsible for the softening of the f e
e parton

distribution, also gives rise to a flow of photons. In photon-induced hard processes, the
f e
γ parton distribution can be used to describe the equivalent flow of photons. In the next

section, a complete differential photon flux machinery is introduced. Here some simpler
first-order expressions are introduced, for the flux integrated up to a hard interaction scale
Q2. There is some ambiguity in the choice of Q2 range over which emissions should be
included. The näıve (default) choice is

f e
γ(x,Q2) =

αem

2π

1 + (1− x)2

x
ln

(
Q2

m2
e

)
. (52)

Here it is assumed that only one scale enters the problem, namely that of the hard
interaction, and that the scale of the branching e → eγ is bounded from above by the
hard interaction scale. For a pure QCD or pure QED shower this is an appropriate
procedure, cf. section 10.1.3, but in other cases it may not be optimal. In particular, for
photoproduction the alternative that is probably most appropriate is [Ali88]:

f e
γ(x,Q2) =

αem

2π

1 + (1− x)2

x
ln

(
Q2

max(1− x)

m2
e x

2

)
. (53)

Here Q2
max is a user-defined cut for the range of scattered electron kinematics that is

counted as photoproduction. Note that we now deal with two different Q2 scales, one
related to the hard subprocess itself, which appears as the argument of the parton dis-
tribution, and the other related to the scattering of the electron, which is reflected in
Q2

max.
Also other sources of photons should be mentioned. One is the beamstahlung pho-

tons mentioned above, where again Circe provides sample parameterizations. Another,
particularly interesting one, is laser backscattering, wherein an intense laser pulse is shot
at an incoming high-energy electron bunch. By Compton backscattering this gives rise
to a photon energy spectrum with a peak at a sigificant fraction of the original electron
energy [Gin82]. Both of these sources produce real photons, which can be considered
as photon beams of variable energy (see subsection 9.8), decoupled from the production
process proper.

In resolved photoproduction or resolved γγ interactions, one has to include the parton
distributions for quarks and gluons inside the photon inside the electron. This is best done
with the machinery of the next section. However, as an older and simpler alternative, f e

q,g

can be obtained by a numerical convolution according to

f e
q,g(x,Q2) =

∫ 1

x

dxγ
xγ

f e
γ(xγ, Q

2) fγq,g

(
x

xγ
, Q2

)
, (54)

with f e
γ as discussed above. The necessity for numerical convolution makes this parton

distribution evaluation rather slow compared with the others; one should therefore only
have it switched on for resolved photoproduction studies.

One can obtain the positron distribution inside an electron, which is also the electron
sea parton distribution, by a convolution of the two branchings e → eγ and γ → e+e−;
the result is [Che75]

f e−
e+ (x,Q2) =

1

2

{
αem

2π

(
ln
Q2

m2
e

− 1

)}2
1

x

(
4

3
− x2 − 4

3
x3 + 2x(1 + x) ln x

)
. (55)

89

Finally, the program also contains the distribution of a transverse W− inside an elec-
tron

f e
W(x,Q2) =

αem

2π

1

4 sin2θW

1 + (1− x)2

x
ln

(
1 +

Q2

m2
W

)
. (56)

7.1.4 Equivalent photon flux in leptons

With the ’gamma/lepton’ option of a PYINIT call, an ep or e+e− event (or corresponding
processes with muons) is factorized into the flux of virtual photons and the subsequent
interactions of such photons. While real photons always are transverse, the virtual photons
also allow a longitudinal component. This corresponds to cross sections

dσ(ep→ eX) =
∑

ξ=T,L

∫ ∫
dy dQ2 f ξγ/e(y,Q

2) dσ(γ∗ξp→ X) (57)

and

dσ(ee→ eeX) =
∑

ξ1,ξ2=T,L

∫ ∫ ∫
dy1 dQ2

1 dy2 dQ2
2 f

ξ1
γ/e(y1, Q

2
1)f ξ2γ/e(y2, Q

2
2) dσ(γ∗ξ1γ

∗
ξ2
→ X) .

(58)
For ep events, this factorized ansatz is perfectly general, so long as azimuthal distributions
in the final state are not studied in detail. In e+e− events, it is not a good approximation
when the virtualities Q2

1 and Q2
2 of both photons become of the order of the squared

invariant mass W 2 of the colliding photons [Sch98]. In this region the cross section
have terms that depend on the relative azimuthal angle of the scattered leptons, and the
transverse and longitudinal polarizations are non-trivially mixed. However, these terms
are of order Q2

1Q
2
2/W

2 and can be neglected whenever at least one of the photons has low
virtuality compared to W 2.

When Q2/W 2 is small, one can derive [Bon73, Bud75, Sch98]

fT
γ/l(y,Q

2) =
αem

2π

(
(1 + (1− y)2

y

1

Q2
− 2m2

l y

Q4

)
, (59)

fL
γ/l(y,Q

2) =
αem

2π

2(1− y)

y

1

Q2
, (60)

where l = e±, µ± or τ±. In fT
γ/l the second term, proportional to m2

l /Q
4, is not leading log

and is therefore often omitted. Clearly it is irrelevant at large Q2, but around the lower
cut-off Q2

min it significantly dampens the small-y rise of the first term. (Note that Q2
min

is y-dependent, so properly the dampening is in a region of the (y,Q2) plane.) Overall,
under realistic conditions, it reduces event rates by 5–10% [Sch98, Fri93].

The y variable is defined as the light-cone fraction the photon takes of the incoming
lepton momentum. For instance, for l+l− events,

yi =
qikj
kikj

, j = 2(1) for i = 1(2) , (61)

where the ki are the incoming lepton four-momenta and the qi the four-momenta of the
virtual photons.

Alternatively, the energy fraction the photon takes in the rest frame of the collision
can be used,

xi =
qi(k1 + k2)

ki(k1 + k2)
, i = 1, 2 . (62)

90

The two are simply related,

yi = xi +
Q2
i

s
, (63)

with s = (k1 + k2)2. (Here and in the following formulae we have omitted the lepton and
hadron mass terms when it is not of importance for the argumentation.) Since the Jaco-
bian d(yi, Q

2
i)/d(xi, Q

2
i) = 1, either variable would be an equally valid choice for covering

the phase space. Small xi values will be of less interest for us, since they lead to small
W 2, so yi/xi ≈ 1 except in the high-Q2 tail, and often the two are used interchangeably.

Unless special Q2 cuts are imposed, cross sections obtained with fT,L
γ/l (x,Q2) dx rather

than fT,L
γ/l (y,Q2) dy differ only at the per mil level. For comparisons with experimental

cuts, it is sometimes relevant to know which of the two is being used in an analysis.
In the ep kinematics, the x and y definitions give that

W 2 = xs = ys−Q2 . (64)

The W 2 expression for l+l− is more complicated, especially because of the dependence on
the relative azimuthal angle of the scattered leptons, ϕ12 = ϕ1 − ϕ2:

W 2 = x1x2s+
2Q2

1Q
2
2

s
− 2

√
1− x1 − Q2

1

s

√
1− x2 − Q2

2

s
Q1Q2 cosϕ12

= y1y2s−Q2
1 −Q2

2 +
Q2

1Q
2
2

s
− 2

√
1− y1

√
1− y2Q1Q2 cosϕ12 . (65)

The lepton scattering angle θi is related to Q2
i as

Q2
i =

x2
i

1− xim
2
i + (1− xi)

(
s− 2

(1− xi)2
m2
i − 2m2

j

)
sin2(θi/2) , (66)

with m2
i = k2

i = k′2i and terms of O(m4) neglected. The kinematical limits thus are

(Q2
i)min ≈ x2

i

1− xim
2
i , (67)

(Q2
i)max ≈ (1− xi)s , (68)

unless experimental conditions reduce the θi ranges.
In summary, we will allow the possibility of experimental cuts in the xi, yi, Q

2
i , θi

and W 2 variables. Within the allowed region, the phase space is Monte Carlo sampled
according to

∏
i(dQ

2
i /Q

2
i) (dxi/xi) dϕi, with the remaining flux factors combined with the

cross section factors to give the event weight used for eventual acceptance or rejection.
This cross section in its turn can contain the parton densities of a resolved virtual photon,
thus offering an effective convolution that gives partons inside photons inside electrons.

7.2 Kinematics and Cross Section for a 2→ 2 Process

In this section we begin the description of kinematics selection and cross-section calcula-
tion. The example is for the case of a 2→ 2 process, with final-state masses assumed to
be vanishing. Later on we will expand to finite fixed masses, and to resonances.

Consider two incoming beam particles in their c.m. frame, each with energy Ebeam.
The total squared c.m. energy is then s = 4E2

beam. The two partons that enter the
hard interaction do not carry the total beam momentum, but only fractions x1 and x2,
respectively, i.e. they have four-momenta

p1 = Ebeam(x1; 0, 0, x1) ,

p2 = Ebeam(x2; 0, 0,−x2) . (69)

91

There is no reason to put the incoming partons on the mass shell, i.e. to have time-like
incoming four-vectors, since partons inside a particle are always virtual and thus space-
like. These space-like virtualities are introduced as part of the initial-state parton-shower
description, see section 10.3.3, but do not affect the formalism of this section, wherefore
massless incoming partons is a sensible ansatz. The one example where it would be
appropriate to put a parton on the mass shell is for an incoming lepton beam, but even
here the massless kinematics description is adequate as long as the c.m. energy is correctly
calculated with masses.

The squared invariant mass of the two partons is defined as

ŝ = (p1 + p2)2 = x1 x2 s . (70)

Instead of x1 and x2, it is often customary to use τ and either y or xF:

τ = x1x2 =
ŝ

s
; (71)

y =
1

2
ln
x1

x2

; (72)

xF = x1 − x2 . (73)

In addition to x1 and x2, two additional variables are needed to describe the kinematics
of a scattering 1 + 2→ 3 + 4. One corresponds to the azimuthal angle ϕ of the scattering
plane around the beam axis. This angle is always isotropically distributed for unpolarized
incoming beam particles, and so need not be considered further. The other variable can
be picked as θ̂, the polar angle of parton 3 in the c.m. frame of the hard scattering. The
conventional choice is to use the variable

t̂ = (p1 − p3)2 = (p2 − p4)2 = − ŝ
2

(1− cos θ̂) , (74)

with θ̂ defined as above. In the following, we will make use of both t̂ and θ̂. It is also
customary to define û,

û = (p1 − p4)2 = (p2 − p3)2 = − ŝ
2

(1 + cos θ̂) , (75)

but û is not an independent variable since

ŝ+ t̂+ û = 0 . (76)

If the two outgoing particles have masses m3 and m4, respectively, then the four-
momenta in the c.m. frame of the hard interaction are given by

p̂3,4 =

(
ŝ± (m2

3 −m2
4)

2
√
ŝ

,±
√
ŝ

2
β34 sin θ̂, 0,±

√
ŝ

2
β34 cos θ̂

)
, (77)

where

β34 =

√√√√
(

1− m2
3

ŝ
− m2

4

ŝ

)2

− 4
m2

3

ŝ

m2
4

ŝ
. (78)

Then t̂ and û are modified to

t̂, û = −1

2

{
(ŝ−m2

3 −m2
4)∓ ŝ β34 cos θ̂

}
, (79)

92

with
ŝ+ t̂+ û = m2

3 +m2
4 . (80)

The cross section for the process 1 + 2→ 3 + 4 may be written as

σ =
∫ ∫ ∫

dx1 dx2 dt̂ f1(x1, Q
2) f2(x2, Q

2)
dσ̂

dt̂

=
∫ ∫ ∫ dτ

τ
dy dt̂ x1f1(x1, Q

2)x2f2(x2, Q
2)

dσ̂

dt̂
. (81)

The choice of Q2 scale is ambiguous, and several alternatives are available in the
program. For massless outgoing particles the default is the squared transverse momentum

Q2 = p̂2
⊥ =

ŝ

4
sin2 θ̂ =

t̂û

ŝ
, (82)

which is modified to

Q2 =
1

2
(m2
⊥3 +m2

⊥4) =
1

2
(m2

3 +m2
4) + p̂2

⊥ =
1

2
(m2

3 +m2
4) +

t̂û−m2
3m

2
4

ŝ
(83)

when masses are introduced in the final state. The mass term is selected such that,
for m3 = m4 = m, the expression reduces to the squared transverse mass, Q2 = m̂2

⊥ =
m2+p̂2

⊥. For cases with spacelike virtual incoming photons, of virtuality Q2
i = −m2

i = |p2
i |,

a further generalization to

Q2 =
1

2
(Q2

1 +Q2
2 +m2

3 +m2
4) + p̂2

⊥ (84)

is offered.
The dσ̂/dt̂ expresses the differential cross section for a scattering, as a function of the

kinematical quantities ŝ, t̂ and û. It is in this function that the physics of a given process
resides.

The performance of a machine is measured in terms of its luminosity L, which is
directly proportional to the number of particles in each bunch and to the bunch crossing
frequency, and inversely proportional to the area of the bunches at the collision point.
For a process with a σ as given by eq. (81), the differential event rate is given by σL, and
the number of events collected over a given period of time

N = σ
∫
L dt . (85)

The program does not calculate the number of events, but only the integrated cross
sections.

7.3 Resonance Production

The simplest way to produce a resonance is by a 2 → 1 process. If the decay of the
resonance is not considered, the cross-section formula does not depend on t̂, but takes the
form

σ =
∫ ∫ dτ

τ
dy x1f1(x1, Q

2)x2f2(x2, Q
2) σ̂(ŝ) . (86)

Here the physics is contained in the cross section σ̂(ŝ). The Q2 scale is usually taken to
be Q2 = ŝ.

93

In published formulae, cross sections are often given in the zero-width approximation,
i.e. σ̂(ŝ) ∝ δ(ŝ − m2

R), where mR is the mass of the resonance. Introducing the scaled
mass τR = m2

R/s, this corresponds to a delta function δ(τ − τR), which can be used to
eliminate the integral over τ .

However, what we normally want to do is replace the δ function by the appropriate
Breit–Wigner shape. For a resonance width ΓR this is achieved by the replacement

δ(τ − τR)→ s

π

mRΓR
(sτ −m2

R)2 +m2
RΓ2

R

. (87)

In this formula the resonance width ΓR is a constant.
An improved description of resonance shapes is obtained if the width is made ŝ-

dependent (occasionally also referred to as mass-dependent width, since ŝ is not always the
resonance mass), see e.g. [Ber89]. To first approximation, this means that the expression
mRΓR is to be replaced by ŝΓR/mR, both in the numerator and the denominator. An
intermediate step is to perform this replacement only in the numerator. This is convenient
when not only s-channel resonance production is simulated but also non-resonance t- or
u-channel graphs are involved, since mass-dependent widths in the denominator here may
give an imperfect cancellation of divergences. (More about this below.)

To be more precise, in the program the quantity HR(ŝ) is introduced, and the Breit–
Wigner is written as

δ(τ − τR)→ s

π

HR(sτ)

(sτ −m2
R)2 +H2

R(sτ)
. (88)

The HR factor is evaluated as a sum over all possible final-state channels, HR =
∑
f H

(f)
R .

Each decay channel may have its own ŝ dependence, as follows.
A decay to a fermion pair, R → ff, gives no contribution below threshold, i.e. for

ŝ < 4m2
f . Above threshold, H

(f)
R is proportional to ŝ, multiplied by a threshold factor

β(3 − β2)/2 for the vector part of a spin 1 resonance, by β3 for the axial vector part,

by β3 for a scalar resonance and by β for a pseudoscalar one. Here β =
√

1− 4m2
f /ŝ.

For the decay into unequal masses, e.g. of the W+, corresponding but more complicated
expressions are used.

For decays into a quark pair, a first-order strong correction factor 1 + αs(ŝ)/π is

included in H
(f)
R . This is the correct choice for all spin 1 colourless resonances, but

is here used for all resonances where no better knowledge is available. Currently the
major exception is top decay, where the factor 1−2.5αs(ŝ)/π is used to approximate loop
corrections [Jeż89]. The second-order corrections are often known, but then are specific to
each resonance, and are not included. An option exists for the γ/Z0/Z′0 resonances, where
threshold effects due to qq bound-state formation are taken into account in a smeared-out,
average sense, see eq. (137).

For other decay channels, not into fermion pairs, the ŝ dependence is typically more
complicated. An example would be the decay h0 → W+W−, with a nontrivial threshold
and a subtle energy dependence above that [Sey95a]. Since a Higgs with mh < 2mW

could still decay in this channel, it is in fact necessary to perform a two-dimensional
integral over the W± Breit–Wigner mass distributions to obtain the correct result (and
this has to be done numerically, at least in part). Fortunately, a Higgs particle lighter than
2mW is sufficiently narrow that the integral only needs to be performed once and for all
at initialization (whereas most other partial widths are recalculated whenever needed).
Channels that proceed via loops, such as h → gg, also display complicated threshold
behaviours.

The coupling structure within the electroweak sector is usually (re)expressed in terms

94

of gauge boson masses, αem and sin2θW , i.e. factors of GF are replaced according to

√
2GF =

π αem

sin2θW m2
W

. (89)

Having done that, αem is allowed to run [Kle89], and is evaluated at the ŝ scale. Thereby
the relevant electroweak loop correction factors are recovered at the mW/mZ scale. How-
ever, the option exists to go the other way and eliminate αem in favour of GF. Currently
sin2θW is not allowed to run.

For Higgs particles and technipions, fermion masses enter not only in the kinematics
but also as couplings. The latter kind of quark masses (but not the former, at least not in
the program) are running with the scale of the process, i.e. normally the resonance mass.
The expression used is [Car96]

m(Q2) = m0

(
ln(k2m2

0/Λ
2)

ln(Q2/Λ2)

)12/(33−2nf)

. (90)

Here m0 is the input mass at a reference scale km0, defined in the ms scheme. Typical
choices are either k = 1 or k = 2; the latter would be relevant if the reference scale is
chosen at the QQ threshold. Both Λ and nf are as given in αs.

In summary, we see that an ŝ dependence may enter several different ways into the

H
(f)
R expressions from which the total HR is built up.

When only decays to a specific final state f are considered, the HR in the denominator
remains the sum over all allowed decay channels, but the numerator only contains the

H
(f)
R term of the final state considered.

If the combined production and decay process i → R → f is considered, the same ŝ
dependence is implicit in the coupling structure of i→ R as one would have had in R→ i,
i.e. to first approximation there is a symmetry between couplings of a resonance to the
initial and to the final state. The cross section σ̂ is therefore, in the program, written in
the form

σ̂i→R→f (ŝ) ∝ π

ŝ

H
(i)
R (ŝ)H

(f)
R (ŝ)

(ŝ−m2
R)2 +H2

R(ŝ)
. (91)

As a simple example, the cross section for the process e−νe →W− → µ−νµ can be written
as

σ̂(ŝ) = 12
π

ŝ

H
(i)
W (ŝ)H

(f)
W (ŝ)

(ŝ−m2
W)2 +H2

W(ŝ)
, (92)

where

H
(i)
W (ŝ) = H

(f)
W (ŝ) =

αem(ŝ)

24 sin2θW
ŝ . (93)

If the effects of several initial and/or final states are studied, it is straightforward to
introduce an appropriate summation in the numerator.

The analogy between the H
(f)
R and H

(i)
R cannot be pushed too far, however. The

two differ in several important aspects. Firstly, colour factors appear reversed: the decay
R→ qq contains a colour factor NC = 3 enhancement, while qq→ R is instead suppressed
by a factor 1/NC = 1/3. Secondly, the 1 + αs(ŝ)/π first-order correction factor for the
final state has to be replaced by a more complicated K factor for the initial state. This
factor is not known usually, or it is known (to first non-trivial order) but too lengthy to
be included in the program. Thirdly, incoming partons as a rule are space-like. All the
threshold suppression factors of the final-state expressions are therefore irrelevant when

production is considered. In sum, the analogy between H
(f)
R and H

(i)
R is mainly useful

as a consistency cross-check, while the two usually are calculated separately. Exceptions

95

include the rather messy loop structure involved in gg → h0 and h0 → gg, which is only
coded once.

It is of some interest to consider the observable resonance shape when the effects of
parton distributions are included. In a hadron collider, to first approximation, parton
distributions tend to have a behaviour roughly like f(x) ∝ 1/x for small x — this is why
f(x) is replaced by xf(x) in eq. (81). Instead, the basic parton-distribution behaviour
is shifted into the factor of 1/τ in the integration phase space dτ/τ , cf. eq. (86). When
convoluted with the Breit–Wigner shape, two effects appear. One is that the overall
resonance is tilted: the low-mass tail is enhanced and the high-mass one suppressed. The
other is that an extremely long tail develops on the low-mass side of the resonance: when
τ → 0, eq. (91) with HR(ŝ) ∝ ŝ gives a σ̂(ŝ) ∝ ŝ ∝ τ , which exactly cancels the 1/τ
factor mentioned above. Näıvely, the integral over y,

∫
dy = − ln τ , therefore gives a net

logarithmic divergence of the resonance shape when τ → 0. Clearly, it is then necessary
to consider the shape of the parton distributions in more detail. At not-too-small Q2, the
evolution equations in fact lead to parton distributions more strongly peaked than 1/x,
typically with xf(x) ∝ x−0.3, and therefore a divergence like τ−0.3 in the cross-section
expression. Eventually this divergence is regularized by a closing of the phase space,
i.e. that HR(ŝ) vanishes faster than ŝ, and by a less drastic small-x parton-distribution
behaviour when Q2 ≈ ŝ→ 0.

The secondary peak at small τ may give a rather high cross section, which can even
rival that of the ordinary peak around the nominal mass. This is the case, for instance,
with W production. Such a peak has never been observed experimentally, but this is not
surprising, since the background from other processes is overwhelming at low ŝ. Thus a
lepton of one or a few GeV of transverse momentum is far more likely to come from the
decay of a charm or bottom hadron than from an extremely off-shell W of a mass of a
few GeV. When resonance production is studied, it is therefore important to set limits
on the mass of the resonance, so as to agree with the experimental definition, at least to
first approximation. If not, cross-section information given by the program may be very
confusing.

Another problem is that often the matrix elements really are valid only in the resonance
region. The reason is that one usually includes only the simplest s-channel graph in the
calculation. It is this ‘signal’ graph that has a peak at the position of the resonance, where
it (usually) gives much larger cross sections than the other ‘background’ graphs. Away
from the resonance position, ‘signal’ and ‘background’ may be of comparable order, or
the ‘background’ may even dominate. There is a quantum mechanical interference when
some of the ‘signal’ and ‘background’ graphs have the same initial and final state, and this
interference may be destructive or constructive. When the interference is non-negligible,
it is no longer meaningful to speak of a ‘signal’ cross section. As an example, consider the
scattering of longitudinal W’s, W+

L W−
L →W+

L W−
L , where the ‘signal’ process is s-channel

exchange of a Higgs. This graph by itself is ill-behaved away from the resonance region.
Destructive interference with ‘background’ graphs such as t-channel exchange of a Higgs
and s- and t-channel exchange of a γ/Z is required to save unitarity at large energies.

In e+e− colliders, the f e
e parton distribution is peaked at x = 1 rather than at x = 0.

The situation therefore is the opposite, if one considers e.g. Z0 production in a machine
running at energies above mZ: the tail towards lower masses is suppressed and the one
towards higher masses enhanced, with a sharp secondary peak at around the nominal
energy of the machine. Also in this case, an appropriate definition of cross sections
therefore is necessary — with additional complications due to the interference between γ∗

and Z0. When other processes are considered, problems of interference with background
appears also here. Numerically the problems may be less pressing, however, since the
secondary peak is occurring in a high-mass region, rather than in a more complicated
low-mass one. Further, in e+e− there is little uncertainty from the shape of the parton
distributions.

96

In 2→ 2 processes where a pair of resonances are produced, e.g. e+e− → Z0h0, cross
section are almost always given in the zero-width approximation for the resonances. Here
two substitutions of the type

1 =
∫
δ(m2 −m2

R) dm2 →
∫ 1

π

mRΓR
(m2 −m2

R)2 +m2
RΓ2

R

dm2 (94)

are used to introduce mass distributions for the two resonance masses, i.e. m2
3 and m2

4.
In the formula, mR is the nominal mass and m the actually selected one. The phase-
space integral over x1, x1 and t̂ in eq. (81) is then extended to involve also m2

3 and m2
4.

The effects of the mass-dependent width is only partly taken into account, by replacing
the nominal masses m2

3 and m2
4 in the dσ̂/dt̂ expression by the actually generated ones

(also e.g. in the relation between t̂ and cos θ̂), while the widths are evaluated at the
nominal masses. This is the equivalent of a simple replacement of mRΓR by ŝΓR/mR in
the numerator of eq. (87), but not in the denominator. In addition, the full threshold
dependence of the widths, i.e. the velocity-dependent factors, is not reproduced.

There is no particular reason why the full mass-dependence could not be introduced,
except for the extra work and time consumption needed for each process. In fact, the
matrix elements for several γ∗/Z0 and W± production processes do contain the full ex-
pressions. On the other hand, the matrix elements given in the literature are often valid
only when the resonances are almost on the mass shell, since some graphs have been
omitted. As an example, the process qq → e−νeµ

+νµ is dominated by qq → W−W+

when each of the two lepton pairs is close to mW in mass, but in general also receives
contributions e.g. from qq→ Z0 → e+e−, followed by e+ → νeW

+ and W+ → µ+νµ. The
latter contributions are neglected in cross sections given in the zero-width approximation.

Widths may induce gauge invariance problems, in particular when the s-channel graph
interferes with t- or u-channels. Then there may be an imperfect cancellation of contri-
butions at high energies, leading to an incorrect cross section behaviour. The underlying
reason is that a Breit-Wigner corresponds to a resummation of terms of different orders
in coupling constants, and that therefore effectively the s-channel contributions are calcu-
lated to higher orders than the t- or u-channel ones, including interference contributions.
A specific example is e+e− → W+W−, where s-channel γ∗/Z∗ exchange interferes with
t-channel νe exchange. In such cases, a fixed width is used in the denominator. One
could also introduce procedures whereby the width is made to vanish completely at high
energies, and theoretically this is the cleanest, but the fixed-width approach appears good
enough in practice.

Another gauge invariance issue is when two particles of the same kind are produced
in a pair, e.g. gg → tt. Matrix elements are then often calculated for one common
mt mass, even though in real life the masses m3 6= m4. The proper gauge invariant
procedure to handle this would be to study the full six-fermion state obtained after the
two t → bW → bfifj decays, but that may be overkill if indeed the t’s are close to
mass shell. Even when only equal-mass matrix elements are available, Breit-Wigners are
therefore used to select two separate masses m3 and m4. From these two masses, an
average mass m is constructed so that the β34 velocity factor of eq. (78) is retained,

β34(ŝ, m2,m2) = β34(ŝ,m2
3,m

2
4) ⇒ m2 =

m2
3 +m2

4

2
− (m2

3 −m2
4)2

4ŝ
. (95)

This choice certainly is not unique, but normally should provide a sensible behaviour,
also around threshold. The approach may well break down when either or both particles
are far away from mass shell. Furthermore, the preliminary choice of scattering angle θ̂
is also retained. Instead of the correct t̂ and û of eq. (79), modified

t̂, û = −1

2

{
(ŝ− 2m2)∓ ŝ β34 cos θ̂

}
= (t̂, û)− (m2

3 −m2
4)2

4ŝ
(96)

97

can then be obtained. The m2, t̂ and û are now used in the matrix elements to decide
whether to retain the event or not.

Processes with one final-state resonance and another ordinary final-state product, e.g.
qg → W+q′, are treated in the same spirit as the 2 → 2 processes with two resonances,
except that only one mass need be selected according to a Breit–Wigner.

7.4 Cross-section Calculations

In the program, the variables used in the generation of a 2 → 2 process are τ , y and
z = cos θ̂. For a 2 → 1 process, the z variable can be integrated out, and need therefore
not be generated as part of the hard process, except when the allowed angular range of
decays is restricted. In unresolved lepton beams, i.e. when f e

e (x) = δ(x− 1), the variables
τ and/or y may be integrated out. We will cover all these special cases towards the end
of the section, and here concentrate on ‘standard’ 2→ 2 and 2→ 1 processes.

7.4.1 The simple 2→ 2 processes

In the spirit of section 4.1, we want to select simple functions such that the true τ , y and
z dependence of the cross sections is approximately modelled. In particular, (almost) all
conceivable kinematical peaks should be represented by separate terms in the approximate
formulae. If this can be achieved, the ratio of the correct to the approximate cross sections
will not fluctuate too much, but allow reasonable Monte Carlo efficiency.

Therefore the variables are generated according to the distributions hτ (τ), hy(y) and
hz(z), where normally

hτ (τ) =
c1

I1

1

τ
+
c2

I2

1

τ 2
+
c3

I3

1

τ(τ + τR)
+
c4

I4

1

(sτ −m2
R)2 +m2

RΓ2
R

+
c5

I5

1

τ(τ + τR′)
+
c6

I6

1

(sτ −m2
R′)

2 +m2
R′Γ

2
R′
, (97)

hy(y) =
c1

I1

(y − ymin) +
c2

I2

(ymax − y) +
c3

I3

1

cosh y
, (98)

hz(z) =
c1

I1

+
c2

I2

1

a− z +
c3

I3

1

a+ z
+
c4

I4

1

(a− z)2
+
c5

I5

1

(a+ z)2
. (99)

Here each term is separately integrable, with an invertible primitive function, such that
generation of τ , y and z separately is a standard task, as described in section 4.1. In the
following we describe the details of the scheme, including the meaning of the coefficients
ci and Ii, which are separate for τ , y and z.

The first variable to be selected is τ . The range of allowed values, τmin ≤ τ ≤ τmax,
is generally constrained by a number of user-defined requirements. A cut on the allowed
mass range is directly reflected in τ , a cut on the p⊥ range indirectly. The first two terms
of hτ are intended to represent a smooth τ dependence, as generally obtained in processes
which do not receive contributions from s-channel resonances. Also s-channel exchange
of essentially massless particles (γ, g, light quarks and leptons) are accounted for, since
these do not produce any separate peaks at non-vanishing τ . The last four terms of
hτ are there to catch the peaks in the cross section from resonance production. These
terms are only included when needed. Each resonance is represented by two pieces, a first
to cover the interference with graphs which peak at τ = 0, plus the variation of parton
distributions, and a second to approximate the Breit–Wigner shape of the resonance itself.
The subscripts R and R′ denote values pertaining to the two resonances, with τR = m2

R/s.
Currently there is only one process where the full structure with two resonances is used,
namely ff → γ∗/Z0/Z′0. Otherwise either one or no resonance peak is taken into account.

98

The kinematically allowed range of y values is constrained by τ , |y| ≤ −1
2

ln τ , and
you may impose additional cuts. Therefore the allowed range ymin ≤ y ≤ ymax is only
constructed after τ has been selected. The first two terms of hy give a fairly flat y depen-
dence — for processes which are symmetric in y ↔ −y, they will add to give a completely
flat y spectrum between the allowed limits. In principle, the natural subdivision would
have been one term flat in y and one forward–backward asymmetric, i.e. proportional to
y. The latter is disallowed by the requirement of positivity, however. The y − ymin and
ymax − y terms actually used give the same amount of freedom, but respect positivity.
The third term is peaked at around y = 0, and represents the bias of parton distributions
towards this region.

The allowed z = cos θ̂ range is näıvely −1 ≤ z ≤ 1. However, most cross sections are
divergent for z → ±1, so some kind of regularization is necessary. Normally one requires
p⊥ ≥ p⊥min, which translates into z2 ≤ 1 − 4p2

⊥min/(τs) for massless outgoing particles.
Since again the limits depend on τ , the selection of z is done after that of τ . Additional
requirements may constrain the range further. In particular, a p⊥max constraint may split
the allowed z range into two, i.e. z−min ≤ z ≤ z−max or z+min ≤ z ≤ z+max. An un-split
range is represented by z−max = z+min = 0. For massless outgoing particles the parameter
a = 1 in hz, such that the five terms represent a piece flat in angle and pieces peaked as 1/t̂,
1/û, 1/t̂2, and 1/û2, respectively. For non-vanishing masses one has a = 1 + 2m2

3m
2
4/ŝ

2.
In this case, the full range −1 ≤ z ≤ 1 is therefore available — physically, the standard t̂
and û singularities are regularized by the masses m3 and m4.

For each of the terms, the Ii coefficients represent the integral over the quantity
multiplying the coefficient ci; thus, for instance:

hτ : I1 =
∫ dτ

τ
= ln

(
τmax

τmin

)
,

I2 =
∫ dτ

τ 2
=

1

τmin

− 1

τmax

;

hy : I1 =
∫

(y − ymin) dy =
1

2
(ymax − ymin)2 ;

hz : I1 =
∫

dz = (z−max − z−min) + (z+max − z+min),

I2 =
∫ dz

a− z = ln

(
(a− z−min)(a− z+min)

(a− z−max)(a− z−min)

)
. (100)

The ci coefficients are normalized to unit sum for hτ , hy and hz separately. They
have a simple interpretation, as the probability for each of the terms to be used in the
preliminary selection of τ , y and z, respectively. The variation of the cross section over
the allowed phase space is explored in the initialization procedure of a Pythia run, and
based on this knowledge the ci are optimized so as to give functions hτ , hy and hz that
closely follow the general behaviour of the true cross section. For instance, the coefficient
c4 in hτ is to be made larger the more the total cross section is dominated by the region
around the resonance mass.

The phase-space points tested at initialization are put on a grid, with the number of
points in each dimension given by the number of terms in the respective h expression,
and with the position of each point given by the median value of the distribution of one
of the terms. For instance, the dτ/τ distribution gives a median point at

√
τminτmax, and

dτ/τ 2 has the median 2τminτmax/(τmin + τmax). Since the allowed y and z ranges depend
on the τ value selected, then so do the median points defined for these two variables.

With only a limited set of phase-space points studied at the initialization, the ‘optimal’
set of coefficients is not uniquely defined. To be on the safe side, 40% of the total weight is
therefore assigned evenly between all allowed ci, whereas the remaining 60% are assigned

99

according to the relative importance surmised, under the constraint that no coefficient is
allowed to receive a negative contribution from this second piece.

After a preliminary choice has been made of τ , y and z, it is necessary to find the
weight of the event, which is to be used to determine whether to keep it or generate
another one. Using the relation dt̂ = ŝ β34 dz/2, eq. (81) may be rewritten as

σ =
∫ ∫ ∫ dτ

τ
dy

ŝβ34

2
dz x1f1(x1, Q

2)x2f2(x2, Q
2)

dσ̂

dt̂

=
π

s

∫
hτ (τ) dτ

∫
hy(y) dy

∫
hz(z) dz β34

x1f1(x1, Q
2) x2f2(x2, Q

2)

τ 2hτ (τ)hy(y) 2hz(z)

ŝ2

π

dσ̂

dt̂

=

〈
π

s

β34

τ 2hτ (τ)hy(y) 2hz(z)
x1f1(x1, Q

2)x2f2(x2, Q
2)
ŝ2

π

dσ̂

dt̂

〉
. (101)

In the middle line, a factor of 1 = hτ/hτ has been introduced to rewrite the τ integral in
terms of a phase space of unit volume:

∫
hτ (τ) dτ = 1 according to the relations above.

Correspondingly for the y and z integrals. In addition, factors of 1 = ŝ/(τs) and 1 = π/π
are used to isolate the dimensionless cross section (ŝ2/π) dσ̂/dt̂. The content of the last
line is that, with τ , y and z selected according to the expressions hτ (τ), hy(y) and hz(z),
respectively, the cross section is obtained as the average of the final expression over all
events. Since the h’s have been picked to give unit volume, there is no need to multiply
by the total phase-space volume.

As can be seen, the cross section for a given Monte Carlo event is given as the product
of four factors, as follows:

1. The π/s factor, which is common to all events, gives the overall dimensions of the
cross section, in GeV−2. Since the final cross section is given in units of mb, the
conversion factor of 1 GeV−2 = 0.3894 mb is also included here.

2. Next comes the Jacobian, which compensates for the change from the original to
the final phase-space volume.

3. The parton-distribution function weight is obtained by making use of the parton
distribution libraries in Pythia or externally. The x1 and x2 values are obtained
from τ and y via the relations x1,2 =

√
τ exp(±y).

4. Finally, the dimensionless cross section (ŝ2/π) dσ̂/dt̂ is the quantity that has to be
coded for each process separately, and where the physics content is found.

Of course, the expression in the last line is not strictly necessary to obtain the cross
section by Monte Carlo integration. One could also have used eq. (81) directly, selecting
phase-space points evenly in τ , y and t̂, and averaging over those Monte Carlo weights.
Clearly this would be much simpler, but the price to be paid is that the weights of
individual events could fluctuate wildly. For instance, if the cross section contains a
narrow resonance, the few phase-space points that are generated in the resonance region
obtain large weights, while the rest do not. With our procedure, a resonance would
be included in the hτ (τ) factor, so that more events would be generated at around the
appropriate τR value (owing to the hτ numerator in the phase-space expression), but with
these events assigned a lower, more normal weight (owing to the factor 1/hτ in the weight
expression). Since the weights fluctuate less, fewer phase-space points need be selected to
get a reasonable cross-section estimate.

In the program, the cross section is obtained as the average over all phase-space points
generated. The events actually handed on to you should have unit weight, however (an
option with weighted events exists, but does not represent the mainstream usage). At
initialization, after the ci coefficients have been determined, a search inside the allowed
phase-space volume is therefore made to find the maximum of the weight expression in
the last line of eq. (101). In the subsequent generation of events, a selected phase-space

100

point is then retained with a probability equal to the weight in the point divided by
the maximum weight. Only the retained phase-space points are considered further, and
generated as complete events.

The search for the maximum is begun by evaluating the weight in the same grid of
points as used to determine the ci coefficients. The point with highest weight is used as
starting point for a search towards the maximum. In unfortunate cases, the convergence
could be towards a local maximum which is not the global one. To somewhat reduce
this risk, also the grid point with second-highest weight is used for another search. After
initialization, when events are generated, a warning message will be given by default at
any time a phase-space point is selected where the weight is larger than the maximum,
and thereafter the maximum weight is adjusted to reflect the new knowledge. This means
that events generated before this time have a somewhat erroneous distribution in phase
space, but if the maximum violation is rather modest the effects should be negligible. The
estimation of the cross section is not affected by any of these considerations, since the
maximum weight does not enter into eq. (101).

For 2 → 2 processes with identical final-state particles, the symmetrization factor of
1/2 is explicitly included at the end of the dσ̂/dt̂ calculation. In the final cross section,
a factor of 2 is retrieved because of integration over the full phase space (rather than
only half of it). That way, no special provisions are needed in the phase-space integration
machinery.

7.4.2 Resonance production

We have now covered the simple 2→ 2 case. In a 2→ 1 process, the t̂ integral is absent,
and the differential cross section dσ̂/dt̂ is replaced by σ̂(ŝ). The cross section may now
be written as

σ =
∫ ∫ dτ

τ
dy x1f1(x1, Q

2) x2f2(x2, Q
2) σ̂(ŝ)

=
π

s

∫
hτ (τ) dτ

∫
hy(y) dy

x1f1(x1, Q
2)x2f2(x2, Q

2)

τ 2hτ (τ)hy(y)

ŝ

π
σ̂(ŝ)

=

〈
π

s

1

τ 2hτ (τ)hy(y)
x1f1(x1, Q

2)x2f2(x2, Q
2)
ŝ

π
σ̂(ŝ)

〉
. (102)

The structure is thus exactly the same, but the z-related pieces are absent, and the rôle
of the dimensionless cross section is played by (ŝ/π)σ̂(ŝ).

If the range of allowed decay angles of the resonance is restricted, e.g. by requiring
the decay products to have a minimum transverse momentum, effectively this translates
into constraints on the z = cos θ̂ variable of the 2→ 2 process. The difference is that the
angular dependence of a resonance decay is trivial, and that therefore the z-dependent
factor can be easily evaluated. For a spin-0 resonance, which decays isotropically, the
relevant weight is simply (z−max−z−min)/2+(z+max−z+min)/2. For a transversely polarized
spin-1 resonance the expression is, instead,

3

8
(z−max − z−min) +

3

8
(z+max − z+min) +

1

8
(z−max − z−min)3 +

1

8
(z+max − z+min)3 . (103)

Since the allowed z range could depend on τ and/or y (it does for a p⊥ cut), the factor
has to be evaluated for each individual phase-space point and included in the expression
of eq. (102).

For 2→ 2 processes where either of the final-state particles is a resonance, or both, an
additional choice has to be made for each resonance mass, eq. (94). Since the allowed τ ,
y and z ranges depend on m2

3 and m2
4, the selection of masses have to precede the choice

101

of the other phase-space variables. Just as for the other variables, masses are not selected
uniformly over the allowed range, but are rather distributed according to a function
hm(m2) dm2, with a compensating factor 1/hm(m2) in the Jacobian. The functional form
picked is normally

hm(m2) =
c1

I1

1

π

mRΓR
(m2 −m2

R)2 +m2
RΓ2

R

+
c2

I2

+
c3

I3

1

m2
+
c4

I4

1

m4
. (104)

The definition of the Ii integrals is analogous to the one before. The ci coefficients are not
found by optimization, but predetermined, normally to c1 = 0.8, c2 = c3 = 0.1, c4 = 0.
Clearly, had the phase space and the cross section been independent of m2

3 and m2
4, the

optimal choice would have been to put c1 = 1 and have all other ci vanishing — then the
1/hm factor of the Jacobian would exactly have cancelled the Breit–Wigner of eq. (94)
in the cross section. The second and the third terms are there to cover the possibility
that the cross section does not die away quite as fast as given by the näıve Breit–Wigner
shape. In particular, the third term covers the possibility of a secondary peak at small
m2, in a spirit slightly similar to the one discussed for resonance production in 2 → 1
processes.

The fourth term is only used for processes involving γ∗/Z0 production, where the γ
propagator guarantees that the cross section does have a significant secondary peak for
m2 → 0. Therefore here the choice is c1 = 0.4, c2 = 0.05, c3 = 0.3 and c4 = 0.25.

A few special tricks have been included to improve efficiency when the allowed mass
range of resonances is constrained by kinematics or by user cuts. For instance, if a pair
of equal or charge-conjugate resonances are produced, such as in e+e− →W+W−, use is
made of the constraint that the lighter of the two has to have a mass smaller than half
the c.m. energy.

7.4.3 Lepton beams

Lepton beams have to be handled slightly differently from what has been described so far.
One also has to distinguish between a lepton for which parton distributions are included
and one which is treated as an unresolved point-like particle. The necessary modifications
are the same for 2 → 2 and 2 → 1 processes, however, since the t̂ degree of freedom is
unaffected.

If one incoming beam is an unresolved lepton, the corresponding parton-distribution
piece collapses to a δ function. This function can be used to integrate out the y variable:
δ(x1,2 − 1) = δ(y ± (1/2) ln τ). It is therefore only necessary to select the τ and the z
variables according to the proper distributions, with compensating weight factors, and
only one set of parton distributions has to be evaluated explicitly.

If both incoming beams are unresolved leptons, both the τ and the y variables are
trivially given: τ = 1 and y = 0. Parton-distribution weights disappear completely. For
a 2 → 2 process, only the z selection remains to be performed, while a 2 → 1 process is
completely specified, i.e. the cross section is a simple number that only depends on the
c.m. energy.

For a resolved electron, the f e
e parton distribution is strongly peaked towards x = 1.

This affects both the τ and the y distributions, which are not well described by either
of the pieces in hτ (τ) or hy(y) in processes with interacting e±. (Processes which involve
e.g. the γ content of the e are still well simulated, since f e

γ is peaked at small x.)
If both parton distributions are peaked close to 1, the hτ (τ) expression in eq. (99)

is therefore increased with one additional term of the form hτ (τ) ∝ 1/(1 − τ), with
coefficients c7 and I7 determined as before. The divergence when τ → 1 is cut off by our
regularization procedure for the f e

e parton distribution; therefore we only need consider
τ < 1− 2× 10−10.

102

Correspondingly, the hy(y) expression is expanded with a term 1/(1−exp(y−y0)) when
incoming beam number 1 consists of a resolved e±, and with a term 1/(1− exp(−y− y0))
when incoming beam number 2 consists of a resolved e±. Both terms are present for
an e+e− collider, only one for an ep one. The coefficient y0 = −(1/2) ln τ is the näıve
kinematical limit of the y range, |y| < y0. From the definitions of y and y0 it is easy
to see that the two terms above correspond to 1/(1 − x1) and 1/(1 − x2), respectively,
and thus are again regularized by our parton-distribution function cut-off. Therefore the
integration ranges are y < y0−10−10 for the first term and y > −y0 +10−10 for the second
one.

7.4.4 Mixing processes

In the cross-section formulae given so far, we have deliberately suppressed a summation
over the allowed incoming flavours. For instance, the process ff → Z0 in a hadron collider
receives contributions from uu → Z0, dd → Z0, ss → Z0, and so on. These contributions
share the same basic form, but differ in the parton-distribution weights and (usually) in a
few coupling constants in the hard matrix elements. It it therefore convenient to generate
the terms together, as follows:

1. A phase-space point is picked, and all common factors related to this choice are
evaluated, i.e. the Jacobian and the common pieces of the matrix elements (e.g. for
a Z0 the basic Breit–Wigner shape, excluding couplings to the initial flavour).

2. The parton-distribution-function library is called to produce all the parton distri-
butions, at the relevant x and Q2 values, for the two incoming beams.

3. A loop is made over the two incoming flavours, one from each beam particle. For each
allowed set of incoming flavours, the full matrix-element expression is constructed,
using the common pieces and the flavour-dependent couplings. This is multiplied
by the common factors and the parton-distribution weights to obtain a cross-section
weight.

4. Each allowed flavour combination is stored as a separate entry in a table, together
with its weight. In addition, a summed weight is calculated.

5. The phase-space point is kept or rejected, according to a comparison of the summed
weight with the maximum weight obtained at initialization. Also the cross-section
Monte Carlo integration is based on the summed weight.

6. If the point is retained, one of the allowed flavour combinations is picked according
to the relative weights stored in the full table.

Generally, the flavours of the final state are either completely specified by those of
the initial state, e.g. as in qg → qg, or completely decoupled from them, e.g. as in
ff → Z0 → f ′f

′
. In neither case need therefore the final-state flavours be specified in the

cross-section calculation. It is only necessary, in the latter case, to include an overall
weight factor, which takes into account the summed contribution of all final states that
are to be simulated. For instance, if only the process Z0 → e+e− is studied, the relevant
weight factor is simply Γee/Γtot. Once the kinematics and the incoming flavours have
been selected, the outgoing flavours can be picked according to the appropriate relative
probabilities.

In some processes, such as gg → gg, several different colour flows are allowed, each
with its own kinematical dependence of the matrix-element weight, see section 8.2.1. Each
colour flow is then given as a separate entry in the table mentioned above, i.e. in total an
entry is characterized by the two incoming flavours, a colour-flow index, and the weight.
For an accepted phase-space point, the colour flow is selected in the same way as the
incoming flavours.

The program can also allow the mixed generation of two or more completely different
processes, such as ff → Z0 and qq→ gg. In that case, each process is initialized separately,
with its own set of coefficients ci and so on. The maxima obtained for the individual cross

103

sections are all expressed in the same units, even when the dimensionality of the phase
space is different. (This is because we always transform to a phase space of unit volume,∫
hτ (τ) dτ ≡ 1, etc.) The above generation scheme need therefore only be generalized as

follows:
1. One process is selected among the allowed ones, with a relative probability given by

the maximum weight for this process.
2. A phase-space point is found, using the distributions hτ (τ) and so on, optimized for

this particular process.
3. The total weight for the phase-space point is evaluated, again with Jacobians, matrix

elements and allowed incoming flavour combinations that are specific to the process.
4. The point is retained with a probability given by the ratio of the actual to the

maximum weight of the process. If the point is rejected, one has to go back to step
1 and pick a new process.

5. Once a phase-space point has been accepted, flavours may be selected, and the event
generated in full.

It is clear why this works: although phase-space points are selected among the allowed
processes according to relative probabilities given by the maximum weights, the probabil-
ity that a point is accepted is proportional to the ratio of actual to maximum weight. In
total, the probability for a given process to be retained is therefore only proportional to
the average of the actual weights, and any dependence on the maximum weight is gone.

In γp and γγ physics, the different components of the photon give different final states,
see section 7.7.2. Technically, this introduces a further level of administration, since each
event class contains a set of (partly overlapping) processes. From an ideological point of
view, however, it just represents one more choice to be made, that of event class, before
the selection of process in step 1 above. When a weighting fails, both class and process
have to be picked anew.

7.5 2→ 3 and 2→ 4 Processes

The Pythia machinery to handle 2→ 1 and 2→ 2 processes is fairly sophisticated and
generic. The same cannot be said about the generation of hard scattering processes with
more than two final-state particles. The number of phase-space variables is larger, and it
is therefore more difficult to find and transform away all possible peaks in the cross section
by a suitably biased choice of phase-space points. In addition, matrix-element expressions
for 2 → 3 processes are typically fairly lengthy. Therefore Pythia only contains a very
limited number of 2→ 3 and 2→ 4 processes, and almost each process is a special case of
its own. It is therefore less interesting to discuss details, and we only give a very generic
overview.

If the Higgs mass is not light, interactions among longitudinal W and Z gauge bosons
are of interest. In the program, 2 → 1 processes such as W+

L W−
L → h0 and 2 → 2

ones such as W+
L W−

L → Z0
LZ0

L are included. The former are for use when the h0 still is
reasonably narrow, such that a resonance description is applicable, while the latter are
intended for high energies, where different contributions have to be added up. Since the
program does not contain WL or ZL distributions inside hadrons, the basic hard scattering
has to be convoluted with the q→ q′WL and q→ qZL branchings, to yield effective 2→ 3
and 2→ 4 processes. However, it is possible to integrate out the scattering angles of the
quarks analytically, as well as one energy-sharing variable [Cha85]. Only after an event
has been accepted are these other kinematical variables selected. This involves further
choices of random variables, according to a separate selection loop.

In total, it is therefore only necessary to introduce one additional variable in the basic
phase-space selection, which is chosen to be ŝ′, the squared invariant mass of the full
2 → 3 or 2 → 4 process, while ŝ is used for the squared invariant mass of the inner

104

2 → 1 or 2 → 2 process. The y variable is coupled to the full process, since parton-
distribution weights have to be given for the original quarks at x1,2 =

√
τ ′ exp (±y). The

t̂ variable is related to the inner process, and thus not needed for the 2 → 3 processes.
The selection of the τ ′ = ŝ′/s variable is done after τ , but before y has been chosen. To
improve the efficiency, the selection is made according to a weighted phase space of the
form

∫
hτ ′(τ

′) dτ ′, where

hτ ′(τ
′) =

c1

I1

1

τ ′
+
c2

I2

(1− τ/τ ′)3

τ ′2
+
c3

I3

1

τ ′(1− τ ′) , (105)

in conventional notation. The ci coefficients are optimized at initialization. The c3 term,
peaked at τ ′ ≈ 1, is only used for e+e− collisions. The choice of hτ ′ is roughly matched
to the longitudinal gauge-boson flux factor, which is of the form

(
1 +

τ

τ ′

)
ln
(
τ

τ ′

)
− 2

(
1− τ

τ ′

)
. (106)

For a light h the effective W approximation above breaks down, and it is necessary
to include the full structure of the qq′ → qq′h0 (i.e. ZZ fusion) and qq′ → q′′q′′′h0 (i.e.
WW fusion) matrix elements. The τ ′, τ and y variables are here retained, and selected
according to standard procedures. The Higgs mass is represented by the τ choice; normally
the h0 is so narrow that the τ distribution effectively collapses to a δ function. In addition,
the three-body final-state phase space is rewritten as

(
5∏

i=3

1

(2π)3

d3pi
2Ei

)
(2π)4δ(4)(p3 +p4 +p5−p1−p2) =

1

(2π)5

π2

4
√
λ⊥34

dp2
⊥3

dϕ3

2π
dp2
⊥4

dϕ4

2π
dy5 ,

(107)
where λ⊥34 = (m2

⊥34−m2
⊥3−m2

⊥4)2−4m2
⊥3m

2
⊥4. The outgoing quarks are labelled 3 and 4,

and the outgoing Higgs 5. The ϕ angles are selected isotropically, while the two transverse
momenta are picked, with some foreknowledge of the shape of the W/Z propagators in
the cross sections, according to h⊥(p2

⊥) dp2
⊥, where

h⊥(p2
⊥) =

c1

I1

+
c2

I2

1

m2
R + p2

⊥
+
c3

I3

1

(m2
R + p2

⊥)2
, (108)

with mR the W or Z mass, depending on process, and c1 = c2 = 0.05, c3 = 0.9. Within
the limits given by the other variable choices, the rapidity y5 is chosen uniformly. A final
choice remains to be made, which comes from a twofold ambiguity of exchanging the
longitudinal momenta of partons 3 and 4 (with minor modifications if they are massive).
Here the relative weight can be obtained exactly from the form of the matrix element
itself.

7.6 Resonance Decays

Resonances (see section 2.1.2) can be made to decay in two different routines. One
is the standard decay treatment (in PYDECY) that can be used for any unstable particle,
where decay channels are chosen according to fixed probabilities, and decay angles usually
are picked isotropically in the rest frame of the resonance, see section 13.3. The more
sophisticated treatment (in PYRESD) is the default one for resonances produced in Pythia,
and is described here. The ground rule is that everything in mass up to and including b
hadrons is decayed with the simpler PYDECY routine, while heavier particles are handled
with PYRESD. This also includes the γ∗/Z0, even though here the mass in principle could
be below the b threshold. Other resonances include, e.g., t, W±, h0, Z′0, W′±, H0, A0,
H±, and technicolor and supersymmetric particles.

105

7.6.1 The decay scheme

In the beginning of the decay treatment, either one or two resonances may be present,
the former represented by processes such as qq′ → W+ and qg → W+q′, the latter by
qq → W+W−. If the latter is the case, the decay of the two resonances is considered in
parallel (unlike PYDECY, where one particle at a time is made to decay).

First the decay channel of each resonance is selected according to the relative weights

H
(f)
R , as described above, evaluated at the actual mass of the resonance, rather than at

the nominal one. Threshold factors are therefore fully taken into account, with channels
automatically switched off below the threshold. Normally the masses of the decay prod-
ucts are well-defined, but e.g. in decays like h0 → W+W− it is also necessary to select
the decay product masses. This is done according to two Breit–Wigners of the type in
eq. (94), multiplied by the threshold factor, which depends on both masses.

Next the decay angles of the resonance are selected isotropically in its rest frame.
Normally the full range of decay angles is available, but in 2 → 1 processes the decay
angles of the original resonance may be restrained by user cuts, e.g. on the p⊥ of the decay
products. Based on the angles, the four-momenta of the decay products are constructed
and boosted to the correct frame. As a rule, matrix elements are given with quark and
lepton masses assumed vanishing. Therefore the four-momentum vectors constructed at
this stage are actually massless for all quarks and leptons.

The matrix elements may now be evaluated. For a process such as qq → W+W− →
e+νeµ

−νµ, the matrix element is a function of the four-momenta of the two incoming
fermions and of the four outgoing ones. An upper limit for the event weight can be
constructed from the cross section for the basic process qq→W+W−, as already used to
select the two W momenta. If the weighting fails, new resonance decay angles are picked
and the procedure is iterated until acceptance.

Based on the accepted set of angles, the correct decay product four-momenta are con-
structed, including previously neglected fermion masses. Quarks and, optionally, leptons
are allowed to radiate, using the standard final-state showering machinery, with maximum
virtuality given by the resonance mass.

In some decays new resonances are produced, and these are then subsequently allowed
to decay. Normally only one resonance pair is considered at a time, with the possibility of
full correlations. In a few cases triplets can also appear, but such configurations currently
are considered without inclusion of correlations. Also note that, in a process like qq →
Z0h0 → Z0W+W− → 6 fermions, the spinless nature of the h0 ensures that the W± decays
are decoupled from that of the Z0 (but not from each other).

7.6.2 Cross-section considerations

The cross section for a process which involves the production of one or several resonances
is always reduced to take into account channels not allowed by user flags. This is trivial
for a single s-channel resonance, cf. eq. (91), but can also be included approximately if
several layers of resonance decays are involved. At initialization, the ratio between the
user-allowed width and the nominally possible one is evaluated and stored, starting from
the lightest resonances and moving upwards. As an example, one first finds the reduction
factors for W+ and for W− decays, which need not be the same if e.g. W+ is allowed to
decay only to quarks and W− only to leptons. These factors enter together as a weight
for the h0 →W+W− channel, which is thus reduced in importance compared with other
possible Higgs decay channels. This is also reflected in the weight factor of the h0 itself,
where some channels are open in full, others completely closed, and finally some (like the
one above) open but with reduced weight. Finally, the weight for the process qq→ Z0h0

is evaluated as the product of the Z0 weight factor and the h0 one. The standard cross
section of the process is multiplied with this weight.

106

Since the restriction on allowed decay modes is already included in the hard process
cross section, mixing of different event types is greatly simplified, and the selection of decay
channel chains is straightforward. There is a price to be paid, however. The reduction
factors evaluated at initialization all refer to resonances at their nominal masses. For
instance, the W reduction factor is evaluated at the nominal W mass, even when that
factor is used, later on, in the description of the decay of a 120 GeV Higgs, where at least
one W would be produced below this mass. We know of no case where this approximation
has any serious consequences, however.

The weighting procedure works because the number of resonances to be produced,
directly or in subsequent decays, can be derived recursively already from the start. It
does not work for particles which could also be produced at later stages, such as the
parton-shower evolution and the fragmentation. For instance, D0 mesons can be produced
fairly late in the event generation chain, in unknown numbers, and so weights could not
be introduced to compensate, e.g. for the forcing of decays only into π+K−.

One should note that this reduction factor is separate from the description of the
resonance shape itself, where the full width of the resonance has to be used. This width
is based on the sum of all possible decay modes, not just the simulated ones. Pythia
does allow the possibility to change also the underlying physics scenario, e.g. to include
the decay of a Z0 into a fourth-generation neutrino.

Normally the evaluation of the reduction factors is straightforward. However, for
decays into a pair of equal or charge-conjugate resonances, such as Z0Z0 or W+W−, it is
possible to pick combinations in such a way that the weight of the pair does not factorize
into a product of the weight of each resonance itself. To be precise, any decay channel
can be given seven different status codes:
• −1: a non-existent decay mode, completely switched off and of no concern to us;
• 0: an existing decay channel, which is switched off;
• 1: a channel which is switched on;
• 2: a channel switched on for particles, but off for antiparticles;
• 3: a channel switched on for antiparticles, but off for particles;
• 4: a channel switched on for one of the particles or antiparticles, but not for both;
• 5: a channel switched on for the other of the particles or antiparticles, but not for

both.
The meaning of possibilities 4 and 5 is exemplified by the statement ‘in a W+W− pair,
one W decays hadronically and the other leptonically’, which thus covers the cases where
either W+ or W− decays hadronically.

Neglecting non-existing channels, each channel belongs to either of the classes above.
If we denote the total branching ratio into channels of type i by ri, this then translates
into the requirement r0 + r1 + r2 + r3 + r4 + r5 = 1. For a single particle the weight factor
is r1 + r2 + r4, and for a single antiparticle r1 + r3 + r4. For a pair of identical resonances,
the joint weight is instead

(r1 + r2)2 + 2(r1 + r2)(r4 + r5) + 2r4r5 , (109)

and for a resonance–antiresonance pair

(r1 + r2)(r1 + r3) + (2r1 + r2 + r3)(r4 + r5) + 2r4r5 . (110)

If some channels come with a reduced weight because of restrictions on subsequent decay
chains, this may be described in terms of properly reduced ri, so that the sum is less than
unity. For instance, in a tt→ bW+ bW− process, the W decay modes may be restricted
to W+ → qq and W− → e−ν̄e, in which case (

∑
ri)t ≈ 2/3 and (

∑
ri)t ≈ 1/9. With index

± denoting resonance/antiresonance, eq. (110) then generalizes to

(r1 + r2)+(r1 + r3)− + (r1 + r2)+(r4 + r5)− + (r4 + r5)+(r1 + r3)− + r+
4 r
−
5 + r+

5 r
−
4 . (111)

107

7.7 Nonperturbative Processes

A few processes are not covered by the discussion so far. These are the ones that depend
on the details of hadronic wave functions, and therefore are not strictly calculable pertur-
batively (although perturbation theory may often provide some guidance). What we have
primarily in mind is elastic scattering, diffractive scattering and low-p⊥ ‘minimum-bias’
events in hadron–hadron collisions, but one can also find corresponding processes in γp
and γγ interactions. The description of these processes is rather differently structured
from that of the other ones, as is explained below. Models for ‘minimum-bias’ events
are discussed in detail in section 11.2, to which we refer for details on this part of the
program.

7.7.1 Hadron–hadron interactions

In hadron–hadron interactions, the total hadronic cross section for AB → anything, σABtot ,
is calculated using the parameterization of Donnachie and Landshoff [Don92]. In this
approach, each cross section appears as the sum of one pomeron term and one reggeon
one

σABtot (s) = XAB sε + Y AB s−η , (112)

where s = E2
cm. The powers ε = 0.0808 and η = 0.4525 are expected to be universal,

whereas the coefficients XAB and Y AB are specific to each initial state. (In fact, the high-
energy behaviour given by the pomeron term is expected to be the same for particle and

antiparticle interactions, i.e. XAB = XAB.) Parameterizations not provided in [Don92]
have been calculated in the same spirit, making use of quark counting rules [Sch93a].

The total cross section is subdivided according to

σABtot (s) = σABel (s) + σABsd(XB)(s) + σABsd(AX)(s) + σABdd (s) + σABnd (s) . (113)

Here ‘el’ is the elastic process AB → AB, ‘sd(XB)’ the single diffractive AB → XB,
‘sd(AX)’ the single diffractive AB → AX, ‘dd’ the double diffractive AB → X1X2, and
‘nd’ the non-diffractive ones. Higher diffractive topologies, such as central diffraction, are
currently neglected. In the following, the elastic and diffractive cross sections and event
characteristics are described, as given in the model by Schuler and Sjöstrand [Sch94,
Sch93a]. The non-diffractive component is identified with the ‘minimum bias’ physics
already mentioned, a practical but not unambiguous choice. Its cross section is given by
‘whatever is left’ according to eq. (113), and its properties are discussed in section 11.2.

At not too large squared momentum transfers t, the elastic cross section can be ap-
proximated by a simple exponential fall-off. If one neglects the small real part of the cross
section, the optical theorem then gives

dσel

dt
=
σ2

tot

16π
exp(Belt) , (114)

and σel = σ2
tot/16πBel. The elastic slope parameter is parameterized by

Bel = BAB
el (s) = 2bA + 2bB + 4sε − 4.2 , (115)

with s given in units of GeV and Bel in GeV−2. The constants bA,B are bp = 2.3, bπ,ρ,ω,φ =
1.4, bJ/ψ = 0.23. The increase of the slope parameter with c.m. energy is faster than
the logarithmically one conventionally assumed; that way the ratio σel/σtot remains well-
behaved at large energies.

108

The diffractive cross sections are given by

dσsd(XB)(s)

dt dM2
=

g3IP

16π
βAIP β

2
BIP

1

M2
exp(Bsd(XB)t)Fsd ,

dσsd(AX)(s)

dt dM2
=

g3IP

16π
β2
AIP βBIP

1

M2
exp(Bsd(AX)t)Fsd ,

dσdd(s)

dt dM2
1 dM2

2

=
g2

3IP

16π
βAIP βBIP

1

M2
1

1

M2
2

exp(Bddt)Fdd . (116)

The couplings βAIP are related to the pomeron term XABsε of the total cross section
parameterization, eq. (112). Picking a reference scale

√
sref = 20 GeV, the couplings are

given by βAIPβBIP = XAB sεref . The triple-pomeron coupling is determined from single-
diffractive data to be g3IP ≈ 0.318 mb1/2; within the context of the formulae in this
section.

The spectrum of diffractive masses M is taken to begin 0.28 GeV ≈ 2mπ above the
mass of the respective incoming particle and extend to the kinematical limit. The simple
dM2/M2 form is modified by the mass-dependence in the diffractive slopes and in the Fsd

and Fdd factors (see below).
The slope parameters are assumed to be

Bsd(XB)(s) = 2bB + 2α′ ln
(
s

M2

)
,

Bsd(AX)(s) = 2bA + 2α′ ln
(
s

M2

)
,

Bdd(s) = 2α′ ln

(
e4 +

ss0

M2
1M

2
2

)
. (117)

Here α′ = 0.25 GeV−2 and conventionally s0 is picked as s0 = 1/α′. The term e4 in Bdd is
added by hand to avoid a breakdown of the standard expression for large values of M2

1M
2
2 .

The bA,B terms protect Bsd from breaking down; however a minimum value of 2 GeV−2

is still explicitly required for Bsd, which comes into play e.g. for a J/ψ state (as part of a
VMD photon beam).

The kinematical range in t depends on all the masses of the problem. In terms of
the scaled variables µ1 = m2

A/s, µ2 = m2
B/s, µ3 = M2

(1)/s (= m2
A/s when A scatters

elastically), µ4 = M2
(2)/s (= m2

B/s when B scatters elastically), and the combinations

C1 = 1− (µ1 + µ2 + µ3 + µ4) + (µ1 − µ2)(µ3 − µ4) ,

C2 =
√

(1− µ1 − µ2)2 − 4µ1µ2

√
(1− µ3 − µ4)2 − 4µ3µ4 ,

C3 = (µ3 − µ1)(µ4 − µ2) + (µ1 + µ4 − µ2 − µ3)(µ1µ4 − µ2µ3) , (118)

one has tmin < t < tmax with

tmin = −s
2

(C1 + C2) ,

tmax = −s
2

(C1 − C2) = −s
2

4C3

C1 + C2

=
s2C3

tmin

. (119)

The Regge formulae above for single- and double-diffractive events are supposed to
hold in certain asymptotic regions of the total phase space. Of course, there will be
diffraction also outside these restrictive regions. Lacking a theory which predicts differen-
tial cross sections at arbitrary t and M2 values, the Regge formulae are used everywhere,

109

but fudge factors are introduced in order to obtain ‘sensible’ behaviour in the full phase
space. These factors are:

Fsd =

(
1− M2

s

)(
1 +

cresM
2
res

M2
res +M2

)
,

Fdd =

(
1− (M1 +M2)2

s

)(
sm2

p

sm2
p +M2

1 M
2
2

)

×
(

1 +
cresM

2
res

M2
res +M2

1

)(
1 +

cresM
2
res

M2
res +M2

2

)
. (120)

The first factor in either expression suppresses production close to the kinematical limit.
The second factor in Fdd suppresses configurations where the two diffractive systems
overlap in rapidity space. The final factors give an enhancement of the low-mass region,
where a resonance structure is observed in the data. Clearly a more detailed modelling
would have to be based on a set of exclusive states rather than on this smeared-out
averaging procedure. A reasonable fit to pp/pp data is obtained for cres = 2 and Mres =
2 GeV, for an arbitrary particle A which is diffractively excited we use MA

res = mA−mp +
2 GeV.

The diffractive cross-section formulae above have been integrated for a set of c.m.
energies, starting at 10 GeV, and the results have been parameterized. The form of
these parameterizations is given in ref. [Sch94], with explicit numbers for the pp/pp case.
Pythia also contains similar parameterizations for πp (assumed to be same as ρp and
ωp), φp, J/ψp, ρρ (ππ etc.), ρφ, ρJ/ψ, φφ, φJ/ψ and J/ψJ/ψ.

The processes above do not obey the ordinary event mixing strategy. First of all, since
their total cross sections are known, it is possible to pick the appropriate process from the
start, and then remain with that choice. In other words, if the selection of kinematical
variables fails, one would not go back and pick a new process, the way it was done in
section 7.4.4. Second, it is not possible to impose any cuts or restrain allowed incoming
or outgoing flavours: if not additional information were to be provided, it would make
the whole scenario ill-defined. Third, it is not recommended to mix generation of these
processes with that of any of the other ones: normally the other processes have so small
cross sections that they would almost never be generated anyway. (We here exclude the
cases of ‘underlying events’ and ‘pile-up events’, where mixing is provided for, and even
is a central part of the formalism, see sections 11.2 and 11.3.)

Once the cross-section parameterizations has been used to pick one of the processes,
the variables t and M are selected according to the formulae given above.

A ρ0 formed by γ → ρ0 in elastic or diffractive scattering is polarized, and therefore
its decay angular distribution in ρ0 → π+π− is taken to be proportional to sin2 θ, where
the reference axis is given by the ρ0 direction of motion.

A light diffractive system, with a mass less than 1 GeV above the mass of the in-
coming particle, is allowed to decay isotropically into a two-body state. Single-resonance
diffractive states, such as a ∆+, are therefore not explicitly generated, but are assumed
described in an average, smeared-out sense.

A more massive diffractive system is subsequently treated as a string with the quantum
numbers of the original hadron. Since the exact nature of the pomeron exchanged between
the hadrons is unknown, two alternatives are included. In the first, the pomeron is
assumed to couple to (valence) quarks, so that the string is stretched directly between the
struck quark and the remnant diquark (antiquark) of the diffractive state. In the second,
the interaction is rather with a gluon, giving rise to a ‘hairpin’ configuration in which the
string is stretched from a quark to a gluon and then back to a diquark (antiquark). Both
of these scenarios could be present in the data; the default choice is to mix them in equal
proportions.

110

There is experimental support for more complicated scenarios [Ing85], wherein the
pomeron has a partonic substructure, which e.g. can lead to high-p⊥ jet production in
the diffractive system. The full machinery, wherein a pomeron spectrum is convoluted
with a pomeron-proton hard interaction, is not available in Pythia. (But is found in the
Pompyt program [Bru96].)

7.7.2 Photoproduction and γγ physics

The photon physics machinery in Pythia has been largely expanded in recent years.
Historically, the model was first developed for photoproduction, i.e. a real photon on
a hadron target [Sch93, Sch93a]. Thereafter γγ physics was added in the same spirit
[Sch94a, Sch97]. Only recently also virtual photons have been added to the description
[Fri00], including the nontrivial transition region between real photons and Deeply Inelas-
tic Scattering (DIS). In this section we partly trace this evolution towards more complex
configurations.

The total γp and γγ cross sections can again be parameterized in a form like eq. (112),
which is not so obvious since the photon has more complicated structure than an ordinary
hadron. In fact, the structure is still not so well understood. The model we outline is the
one studied by Schuler and Sjöstrand [Sch93, Sch93a], and further updated in [Fri00]. In
this model the physical photon is represented by

|γ〉 =
√
Z3 |γB〉+

∑

V=ρ0,ω,φ,J/ψ

e

fV
|V 〉+

∑
q

e

fqq

|qq〉+
∑

`=e,µ,τ

e

f``
|`+`−〉 . (121)

By virtue of this superposition, one is led to a model of γp interactions, where three
different kinds of events may be distinguished:
• Direct events, wherein the bare photon |γB〉 interacts directly with a parton from

the proton. The process is perturbatively calculable, and no parton distributions
of the photon are involved. The typical event structure is two high-p⊥ jets and a
proton remnant, while the photon does not leave behind any remnant.
• VMD events, in which the photon fluctuates into a vector meson, predominantly a
ρ0. All the event classes known from ordinary hadron–hadron interactions may thus
occur here, such as elastic, diffractive, low-p⊥ and high-p⊥ events. For the latter,
one may define (VMD) parton distributions of the photon, and the photon also
leaves behind a beam remnant. This remnant is smeared in transverse momentum
by a typical ‘primordial k⊥’ of a few hundred MeV.
• Anomalous or GVMD (Generalized VMD) events, in which the photon fluctuates

into a qq pair of larger virtuality than in the VMD class. The initial parton distri-
bution is perturbatively calculable, as is the subsequent QCD evolution. It gives rise
to the so-called anomalous part of the parton distributions of the photon, whence
one name for the class. As long as only real photons were considered, it made sense
to define the cross section of this event class to be completely perturbatively calcu-
lable, given some lower p⊥ cut-off. Thus only high-p⊥ events could occur. However,
alternatively, one may view these states as excited higher resonances (ρ′ etc.), thus
the GVMD name. In this case one is lead to a picture which also allows a low-p⊥
cross section, uncalculable in perturbation theory. The reality may well interpo-
late between these two extreme alternatives, but the current framework more leans
towards the latter point of view. Either the q or the q plays the rôle of a beam
remnant, but this remnant has a larger p⊥ than in the VMD case, related to the
virtuality of the γ ↔ qq fluctuation.

The |`+`−〉 states can only interact strongly with partons inside the hadron at higher
orders, and can therefore be neglected in the study of hadronic final states.

In order that the above classification is smooth and free of double counting, one
has to introduce scales that separate the three components. The main one is k0, which

111

separates the low-mass vector meson region from the high-mass |qq〉 one, k0 ≈ mφ/2 ≈ 0.5
GeV. Given this dividing line to VMD states, the anomalous parton distributions are
perturbatively calculable. The total cross section of a state is not, however, since this
involves aspects of soft physics and eikonalization of jet rates. Therefore an ansatz is
chosen where the total cross section of a state scales like k2

V /k
2
⊥, where the adjustable

parameter kV ≈ mρ/2 for light quarks. The k⊥ scale is roughly equated with half the
mass of the GVMD state. The spectrum of GVMD states is taken to extend over a range
k0 < k⊥ < k1, where k1 is identified with the p⊥min(s) cut-off of the perturbative jet
spectrum in hadronic interactions, p⊥min(s) ≈ 1.5 GeV at typical energies, see section
11.2 and especially eq. (189). Above that range, the states are assumed to be sufficiently
weakly interacting that no eikonalization procedure is required, so that cross sections can
be calculated perturbatively without any recourse to pomeron phenomenology. There is
some arbitrariness in that choice, and some simplifications are required in order to obtain
a manageable description.

The VMD and GVMD/anomalous events are together called resolved ones. In terms
of high-p⊥ jet production, the VMD and anomalous contributions can be combined into
a total resolved one, and the same for parton-distribution functions. However, the two
classes differ in the structure of the underlying event and possibly in the appearance of
soft processes.

In terms of cross sections, eq. (121) corresponds to

σγp
tot(s) = σγp

dir(s) + σγp
VMD(s) + σγp

anom(s) . (122)

The direct cross section is, to lowest order, the perturbative cross section for the two
processes γq → qg and γg → qq, with a lower cut-off p⊥ > k1, in order to avoid double-
counting with the interactions of the GVMD states. Properly speaking, this should be
multiplied by the Z3 coefficient,

Z3 = 1− ∑

V=ρ0,ω,φ,J/ψ

(
e

fV

)2

−∑
q

(
e

fqq

)2

− ∑

`=e,µ,τ

(
e

f``

)2

, (123)

but normally Z3 is so close to unity as to make no difference.
The VMD factor (e/fV)2 = 4παem/f

2
V gives the probability for the transition γ → V .

The coefficients f 2
V /4π are determined from data to be (with a non-negligible amount of

uncertainty) 2.20 for ρ0, 23.6 for ω, 18.4 for φ and 11.5 for J/ψ. Together these numbers
imply that the photon can be found in a VMD state about 0.4% of the time, dominated
by the ρ0 contribution. All the properties of the VMD interactions can be obtained by
appropriately scaling down V p physics predictions. Thus the whole machinery developed
in the previous section for hadron–hadron interactions is directly applicable. Also parton
distributions of the VMD component inside the photon are obtained by suitable rescaling.

The contribution from the ‘anomalous’ high-mass fluctuations to the total cross section
is obtained by a convolution of the fluctuation rate

∑
q

(
e

fqq

)2

≈ αem

2π

(
2
∑

q

e2
q

)∫ k1

k0

dk2
⊥

k2
⊥

, (124)

which is to be multiplied by the abovementioned reduction factor k2
V /k

2
⊥ for the total

cross section, and all scaled by the assumed real vector meson cross section.
As an illustration of this scenario, the phase space of γp events may be represented

by a (k⊥, p⊥) plane. Two transverse momentum scales are distinguished: the photon res-
olution scale k⊥ and the hard interaction scale p⊥. Here k⊥ is a measure of the virtuality
of a fluctuation of the photon and p⊥ corresponds to the most virtual rung of the ladder,
possibly apart from k⊥. As we have discussed above, the low-k⊥ region corresponds to

112

VMD and GVMD states that encompasses both perturbative high-p⊥ and nonperturba-
tive low-p⊥ interactions. Above k1, the region is split along the line k⊥ = p⊥. When
p⊥ > k⊥ the photon is resolved by the hard interaction, as described by the anomalous
part of the photon distribution function. This is as in the GVMD sector, except that we
should (probably) not worry about multiple parton–parton interactions. In the comple-
mentary region k⊥ > p⊥, the p⊥ scale is just part of the traditional evolution of the parton
distributions of the proton up to the scale of k⊥, and thus there is no need to introduce an
internal structure of the photon. One could imagine the direct class of events as extending
below k1 and there being the low-p⊥ part of the GVMD class, only appearing when a hard
interaction at a larger p⊥ scale would not preempt it. This possibility is implicit in the
standard cross section framework.

In γγ physics [Sch94a, Sch97], the superposition in eq. (121) applies separately for
each of the two incoming photons. In total there are therefore 3 × 3 = 9 combinations.
However, trivial symmetry reduces this to six distinct classes, written in terms of the total
cross section (cf. eq. (122)) as

σγγtot(s) = σγγdir×dir(s) + σγγVMD×VMD(s) + σγγGVMD×GVMD(s)

+ 2σγγdir×VMD(s) + 2σγγdir×GVMD(s) + 2σγγVMD×GVMD(s) . (125)

A parameterization of the total γγ cross section is found in [Sch94a, Sch97].
The six different kinds of γγ events are thus:
• The direct×direct events, which correspond to the subprocess γγ → qq (or `+`−).

The typical event structure is two high-p⊥ jets and no beam remnants.
• The VMD×VMD events, which have the same properties as the VMD γp events.

There are four by four combinations of the two incoming vector mesons, with one
VMD factor for each meson.
• The GVMD×GVMD events, wherein each photon fluctuates into a qq pair of larger

virtuality than in the VMD class. The ‘anomalous’ classification assumes that one
parton of each pair gives a beam remnant, whereas the other (or a daughter par-
ton thereof) participates in a high-p⊥ scattering. The GVMD concept implies the
presence also of low-p⊥ events, like for VMD.
• The direct×VMD events, which have the same properties as the direct γp events.
• The direct×GVMD events, in which a bare photon interacts with a parton from

the anomalous photon. The typical structure is then two high-p⊥ jets and a beam
remnant.
• The VMD×GVMD events, which have the same properties as the GVMD γp events.
Like for photoproduction events, this can be illustrated in a parameter space, but now

three-dimensional, with axes given by the k⊥1, k⊥2 and p⊥ scales. Here each k⊥i is a
measure of the virtuality of a fluctuation of a photon, and p⊥ corresponds to the most
virtual rung on the ladder between the two photons, possibly excepting the endpoint
k⊥i ones. So, to first approximation, the coordinates along the k⊥i axes determine the
characters of the interacting photons while p⊥ determines the character of the interaction
process. Double counting should be avoided by trying to impose a consistent classification.
Thus, for instance, p⊥ > k⊥i with k⊥1 < k0 and k0 < k⊥2 < k1 gives a hard interaction
between a VMD and a GVMD photon, while k⊥1 > p⊥ > k⊥2 with k⊥1 > k1 and k⊥2 <
k0 is a single-resolved process (direct×VMD; with p⊥ now in the parton distribution
evolution).

In much of the literature, where a coarser classification is used, our direct×direct is
called direct, our direct×VMD and direct×GVMD is called single-resolved since they
both involve one resolved photon which gives a beam remnant, and the rest are called
double-resolved since both photons are resolved and give beam remnants.

If the photon is virtual, it has a reduced probability to fluctuate into a vector meson
state, and this state has a reduced interaction probability. This can be modelled by a

113

traditional dipole factor (m2
V /(m

2
V +Q2))2 for a photon of virtuality Q2, where mV → 2k⊥

for a GVMD state. Putting it all together, the cross section of the GVMD sector of
photoproduction then scales like

∫ k2
1

k2
0

dk2
⊥

k2
⊥

k2
V

k2
⊥

(
4k2
⊥

4k2
⊥ +Q2

)2

. (126)

For a virtual photon the DIS process γ∗q→ q is also possible, but by gauge invariance
its cross section must vanish in the limit Q2 → 0. At large Q2, the direct processes can
be considered as the O(αs) correction to the lowest-order DIS process, but the direct
ones survive for Q2 → 0. There is no unique prescription for a proper combination at
all Q2, but we have attempted an approach that gives the proper limits and minimizes
double-counting. For large Q2, the DIS γ∗p cross section is proportional to the structure
function F2(x,Q2) with the Bjorken x = Q2/(Q2 +W 2). Since normal parton distribution
parameterizations are frozen below some Q0 scale and therefore do not obey the gauge
invariance condition, an ad hoc factor (Q2/(Q2 + m2

ρ))
2 is introduced for the conversion

from the parameterized F2(x,Q2) to a σγ
∗p

DIS:

σγ
∗p

DIS '
(

Q2

Q2 +m2
ρ

)2
4π2αem

Q2
F2(x,Q2) =

4π2αemQ
2

(Q2 +m2
ρ)

2

∑
q

e2
q

{
xq(x,Q2) + xq(x,Q2)

}
.

(127)
Here mρ is some nonperturbative hadronic mass parameter, for simplicity identified with
the ρ mass. One of the Q2/(Q2 + m2

ρ) factors is required already to give finite σγp
tot for

conventional parton distributions, and could be viewed as a screening of the individual
partons at small Q2. The second factor is chosen to give not only a finite but actually a
vanishing σγ

∗p
DIS for Q2 → 0 in order to retain the pure photoproduction description there.

This latter factor thus is more a matter of convenience, and other approaches could have
been pursued.

In order to avoid double-counting between DIS and direct events, a requirement p⊥ >
max(k1, Q) is imposed on direct events. In the remaining DIS ones, denoted lowest order

(LO) DIS, thus p⊥ < Q. This would suggest a subdivision σγ
∗p

LO DIS = σγ
∗p

DIS − σγ
∗p

direct, with

σγ
∗p

DIS given by eq. (127) and σγ
∗p

direct by the perturbative matrix elements. In the limit
Q2 → 0, the DIS cross section is now constructed to vanish while the direct is not, so this
would give σγ

∗p
LO DIS < 0. However, here we expect the correct answer not to be a negative

number but an exponentially suppressed one, by a Sudakov form factor. This modifies
the cross section:

σγ
∗p

LO DIS = σγ
∗p

DIS − σγ
∗p

direct −→ σγ
∗p

DIS exp

(
−σ

γ∗p
direct

σγ
∗p

DIS

)
. (128)

Since we here are in a region where the DIS cross section is no longer the dominant one,
this change of the total DIS cross section is not essential.

The overall picture, from a DIS perspective, now requires three scales to be kept
track of. The traditional DIS region is the strongly ordered one, Q2 � k2

⊥ � p2
⊥, where

DGLAP-style evolution [Alt77, Gri72] is responsible for the event structure. As always,
ideology wants strong ordering, while the actual classification is based on ordinary ordering
Q2 > k2

⊥ > p2
⊥. The region k2

⊥ > max(Q2, p2
⊥) is also DIS, but of the O(αs) direct kind.

The region where k⊥ is the smallest scale corresponds to non-ordered emissions, that then
go beyond DGLAP validity, while the region p2

⊥ > k2
⊥ > Q2 cover the interactions of a

resolved virtual photon. Comparing with the plane of real photoproduction, we conclude
that the whole region p⊥ > k⊥ involves no double-counting, since we have made no
attempt at a non-DGLAP DIS description but can choose to cover this region entirely by

114

the VMD/GVMD descriptions. Actually, it is only in the corner p⊥ < k⊥ < min(k1, Q)
that an overlap can occur between the resolved and the DIS descriptions. Some further
considerations show that usually either of the two is strongly suppressed in this region,
except in the range of intermediate Q2 and rather small W 2. Typically, this is the region
where x ≈ Q2/(Q2 +W 2) is not close to zero, and where F2 is dominated by the valence-
quark contribution. The latter behaves roughly ∝ (1 − x)n, with an n of the order of 3
or 4. Therefore we will introduce a corresponding damping factor to the VMD/GVMD
terms.

In total, we have now arrived at our ansatz for all Q2:

σγ
∗p

tot = σγ
∗p

DIS exp

(
−σ

γ∗p
direct

σγ
∗p

DIS

)
+ σγ

∗p
direct +

(
W 2

Q2 +W 2

)n (
σγ
∗p

VMD + σγ
∗p

GVMD

)
, (129)

with four main components. Most of these in their turn have a complicated internal
structure, as we have seen.

Turning to γ∗γ∗ processes, finally, the parameter space is now five-dimensional: Q1,
Q2, k⊥1, k⊥2 and p⊥. As before, an effort is made to avoid double-counting, by having
a unique classification of each region in the five-dimensional space. Remaining double-
counting is dealt with as above. In total, our ansatz for γ∗γ∗ interactions at all Q2 contains
13 components: 9 when two VMD, GVMD or direct photons interact, as is already allowed
for real photons, plus a further 4 where a ‘DIS photon’ from either side interacts with a
VMD or GVMD one. With the label resolved used to denote VMD and GVMD, one can
write

σγ
∗γ∗

tot (W 2, Q2
1, Q

2
2) = σγ

∗γ∗
DIS×res exp

(
− σ

γ∗γ∗
dir×res

σγ
∗γ∗

DIS×res

)
+ σγ

∗γ∗
dir×res

+ σγ
∗γ∗

res×DIS exp

(
− σ

γ∗γ∗
res×dir

σγ
∗γ∗

res×DIS

)
+ σγ

∗γ∗
res×dir (130)

+ σγ
∗γ∗

dir×dir +

(
W 2

Q2
1 +Q2

2 +W 2

)3

σγ
∗γ∗

res×res

Most of the 13 components in their turn have a complicated internal structure, as we have
seen.

An important note is that the Q2 dependence of the DIS and direct photon interactions
is implemented in the matrix element expressions, i.e. in processes such as γ∗γ∗ → qq or
γ∗q → qg the photon virtuality explicitly enters. This is different from VMD/GVMD,
where dipole factors are used to reduce the total cross sections and the assumed flux of
partons inside a virtual photon relative to those of a real one, but the matrix elements
themselves contain no dependence on the virtuality either of the partons or of the photon
itself. Typically results are obtained with the SaS 1D parton distributions for the virtual
transverse photons [Sch95, Sch96], since these are well matched to our framework, e.g.
allowing a separation of the VMD and GVMD/anomalous components. Parton distribu-
tions of virtual longitudinal photons are by default given by some Q2-dependent factor
times the transverse ones. The new set by Chýla [Chý00] allows more precise modelling
here, but first indications are that many studies will not be sensitive to the detailed shape.

The photon physics machinery is of considerable complexity, and so the above is only
a brief summary. Further details can be found in the literature quoted above. Some topics
are also covered in other places in this manual, e.g. the flux of transverse and longitudinal
photons in subsection 7.1.4, scale choices for parton density evaluation in subsection 7.2,
and further aspects of the generation machinery and switches in subsection 8.3.

115

8 Physics Processes

In this section we enumerate the physics processes that are available in Pythia, introduc-
ing the ISUB code that can be used to select desired processes. A number of comments
are made about the physics scenarios involved, in particular with respect to underly-
ing assumptions and domain of validity. The section closes with a survey of interesting
processes by machine.

8.1 The Process Classification Scheme

A wide selection of fundamental 2 → 1 and 2 → 2 tree processes of the Standard Model
(electroweak and strong) has been included in Pythia, and slots are provided for many
more, not yet implemented. In addition, ‘minimum-bias’-type processes (like elastic scat-
tering), loop graphs, box graphs, 2 → 3 tree graphs and many non-Standard Model
processes are included. The classification is not always unique. A process that proceeds
only via an s-channel state is classified as a 2 → 1 process (e.g. qq → γ∗/Z0 → e+e−),
but a 2→ 2 cross section may well have contributions from s-channel diagrams (gg→ gg
obtains contributions from gg → g∗ → gg). Also, in the program, 2 → 1 and 2 → 2
graphs may sometimes be convoluted with two 1 → 2 splittings to form effective 2 → 3
or 2 → 4 processes (W+W− → h0 is folded with q → q′′W+ and q′ → q′′′W− to give
qq′ → q′′q′′′h0).

The original classification and numbering scheme feels less relevant today than when
originally conceived. In those days, the calculation of 2→ 3 or 2→ 4 matrix elements was
sufficiently complicated that one would wish to avoid it if at all possible, e.g. by having in
mind to define effective parton densities for all standard model particles, such as the W±.
Today, the improved computational techniques and increased computing power implies
that people would be willing to include a branching q→ qW as part of the hard process,
i.e. not try to factor it off in some approximation. With the large top mass and large Higgs
mass limits, there is also a natural subdivision, such that the b quark is the heaviest object
for which the parton distribution concept makes sense. Therefore most of the prepared
but empty slots are likely to remain empty, or be reclaimed for other processes.

It is possible to select a combination of subprocesses to simulate, and also afterwards
to know which subprocess was actually selected in each event. For this purpose, all
subprocesses are numbered according to an ISUB code. The list of possible codes is given
in Tables 17, 18, 19, 20, 21, 22, 23 and 24. Only processes marked with a ‘+’ sign in the
first column have been implemented in the program to date. Although ISUB codes were
originally designed in a logical fashion, we must admit that subsequent developments of
the program have tended to obscure the structure. For instance, the process numbers for
Higgs production are spread out, in part as a consequence of the original classification, in
part because further production mechanisms have been added one at a time, in whatever
free slots could be found. At some future date the subprocess list will therefore be re-
organized. In the thematic descriptions that follow the main tables, the processes of
interest are repeated in a more logical order. If you want to look for a specific process, it
will be easier to find it there.

In the following, fi represents a fundamental fermion of flavour i, i.e. d, u, s, c, b, t,
b′, t′, e−, νe, µ

−, νµ, τ−, ντ , τ
′− or ν ′τ . A corresponding antifermion is denoted by fi. In

several cases, some classes of fermions are explicitly excluded, since they do not couple
to the g or γ (no e+e− → gg, e.g.). When processes have only been included for quarks,
while leptons might also have been possible, the notation qi is used. A lepton is denoted
by `; in a few cases neutrinos are also lumped under this heading. In processes where
fermion masses are explicitly included in the matrix elements, an F or Q is used to denote
an arbitrary fermion or quark. Flavours appearing already in the initial state are denoted
by indices i and j, whereas new flavours in the final state are denoted by k and l.

116

Table 17: Subprocess codes, part 1. First column is ‘+’ for processes implemented
and blank for those that are only foreseen. Second is the subprocess number ISUB,
and third the description of the process. The final column gives references from
which the cross sections have been obtained. See text for further information.

In No. Subprocess Reference

+ 1 fifi → γ∗/Z0 [Eic84]

+ 2 fifj →W+ [Eic84]

+ 3 fifi → h0 [Eic84]

4 γW+ →W+

+ 5 Z0Z0 → h0 [Eic84, Cha85]

6 Z0W+ →W+

7 W+W− → Z0

+ 8 W+W− → h0 [Eic84, Cha85]

+ 10 fifj → fkfl (QFD) [Ing87a]

+ 11 fifj → fifj (QCD) [Com77, Ben84, Eic84, Chi90]

+ 12 fifi → fkfk [Com77, Ben84, Eic84, Chi90]

+ 13 fifi → gg [Com77, Ben84]

+ 14 fifi → gγ [Hal78, Ben84]

+ 15 fifi → gZ0 [Eic84]

+ 16 fifj → gW+ [Eic84]

17 fifi → gh0

+ 18 fifi → γγ [Ber84]

+ 19 fifi → γZ0 [Eic84]

+ 20 fifj → γW+ [Eic84, Sam91]

21 fifi → γh0

+ 22 fifi → Z0Z0 [Eic84, Gun86]

+ 23 fifj → Z0W+ [Eic84, Gun86]

+ 24 fifi → Z0h0 [Ber85]

+ 25 fifi →W+W− [Bar94, Gun86]

+ 26 fifj →W+h0 [Eic84]

27 fifi → h0h0

+ 28 fig→ fig [Com77, Ben84]

+ 29 fig→ fiγ [Hal78, Ben84]

+ 30 fig→ fiZ
0 [Eic84]

+ 31 fig→ fkW
+ [Eic84]

32 fig→ fih
0

+ 33 fiγ → fig [Duk82]

+ 34 fiγ → fiγ [Duk82]

+ 35 fiγ → fiZ
0 [Gab86]

+ 36 fiγ → fkW
+ [Gab86]

37 fiγ → fih
0

38 fiZ
0 → fig

39 fiZ
0 → fiγ

117

Table 18: Subprocess codes, part 2. Comments as before.

In No. Subprocess Reference

40 fiZ
0 → fiZ

0

41 fiZ
0 → fkW

+

42 fiZ
0 → fih

0

43 fiW
+ → fkg

44 fiW
+ → fkγ

45 fiW
+ → fkZ

0

46 fiW
+ → fkW

+

47 fiW
+ → fkh

0

48 fih
0 → fig

49 fih
0 → fiγ

50 fih
0 → fiZ

0

51 fih
0 → fkW

+

52 fih
0 → fih

0

+ 53 gg→ fkfk [Com77, Ben84]

+ 54 gγ → fkfk [Duk82]

55 gZ0 → fkfk
56 gW+ → fkf l
57 gh0 → fkfk

+ 58 γγ → fkfk [Bar90]

59 γZ0 → fkfk
60 γW+ → fkf l
61 γh0 → fkfk
62 Z0Z0 → fkfk
63 Z0W+ → fkf l
64 Z0h0 → fkfk
65 W+W− → fkfk
66 W+h0 → fkf l
67 h0h0 → fkfk

+ 68 gg→ gg [Com77, Ben84]

+ 69 γγ →W+W− [Kat83]

+ 70 γW+ → Z0W+ [Kun87]

+ 71 Z0Z0 → Z0Z0 (longitudinal) [Abb87]

+ 72 Z0Z0 →W+W− (longitudinal) [Abb87]

+ 73 Z0W+ → Z0W+ (longitudinal) [Dob91]

74 Z0h0 → Z0h0

75 W+W− → γγ

+ 76 W+W− → Z0Z0 (longitudinal) [Ben87b]

+ 77 W+W± →W+W± (longitudinal) [Dun86, Bar90a]

78 W+h0 →W+h0

79 h0h0 → h0h0

+ 80 qiγ → qkπ
± [Bag82]

118

Table 19: Subprocess codes, part 3. Comments as before

In No. Subprocess Reference

+ 81 fifi → QkQk [Com79]

+ 82 gg→ QkQk [Com79]

+ 83 qifj → Qkfl [Dic86]

+ 84 gγ → QkQk [Fon81]

+ 85 γγ → FkFk [Bar90]

+ 86 gg→ J/ψg [Bai83]

+ 87 gg→ χ0cg [Gas87]

+ 88 gg→ χ1cg [Gas87]

+ 89 gg→ χ2cg [Gas87]

+ 91 elastic scattering [Sch94]

+ 92 single diffraction (AB → XB) [Sch94]

+ 93 single diffraction (AB → AX) [Sch94]

+ 94 double diffraction [Sch94]

+ 95 low-p⊥ production [Sjö87a]

+ 96 semihard QCD 2→ 2 [Sjö87a]

+ 99 γ∗q→ q

101 gg→ Z0

+ 102 gg→ h0 [Eic84]

+ 103 γγ → h0 [Dre89]

+ 104 gg→ χ0c [Bai83]

+ 105 gg→ χ2c [Bai83]

+ 106 gg→ J/ψγ [Dre91]

+ 107 gγ → J/ψg [Ber81]

+ 108 γγ → J/ψγ [Jun97]

+ 110 fifi → γh0 [Ber85a]

+ 111 fifi → gh0 [Ell88]

+ 112 fig→ fih
0 [Ell88]

+ 113 gg→ gh0 [Ell88]

+ 114 gg→ γγ [Con71, Ber84, Dic88]

+ 115 gg→ gγ [Con71, Ber84, Dic88]

116 gg→ γZ0

117 gg→ Z0Z0

118 gg→W+W−

119 γγ → gg

+ 121 gg→ QkQkh
0 [Kun84]

+ 122 qiqi → QkQkh
0 [Kun84]

+ 123 fifj → fifjh
0 (ZZ fusion) [Cah84]

+ 124 fifj → fkflh
0 (W+W− fusion) [Cah84]

+ 131 fiγ
∗
T → fig [Alt78]

+ 132 fiγ
∗
L → fig [Alt78]

+ 133 fiγ
∗
T → fiγ [Alt78]

119

Table 20: Subprocess codes, part 4. Comments as before.

In No. Subprocess Reference

+ 134 fiγ
∗
L → fiγ [Alt78]

+ 135 gγ∗T → fifi [Alt78]

+ 136 gγ∗L → fifi [Alt78]

+ 137 γ∗Tγ
∗
T → fifi [Bai81]

+ 138 γ∗Tγ
∗
L → fifi [Bai81]

+ 139 γ∗Lγ
∗
T → fifi [Bai81]

+ 140 γ∗Lγ
∗
L → fifi [Bai81]

+ 141 fifi → γ/Z0/Z′0 [Alt89]

+ 142 fifj →W′+ [Alt89]

+ 143 fifj → H+ [Gun87]

+ 144 fifj → R [Ben85a]

+ 145 qi`j → LQ [Wud86]

+ 146 eγ → e∗ [Bau90]

+ 147 dg→ d∗ [Bau90]

+ 148 ug→ u∗ [Bau90]

+ 149 gg→ ηtc [Eic84, App92]

+ 151 fifi → H0 [Eic84]

+ 152 gg→ H0 [Eic84]

+ 153 γγ → H0 [Dre89]

+ 156 fifi → A0 [Eic84]

+ 157 gg→ A0 [Eic84]

+ 158 γγ → A0 [Dre89]

+ 161 fig→ fkH
+ [Bar88]

+ 162 qig→ `kLQ [Hew88]

+ 163 gg→ LQLQ [Hew88, Eic84]

+ 164 qiqi → LQLQ [Hew88]

+ 165 fifi → fkfk (via γ∗/Z0) [Eic84, Lan91]

+ 166 fifj → fkf l (via W±) [Eic84, Lan91]

+ 167 qiqj → qkd
∗ [Bau90]

+ 168 qiqj → qku
∗ [Bau90]

+ 169 qiqi → e±e∗∓ [Bau90]

+ 171 fifi → Z0H0 [Eic84]

+ 172 fifj →W+H0 [Eic84]

+ 173 fifj → fifjH
0 (ZZ fusion) [Cah84]

+ 174 fifj → fkflH
0 (W+W− fusion) [Cah84]

+ 176 fifi → Z0A0 [Eic84]

+ 177 fifj →W+A0 [Eic84]

+ 178 fifj → fifjA
0 (ZZ fusion) [Cah84]

+ 179 fifj → fkflA
0 (W+W− fusion) [Cah84]

+ 181 gg→ QkQkH
0 [Kun84]

+ 182 qiqi → QkQkH
0 [Kun84]

120

Table 21: Subprocess codes, part 5. Comments as before.

In No. Subprocess Reference

+ 183 fifi → gH0 [Ell88]

+ 184 fig→ fiH
0 [Ell88]

+ 185 gg→ gH0 [Ell88]

+ 186 gg→ QkQkA
0 [Kun84]

+ 187 qiqi → QkQkA
0 [Kun84]

+ 188 fifi → gA0 [Ell88]

+ 189 fig→ fiA
0 [Ell88]

+ 190 gg→ gA0 [Ell88]

+ 191 fifi → ρ0
tc [Eic96]

+ 192 fifj → ρ±tc [Eic96]

+ 193 fifi → ω0
tc [Eic96]

+ 194 fifi → fkfk [Eic96, Lan99]

+ 195 fifj → fkf l [Eic96, Lan99]

+ 201 fifi → ẽLẽ∗L [Bar87, Daw85]

+ 202 fifi → ẽRẽ∗R [Bar87, Daw85]

+ 203 fifi → ẽLẽ∗R + ẽ∗LẽR [Bar87]

+ 204 fifi → µ̃Lµ̃
∗
L [Bar87, Daw85]

+ 205 fifi → µ̃Rµ̃
∗
R [Bar87, Daw85]

+ 206 fifi → µ̃Lµ̃
∗
R + µ̃∗Lµ̃R [Bar87]

+ 207 fifi → τ̃1τ̃
∗
1 [Bar87, Daw85]

+ 208 fifi → τ̃2τ̃
∗
2 [Bar87, Daw85]

+ 209 fifi → τ̃1τ̃
∗
2 + τ̃ ∗1 τ̃2 [Bar87]

+ 210 fifj → ˜̀
Lν̃
∗
` + ˜̀∗

Lν̃` [Daw85]

+ 211 fifj → τ̃1ν̃
∗
τ + τ̃ ∗1 ν̃τ [Daw85]

+ 212 fifj → τ̃2ν̃τ
∗ + τ̃ ∗2 ν̃τ [Daw85]

+ 213 fifi → ν̃`ν̃
∗
` [Bar87, Daw85]

+ 214 fifi → ν̃τ ν̃
∗
τ [Bar87, Daw85]

+ 216 fifi → χ̃1χ̃1 [Bar86a]

+ 217 fifi → χ̃2χ̃2 [Bar86a]

+ 218 fifi → χ̃3χ̃3 [Bar86a]

+ 219 fifi → χ̃4χ̃4 [Bar86a]

+ 220 fifi → χ̃1χ̃2 [Bar86a]

+ 221 fifi → χ̃1χ̃3 [Bar86a]

+ 222 fifi → χ̃1χ̃4 [Bar86a]

+ 223 fifi → χ̃2χ̃3 [Bar86a]

+ 224 fifi → χ̃2χ̃4 [Bar86a]

+ 225 fifi → χ̃3χ̃4 [Bar86a]

+ 226 fifi → χ̃±1 χ̃
∓
1 [Bar86b]

+ 227 fifi → χ̃±2 χ̃
∓
2 [Bar86b]

+ 228 fifi → χ̃±1 χ̃
∓
2 [Bar86b]

121

Table 22: Subprocess codes, part 6. Comments as before.

In No. Subprocess Reference

+ 229 fifj → χ̃1χ̃
±
1 [Bar86a, Bar86b]

+ 230 fifj → χ̃2χ̃
±
1 [Bar86a, Bar86b]

+ 231 fifj → χ̃3χ̃
±
1 [Bar86a, Bar86b]

+ 232 fifj → χ̃4χ̃
±
1 [Bar86a, Bar86b]

+ 233 fifj → χ̃1χ̃
±
2 [Bar86a, Bar86b]

+ 234 fifj → χ̃2χ̃
±
2 [Bar86a, Bar86b]

+ 235 fifj → χ̃3χ̃
±
2 [Bar86a, Bar86b]

+ 236 fifj → χ̃4χ̃
±
2 [Bar86a, Bar86b]

+ 237 fifi → g̃χ̃1 [Daw85]

+ 238 fifi → g̃χ̃2 [Daw85]

+ 239 fifi → g̃χ̃3 [Daw85]

+ 240 fifi → g̃χ̃4 [Daw85]

+ 241 fifj → g̃χ̃±1 [Daw85]

+ 242 fifj → g̃χ̃±2 [Daw85]

+ 243 fifi → g̃g̃ [Daw85]

+ 244 gg→ g̃g̃ [Daw85]

+ 246 fig→ q̃iLχ̃1 [Daw85]

+ 247 fig→ q̃iRχ̃1 [Daw85]

+ 248 fig→ q̃iLχ̃2 [Daw85]

+ 249 fig→ q̃iRχ̃2 [Daw85]

+ 250 fig→ q̃iLχ̃3 [Daw85]

+ 251 fig→ q̃iRχ̃3 [Daw85]

+ 252 fig→ q̃iLχ̃4 [Daw85]

+ 253 fig→ q̃iRχ̃4 [Daw85]

+ 254 fig→ q̃jLχ̃
±
1 [Daw85]

+ 256 fig→ q̃jLχ̃
±
2 [Daw85]

+ 258 fig→ q̃iLg̃ [Daw85]

+ 259 fig→ q̃iRg̃ [Daw85]

+ 261 fifi → t̃1t̃∗1 [Daw85]

+ 262 fifi → t̃2t̃∗2 [Daw85]

+ 263 fifi → t̃1t̃∗2 + t̃∗1t̃2 [Daw85]

+ 264 gg→ t̃1t̃∗1 [Daw85]

+ 265 gg→ t̃2t̃∗2 [Daw85]

+ 271 fifj → q̃iLq̃jL [Daw85]

+ 272 fifj → q̃iRq̃jR [Daw85]

+ 273 fifj → q̃iLq̃jR + q̃iRq̃jL [Daw85]

+ 274 fifj → q̃iLq̃∗jL [Daw85]

+ 275 fifj → q̃iRq̃∗jR [Daw85]

+ 276 fifj → q̃iLq̃∗jR + q̃iRq̃∗jL [Daw85]

+ 277 fifi → q̃jLq̃∗jL [Daw85]

122

Table 23: Subprocess codes, part 7. Comments as before.

In No. Subprocess Reference

+ 278 fifi → q̃jRq̃∗jR [Daw85]

+ 279 gg→ q̃iLq̃∗i L [Daw85]

+ 280 gg→ q̃iRq̃∗i R [Daw85]

+ 281 bq→ b̃1q̃L (q not b)

+ 282 bq→ b̃2q̃R
+ 283 bq→ b̃1q̃R + b̃2q̃L
+ 284 bq→ b̃1q̃∗L
+ 285 bq→ b̃2q̃∗R
+ 286 bq→ b̃1q̃∗R + b̃2q̃∗L
+ 287 qq→ b̃1b̃∗1
+ 288 qq→ b̃2b̃∗2
+ 289 gg→ b̃1b̃∗1
+ 290 gg→ b̃2b̃∗2
+ 291 bb→ b̃1b̃1

+ 292 bb→ b̃2b̃2

+ 293 bb→ b̃1b̃2

+ 294 bg→ b̃1g̃

+ 295 bg→ b̃2g̃

+ 296 bb→ b̃1b̃∗2 + b̃∗1b̃2

+ 297 fifj → H±h0

+ 298 fifj → H±H0

+ 299 fifi → Ah0

+ 300 fifi → AH0

+ 301 fifi → H+H−

+ 341 `i`j → H±±L [Hui97]

+ 342 `i`j → H±±R [Hui97]

+ 343 `iγ → H±±L e∓ [Hui97]

+ 344 `iγ → H±±R e∓ [Hui97]

+ 345 `iγ → H±±L µ∓ [Hui97]

+ 346 `iγ → H±±R µ∓ [Hui97]

+ 347 `iγ → H±±L τ∓ [Hui97]

+ 348 `iγ → H±±R τ∓ [Hui97]

+ 349 fifi → H++
L H−−L [Hui97]

+ 350 fifi → H++
R H−−R [Hui97]

+ 351 fifj → fkflH
±±
L (WW) fusion) [Hui97]

+ 352 fifj → fkflH
±±
R (WW) fusion) [Hui97]

+ 353 fifi → Z0
R [Eic84]

+ 354 fifj →W+
R [Eic84]

+ 361 fifi →W+
L W−

L [Lan99]

+ 362 fifi →W±
Lπ
∓
tc [Lan99]

123

Table 24: Subprocess codes, part 8. Comments as before.

In No. Subprocess Reference

+ 363 fifi → π+
tcπ
−
tc [Lan99]

+ 364 fifi → γπ0
tc [Lan99]

+ 365 fifi → γπ′0tc [Lan99]

+ 366 fifi → Z0π0
tc [Lan99]

+ 367 fifi → Z0π′0tc [Lan99]

+ 368 fifi →W±π∓tc [Lan99]

+ 370 fifj →W±
L Z0

L [Lan99]

+ 371 fifj →W±
Lπ

0
tc [Lan99]

+ 372 fifj → π±tcZ0
L [Lan99]

+ 373 fifj → π±tcπ0
tc [Lan99]

+ 374 fifj → γπ±tc [Lan99]

+ 375 fifj → Z0π±tc [Lan99]

+ 376 fifj →W±π0
tc [Lan99]

+ 377 fifj →W±π′0tc [Lan99]

+ 391 ff → G∗ [Ran99]

+ 392 gg→ G∗ [Ran99]

+ 393 qq→ gG∗ [Ran99, Bij01]

+ 394 qg→ qG∗ [Ran99, Bij01]

+ 395 gg→ gG∗ [Ran99, Bij01]

In supersymmetric processes, antiparticles of sfermions are denoted by ∗, i.e. t̃∗ rather

than the more correct but cumbersome t̃ or t̃.
Charge-conjugate channels are always assumed included as well (where separate), and

processes involving a W+ also imply those involving a W−. Wherever Z0 is written, it is
understood that γ∗ and γ∗/Z0 interference should be included as well (with possibilities
to switch off either, if so desired). In some cases this is not fully implemented, see further
below. Correspondingly, Z′0 denotes the complete set γ∗/Z0/Z′0 (or some subset of it).
Thus the notation γ is only used for a photon on the mass shell.

In the last column of the tables below, references are given to works from which
formulae have been taken. Sometimes these references are to the original works on the
subject, sometimes only to the place where the formulae are given in the most convenient
or accessible form, or where chance lead us. Apologies to all matrix-element calculators
who are not mentioned. However, remember that this is not a review article on physics
processes, but only a way for readers to know what is actually found in the program, for
better or worse. In several instances, errata have been obtained from the authors. Often
the formulae given in the literature have been generalized to include trivial radiative
corrections, Breit–Wigner line shapes with ŝ-dependent widths (see section 7.3), etc.

The following sections contain some useful comments on the processes included in the
program, grouped by physics interest rather than sequentially by ISUB or MSEL code (see
9.2 for further information on the MSEL code). The different ISUB and MSEL codes that can
be used to simulate the different groups are given. ISUB codes within brackets indicate
the kind of processes that indirectly involve the given physics topic, although only as part
of a larger whole. Some obvious examples, such as the possibility to produce jets in just
about any process, are not spelled out in detail.

124

The text at times contains information on which special switches or parameters are of
particular interest to a given process. All these switches are described in detail in sections
9.3 9.4 and 9.5, but are alluded to here so as to provide a more complete picture of the
possibilities available for the different subprocesses. However, the list of possibilities is
certainly not exhausted by the text below.

8.2 QCD Processes

Obviously most processes in Pythia contain QCD physics one way or another, so the
above title should not be overstressed. One example: a process like e+e− → γ∗/Z0 → qq
is also traditionally called a QCD event, but is here book-kept as γ∗/Z0 production. In
this section we discuss scatterings between coloured partons, plus a few processes that
are close relatives to other processes of this kind.

8.2.1 QCD jets

MSEL = 1, 2
ISUB = 11 qiqj → qiqj

12 qiqi → qkqk
13 qiqi → gg

28 qig→ qig

53 gg→ qkqk
68 gg→ gg

96 semihard QCD 2→ 2
No higher-order processes are explicitly included, nor any higher-order loop corrections

to the 2→ 2 processes. However, by initial- and final-state QCD radiation, multijet events
are being generated, starting from the above processes. The shower rate of multijet
production is clearly uncertain by some amount, especially for well-separated jets.

A string-based fragmentation scheme such as the Lund model needs cross sections for
the different colour flows; these have been calculated in [Ben84] and differ from the usual
calculations by interference terms of the order 1/N2

C . By default, the standard colour-
summed QCD expressions for the differential cross sections are used. In this case, the
interference terms are distributed among the various colour flows according to the pole
structure of the terms. However, the interference terms can be excluded, by changing
MSTP(34)

As an example, consider subprocess 28, qg → qg. The total cross section for this
process, obtained by summing and squaring the Feynman ŝ-, t̂-, and û-channel graphs, is
[Com77]

2

(
1− ûŝ

t̂2

)
− 4

9

(
ŝ

û
+
û

ŝ

)
− 1 . (131)

(An overall factor πα2
s/ŝ

2 is ignored.) Using the identity of the Mandelstam variables for
the massless case, ŝ+ t̂+ û = 0, this can be rewritten as

ŝ2 + û2

t̂2
− 4

9

(
ŝ

û
+
û

ŝ

)
. (132)

On the other hand, the cross sections for the two possible colour flows of this subprocess
are [Ben84]

A :
4

9

(
2
û2

t̂2
− û

ŝ

)
;

125

B :
4

9

(
2
ŝ2

t̂2
− ŝ

û

)
. (133)

Colour configuration A is one in which the original colour of the q annihilates with the
anticolour of the g, the g colour flows through, and a new colour–anticolour is created
between the final q and g. In colour configuration B, the gluon anticolour flows through,
but the q and g colours are interchanged. Note that these two colour configurations have
different kinematics dependence. For MSTP(34)=0, these are the cross sections actually
used.

The sum of the A and B contributions is

8

9

ŝ2 + û2

t̂2
− 4

9

(
ŝ

û
+
û

ŝ

)
. (134)

The difference between this expression and that of [Com77], corresponding to the inter-
ference between the two colour-flow configurations, is then

1

9

ŝ2 + û2

t̂2
, (135)

which can be naturally divided between colour flows A and B:

A :
1

9

û2

t̂2
;

B :
1

9

ŝ2

t̂2
. (136)

For MSTP(34)=1, the standard QCD matrix element is therefore used, with the same
relative importance of the two colour configurations as above. Similar procedures are
followed also for the other QCD subprocesses.

All the matrix elements in this group are for massless quarks (although final-state
quarks are of course put on the mass shell). As a consequence, cross sections are divergent
for p⊥ → 0, and some kind of regularization is required. Normally you are expected to
set the desired p⊥min value in CKIN(3).

The new flavour produced in the annihilation processes (ISUB = 12 and 53) is deter-
mined by the flavours allowed for gluon splitting into quark–antiquark; see switch MDME.

Subprocess 96 is special among all the ones in the program. In terms of the basic
cross section, it is equivalent to the sum of the other ones, i.e. 11, 12, 13, 28, 53 and 68.
The phase space is mapped differently, however, and allows p⊥ as input variable. This
is especially useful in the context of the multiple interactions machinery, see subsection
11.2, where potential scatterings are considered in order of decreasing p⊥, with a form
factor related to the probability of not having another scattering with a p⊥ larger than
the considered one. You are not expected to access process 96 yourself. Instead it is
automatically initialized and used either if process 95 is included or if multiple interactions
are switched on. The process will then appear in the maximization information output,
but not in the cross section table at the end of a run. Instead, the hardest scattering
generated within the context of process 95 is reclassified as an event of the 11, 12, 13, 28,
53 or 68 kinds, based on the relative cross section for these in the point chosen. Further
multiple interactions, subsequent to the hardest one, also do not show up in cross section
tables.

126

8.2.2 Heavy flavours

MSEL = 4, 5, 6, 7, 8
ISUB = 81 qiqi → QkQk

82 gg→ QkQk

(83) qifj → Qkfl
(84) gγ → QkQk

(85) γγ → FkFk
The matrix elements in this group differ from the corresponding ones in the group

above in that they correctly take into account the quark masses. As a consequence, the
cross sections are finite for p⊥ → 0. It is therefore not necessary to introduce any special
cuts.

The two first processes that appear here are the dominant lowest-order QCD graphs
in hadron colliders — a few other graphs will be mentioned later, such as process 83.

The choice of flavour to produce is according to a hierarchy of options:
1. if MSEL=4-8 then the flavour is set by the MSEL value;
2. else if MSTP(7)=1-8 then the flavour is set by the MSTP(7) value;
3. else the flavour is determined by the heaviest flavour allowed for gluon splitting into

quark–antiquark; see switch MDME.
Note that only one heavy flavour is allowed at a time; if more than one is turned on in
MDME, only the heaviest will be produced (as opposed to the case for ISUB = 12 and 53
above, where more than one flavour is allowed simultaneously).

The lowest-order processes listed above just represent one source of heavy-flavour pro-
duction. Heavy quarks can also be present in the parton distributions at the Q2 scale
of the hard interaction, leading to processes like Qg → Qg, so-called flavour excitation,
or they can be created by gluon splittings g → QQ in initial- or final-state shower evo-
lution. The implementation and importance of these various production mechanisms is
discussed in detail in [Nor98]. In fact, as the c.m. energy is increased, these other pro-
cesses gain in importance relative to the lowest-order production graphs above. As as
example, only 10%–20% of the b production at LHC energies come from the lowest-order
graphs. The figure is even smaller for charm, while it is well above 50% for top. At LHC
energies, the specialized treatment described in this section is therefore only of interest
for top (and potential fourth-generation quarks) — the higher-order corrections can here
be approximated by an effective K factor, except possibly in some rare corners of phase
space.

For charm and bottom, on the other hand, it is necessary to simulate the full event
sample (within the desired kinematics cuts), and then only keep those events that contain
b/c, be that either from lowest-order production, or flavour excitation, or gluon splitting.
Obviously this may be a time-consuming enterprise — although the probability for a high-
p⊥ event at collider energies to contain (at least) one charm or bottom pair is fairly large,
most of these heavy flavours are carrying a small fraction of the total p⊥ flow of the jets,
and therefore do not survive normal experimental cuts. We note that the lowest-order
production of charm or bottom with processes 12 and 53, as part of the standard QCD
mix, is now basically equivalent with that offered by processes 81 and 82. For 12 vs. 81
this is rather trivial, since only s-channel gluon exchange is involved, but for process 53
it requires a separate evaluation of massive matrix elements for c and b in the flavour
loop. This is performed by retaining the ŝ and θ̂ values already preliminarily selected for
the massless kinematics, and recalculating t̂ and û with mass effects included. Some of
the documentation information in PARI does not properly reflect this recalculation, but
that is purely a documentation issue. Also process 96, used internally for the total QCD
jet cross section, includes c and b masses. Only the hardest interaction in a multiple
interactions scenario may contain c/b, however, for technical reasons, so that the total

127

rate may be underestimated. (Quite apart from other uncertainties, of course.)
As an aside, it is not only for the lowest-order graphs that events may be generated

with a guaranteed heavy-flavour content. One may also generate the flavour excitation
process by itself, in the massless approximation, using ISUB = 28 and setting the KFIN
array appropriately. No trick exists to force the gluon splittings without introducing
undesirable biases, however. In order to have it all, one therefore has to make a full QCD
jets run, as already noted.

Also other processes can generate heavy flavours, all the way up to top, but then
without a proper account of masses. By default, top production is switched off in those
processes where a new flavour pair is produced at a gluon or photon vertex, i.e. 12, 53, 54,
58, 96 and 135–140, while charm and bottom is allowed. These defaults can be changed
by setting the MDME(IDC,1) values of the appropriate g or γ ‘decay channels’, see further
below.

The cross section for a heavy quark pair close to threshold can be modified according
to the formulae of [Fad90], see MSTP(35). Here threshold effects due to QQ bound-state
formation are taken into account in a smeared-out, average sense. Then the näıve cross
section is multiplied by the squared wave function at the origin. In a colour-singlet channel
this gives a net enhancement of the form

|Ψ(s)(0)|2 =
X(s)

1− exp(−X(s))
, where X(s) =

4

3

παs

β
, (137)

where β is the quark velocity, while in a colour octet channel there is a net suppression
given by

|Ψ(8)(0)|2 =
X(8)

exp(−X(8))− 1
, where X(8) =

1

6

παs

β
. (138)

The αs factor in this expression is related to the energy scale of bound-state formation;
it is selected independently from the one of the standard production cross section. The
presence of a threshold factor affects the total rate and also kinematical distributions.

Heavy flavours, i.e. top and fourth generation, are assumed to be so short-lived that
they decay before they have time to hadronize. This means that the light quark in the
decay Q → W±q inherits the colour of the heavy one. The current Pythia description
represents a change of philosophy compared to older versions, formulated at a time when
the top was thought to be much lighter than we now know it to be. For event shapes the
difference between the two time orderings normally has only marginal effects [Sjö92a].

It should be noted that cross section calculations are different in the two cases. The
top (or a fourth generation fermion) is assumed short-lived, and is treated like a resonance
in the sense of section 7.6.2, i.e. the cross-section is reduced so as only to correspond to
the channels left open by you. This also includes the restrictions on secondary decays,
i.e. on the decays of a W+ or a H+ produced in the top decay. For b and c quarks, which
are long-lived enough to form hadrons, no such reduction takes place. Branching ratios
then have to be folded in by hand to get the correct cross sections. The logic behind this
difference is that when hadronization takes place, one would normally decay the D0 and
D+ meson according to different branching ratios. But which D mesons are to be formed
is not known at the bottom quark creation, so one could not weight for that. For a t
quark, which decays rapidly, this ambiguity does not exist, and so a reduction factor can
be introduced directly coupled to the t quark production process.

This rule about cross-section calculations applies to all the processes explicitly set up
to handle heavy flavour creation. In addition to the ones above, this means all the ones in
Tables 17–24 where the fermion final state is given as capital letters (‘Q’ and ‘F’) and also
flavours produced in resonance decays (Z0, W±, h0, etc., including processes 165 and 166).
However, heavy flavours could also be produced in a process such as 31, qig → qkW

±,
where qk could be a top quark. In this case, the thrust of the description is clearly on

128

light flavours — the kinematics of the process is formulated in the massless fermion limit
— so any top production is purely incidental. Since here the choice of scattered flavour
is only done at a later stage, the top branching ratios are not correctly folded in to the
hard scattering cross section. So, for applications like these, it is not recommended to
restrict the allowed top decay modes. Often one might like to get rid of the possibility
of producing top together with light flavours. This can be done by switching off (i.e.
setting MDME(I,1)=0) the ‘channels’ d→W−t, s→W−t, b→W−t, g→ tt and γ → tt.
Also any heavy flavours produced by parton shower evolution would not be correctly
weighted into the cross section. However, currently top production is switched off both
as a beam remnant (see MSTP(9) and in initial (see KFIN array) and final (see MSTJ(45))
state radiation.

In pair production of heavy flavour (top) in processes 81,82, 84 and 85, matrix elements
are only given for one common mass, although Breit-Wigners are used to select two
separate masses. As described in subsection 7.3, an average mass value is constructed for
the matrix element evaluation so that the β34 kinematics factor can be retained.

Because of its large mass, it is possible that the top quark can decay to some not yet
discovered particle. Some such alternatives are included in the program, such as t→ bH+

or t → G̃t̃. These decays are not obtained by default, but can be included as discussed
for the respective physics scenario.

8.2.3 J/ψ and other Hidden Heavy Flavours

ISUB = 86 gg→ J/ψg

87 gg→ χ0cg

88 gg→ χ1cg

89 gg→ χ2cg

104 gg→ χ0c

105 gg→ χ2c

106 gg→ J/ψγ

107 gγ → J/ψg

108 γγ → J/ψγ
In Pythia one may distinguish between three main sources of J/ψ production.
1. Decays of B mesons and baryons.
2. Parton-shower evolution, wherein a c and a c quark produced in adjacent branchings

(e.g. g → gg → cccc) turn out to have so small an invariant mass that the pair
collapses to a single particle.

3. Direct production, where a c quark loop gives a coupling between a set of gluons
and a cc bound state. Higher-lying states, like the χc ones, may subsequently decay
to J/ψ.

The first two sources are implicit in the production of b and c quarks, although the
forcing specifically of J/ψ production is difficult. In this section are given the main
processes for the third source, intended for applications at hadron colliders. Processes
104 and 105 are the equivalents of 87 and 89 in the limit of p⊥ → 0; note that gg→ J/ψ
and gg → χ1c are forbidden and thus absent. As always one should beware of double-
counting between 87 and 104, and between 89 and 105, and thus use either the one or the
other depending on the kinematical domain to be studied. The cross sections depend on
wave function values at the origin, see PARP(38) and PARP(39). A review of the physics
issues involved may be found in [Glo88] (note, however, that the choice of Q2 scale is
different in Pythia).

It is known that the above sources are not enough to explain the full J/ψ rate, and
further production mechanisms have been proposed, extending on the more conventional

129

treatment here [Can97].
While programmed for the charm system, it would be straightforward to apply these

processes instead to bottom mesons. One needs to change the codes of states produced,
which is achieved by KFPR(ISUB,1)=KFPR(ISUB,1)+110 for the processes ISUB above,
and changing the values of the wave functions at the origin, PARP(38) and PARP(39).

8.2.4 Minimum bias

MSEL = 1, 2
ISUB = 91 elastic scattering

92 single diffraction (AB → XB)

93 single diffraction (AB → AX)

94 double diffraction

95 low-p⊥ production
These processes are briefly discussed in section 7.7. They are mainly intended for

interactions between hadrons, although one may also consider γp and γγ interactions in
the options where the incoming photon(s) is (are) assumed resolved.

Uncertainties come from a number of sources, e.g. from the parameterizations of the
various cross sections and slope parameters.

In diffractive scattering, the structure of the selected hadronic system may be regulated
with MSTP(101). No high-p⊥ jet production in diffractive events is included so far.

The subprocess 95, low-p⊥ events, is somewhat unique in that no meaningful physical
border-line to high-p⊥ events can be defined. Even if the QCD 2 → 2 high-p⊥ processes
are formally switched off, some of the generated events will be classified as belonging to
this group, with a p⊥ spectrum of interactions to match the ‘minimum-bias’ event sample.
The generation of such jets is performed with the help of the auxiliary subprocess 96, see
subsection 8.2.1. Only with the option MSTP(82)=0 will subprocess 95 yield strictly low-
p⊥ events, events which will then probably not be compatible with any experimental data.
A number of options exist for the detailed structure of low-p⊥ events, see in particular
MSTP(81) and MSTP(82). Further details on the model(s) for minimum-bias events are
found in section 11.2.

8.3 Physics with Incoming Photons

With recent additions, the machinery for photon physics has become rather extensive
[Fri00]. The border between the physics of real photon interactions and of virtual photon
ones is now bridged by a description that continuously interpolates between the two
extremes, as summarized in section 7.7.2. Furthermore, the ’gamma/lepton’ option (where
lepton is to be replaced by e-, e+, mu-, mu+, tau- or tau+ as the case may be) in a PYINIT
call gives access to an internally generated spectrum of photons of varying virtuality.
The CKIN(61) - CKIN(78) variables can be used to set experimentally motivated x and
Q2 limits on the photon fluxes. With this option, and the default MSTP(14)=30, one
automatically obtains a realistic first approximation to ‘all’ QCD physics of γ∗p and γ∗γ∗

interactions. The word ‘all’ clearly does not mean that a perfect description is guaranteed,
or that all issues are addressed, but rather that the intention is to simulate all processes
that give a significant contribution to the total cross section in whatever Q2 range is being
studied: jets, low-p⊥ events, elastic and diffractive scattering, etc.

The material to be covered encompasses many options, several of which have been
superseded by further developments but have been retained for backwards compatibility.
Therefore it is here split into three sections. The first covers the physics of real photons
and the subsequent one that of (very) virtual ones. Thereafter, in the final section, the
threads are combined into a machinery applicable at all Q2.

130

8.3.1 Photoproduction and γγ physics

MSEL = 1, 2, 4, 5, 6, 7, 8
ISUB = 33 qiγ → qig

34 fiγ → fiγ

54 gγ → qkqk
58 γγ → fkfk
80 qiγ → qkπ

±

84 gγ → QkQk

85 γγ → FkFk
An (almost) real photon has both a point-like component and a hadron-like one. This

means that several classes of processes may be distinguished, see section 7.7.2.
1. The processes listed above are possible when the photon interacts as a point-like

particle, i.e. couples directly to quarks and leptons.
2. When the photon acts like a hadron, i.e. is resolved in a partonic substructure,

then high-p⊥ parton–parton interactions are possible, as described in sections 8.2.1
and 8.4.1. These interactions may be further subdivided into VMD and anomalous
(GVMD) ones [Sch93, Sch93a].

3. A hadron-like photon can also produce the equivalent of the minimum bias processes
of section 8.2.4. Again, these can be subdivided into VMD and GVMD (anomalous)
ones.

For γp events, we believe that the best description can be obtained when three separate
event classes are combined, one for direct, one for VMD and one for GVMD/anomalous
events, see the detailed description in [Sch93, Sch93a]. These correspond to MSTP(14)
being 0, 2 and 3, respectively. The direct component is high-p⊥ only, while VMD and
GVMD contain both high-p⊥ and low-p⊥ events. The option MSTP(14)=1 combines the
VMD and GVMD/anomalous parts of the photon into one single resolved photon concept,
which therefore is less precise than the full subdivision.

When combining three runs to obtain the totality of γp interactions, to the best of
our knowledge, it is necessary to choose the p⊥ cut-offs with some care, so as to represent
the expected total cross section.
• The direct processes by themselves only depend on the CKIN(3) cut-off of the gener-

ation. In older program versions the preferred value was 0.5 GeV [Sch93, Sch93a]. In
the more recent description in [Fri00], also eikonalization of direct with anomalous
interactions into the GVMD event class is considered. That is, given a branching
γ → qq, direct interactions are viewed as the low-p⊥ events and anomalous ones as
high-p⊥ events that have to merge smoothly. Then the CKIN(3) cut-off is increased
to the p⊥min of multiple interactions processes, see PARP(81) (or PARP(82), depend-
ing on minijet unitarization scheme). See MSTP(18) for a possibility to switch back
to the older behaviour. However, full backwards compatibility cannot be assured,
so the older scenarios are better simulated by using an older Pythia version.
• The VMD processes work as ordinary hadron–hadron ones, i.e. one obtains both

low- and high-p⊥ events by default, with dividing line set by p⊥min above.
• Also the GVMD processes work like the VMD ones. Again this is a change from

previous versions, where the anomalous processes only contained high-p⊥ physics
and the low-p⊥ part was covered in the direct event class. See MSTP(15)=5 for a
possibility to switch back to the older behaviour, with comments as above for the
direct class. A GVMD state is book-kept as a diffractive state in the event listing,
even when it scatters ‘elastically’, since the subsequent hadronization descriptions
are very similar.

The processes in points 1 and 2 can be simulated with a photon beam, i.e. when
’gamma’ appears as argument in the PYINIT call. It is then necessary to use option

131

MSTP(14) to switch between a point-like and a resolved photon — it is not possible to
simulate the two sets of processes in a single run. This would be the normal mode of
operation for beamstrahlung photons, which have Q2 = 0 but with a nontrivial energy
spectrum that would be provided by some external routine.

For bremsstrahlung photons, the x and Q2 spectrum can be simulated internally, with
the ’gamma/lepton’ argument in the PYINIT call. This is the recommended procedure,
wherein direct and resolved processes can be mixed. An older — now not recommended
— alternative is to use a parton-inside-electron structure function concept, obtainable
with a simple ’e-’ (or other lepton) argument in PYINIT. To access these quark and
gluon distributions inside the photon (itself inside the electron), MSTP(12)=1 must then
be used. Also the default value MSTP(11)=1 is required for the preceding step, that of
finding photons inside the electron. Also here the direct and resolved processes may be
generated together. However, this option only works for high-p⊥ physics. It is not possible
to have also the low-p⊥ physics (including multiple interactions in high-p⊥ events) for an
electron beam. Kindly note that subprocess 34 contains both the scattering of an electron
off a photon and the scattering of a quark (inside a photon inside an electron) off a photon;
the former can be switched off with the help of the KFIN array.

If you are only concerned with standard QCD physics, the option MSTP(14)=10
or the default MSTP(14)=30 gives an automatic mixture of the VMD, direct and
GVMD/anomalous event classes. The mixture is properly given according to the rel-
ative cross sections. Whenever possible, this option is therefore preferable in terms of
user-friendliness. However, it can only work because of a completely new layer of admin-
istration, not found anywhere else in Pythia. For instance, a subprocess like qg → qg
is allowed in several of the classes, but appears with different sets of parton distributions
and different p⊥ cut-offs in each of these, so that it is necessary to switch gears between
each event in the generation. It is therefore not possible to avoid a number of restrictions
on what you can do in this case:
• The MSTP(14)=10 and =30 options can only be used for incoming photon beams,

with or without convolution with the bremsstrahlung spectrum, i.e. when ’gamma’
or ’gamma/lepton’ is the argument in the PYINIT call.
• The machinery has only been set up to generate standard QCD physics, specifically

either ‘minimum-bias’ one or high-p⊥ jets. There is thus no automatic mixing of
processes only for heavy-flavour production, say, or of some exotic particle. For
minimum bias, you are not allowed to use the CKIN variables at all. This is not a
major limitation, since it is in the spirit of minimum-bias physics not to impose any
constraints on allowed jet production. (If you still do, these cuts will be ineffective
for the VMD processes but take effect for the other ones, giving inconsistencies.) The
minimum-bias physics option is obtained by default; by switching from MSEL=1 to
MSEL=2 also the elastic and diffractive components of the VMD and GVMD parts are
included. High-p⊥ jet production is obtained by setting the CKIN(3) cut-off larger
than the p⊥min(W 2) of the multiple interactions scenario. For lower input CKIN(3)
values the program will automatically switch back to minimum-bias physics.
• Multiple interactions become possible in both the VMD and GVMD sector, with

the average number of interactions given by the ratio of the jet to the total cross
section. Currently only the simpler default scenario MSTP(82)=1 is implemented,
however, i.e. the more sophisticated variable-impact-parameter ones need further
physics studies and model development.
• Some variables are internally recalculated and reset, notably CKIN(3). This is be-

cause it must have values that depend on the component studied. It can therefore
not be modified without changing PYINPR and recompiling the program, which ob-
viously is a major exercise.
• Pileup events are not at all allowed.
Also, a warning about the usage of Pdflib for photons. So long as MSTP(14)=1, i.e.

132

the photon is not split up, Pdflib is accessed by MSTP(56)=2 and MSTP(55) as the parton
distribution set. However, when the VMD and anomalous pieces are split, the VMD part
is based on a rescaling of pion distributions by VMD factors (except for the SaS sets, that
already come with a separate VMD piece). Therefore, to access Pdflib for MSTP(14)=10,
it is not correct to set MSTP(56)=2 and a photon distribution in MSTP(55). Instead, one
should put MSTP(56)=2, MSTP(54)=2 and a pion distribution code in MSTP(53), while
MSTP(55) has no function. The anomalous part is still based on the SaS parameterization,
with PARP(15) as main free parameter.

Currently, hadrons are not defined with any photonic content. None of the processes
are therefore relevant in hadron–hadron collisions. In ep collisions, the electron can emit
an almost real photon, which may interact directly or be resolved. In e+e− collisions, one
may have direct, singly-resolved or doubly-resolved processes.

The γγ equivalent to the γp description involves six different event classes, see section
7.7.2. These classes can be obtained by setting MSTP(14) to 0, 2, 3, 5, 6 and 7, respectively.
If one combines the VMD and anomalous parts of the parton distributions of the photon,
in a more coarse description, it is enough to use the MSTP(14) options 0, 1 and 4. The
cut-off procedures follows from the ones used for the γp ones above.

As with γp events, the options MSTP(14)=10 or MSTP(14)=30 give a mixture of the six
possible γγ event classes. The same complications and restrictions exist here as already
listed above.

Process 54 generates a mixture of quark flavours; allowed flavours are set by the gluon
MDME values. Process 58 can generate both quark and lepton pairs, according to the
MDME values of the photon. Processes 84 and 85 are variants of these matrix elements,
with fermion masses included in the matrix elements, but where only one flavour can
be generated at a time. This flavour is selected as described for processes 81 and 82
in section 8.2.2, with the exception that for process 85 the ‘heaviest’ flavour allowed for
photon splitting takes to place of the heaviest flavour allowed for gluon splitting. Since
lepton KF codes come after quark ones, they are counted as being ‘heavier’, and thus take
precedence if they have been allowed.

Process 80 is a higher twist one. The theory for such processes is rather shaky, so
results should not be taken too literally. The messy formulae given in [Bag82] have
not been programmed in full, instead the pion form factor has been parameterized as
Q2Fπ(Q2) ≈ 0.55/ lnQ2, with Q in GeV.

8.3.2 Deeply Inelastic Scattering and γ∗γ∗ physics

MSEL = 1, 2, 35, 36, 37, 38
ISUB = 10 fifj → fkfl

83 qifj → Qkfl
99 γ∗q→ q

131 fiγ
∗
T → fig

132 fiγ
∗
L → fig

133 fiγ
∗
T → fiγ

134 fiγ
∗
L → fiγ

135 gγ∗T → fifi
136 gγ∗L → fifi
137 γ∗Tγ

∗
T → fifi

138 γ∗Tγ
∗
L → fifi

139 γ∗Lγ
∗
T → fifi

140 γ∗Lγ
∗
L → fifi

Among the processes in this section, 10 and 83 are intended to stand on their own,

133

while the rest are part of the newer machinery for γ∗p and γ∗γ∗ physics. We therefore
separate the description in this section into these two main parts.

The Deeply Inelastic Scattering (DIS) processes, i.e. t-channel electroweak gauge boson
exchange, are traditionally associated with interactions between a lepton or neutrino and
a hadron, but processes 10 and 83 can equally well be applied for qq scattering in hadron
colliders (with a cross section much smaller than corresponding QCD processes, however).
If applied to incoming e+e− beams, process 10 corresponds to Bhabha scattering.

For process 10 both γ, Z0 and W± exchange contribute, including interference between
γ and Z0. The switch MSTP(21) may be used to restrict to only some of these, e.g. neutral
or charged current only.

The option MSTP(14)=10 (see previous section) has now been extended so that it also
works for DIS of an electron off a (real) photon, i.e. process 10. What is obtained is
a mixture of the photon acting as a vector meson and it acting as an anomalous state.
This should therefore be the sum of what can be obtained with MSTP(14)=2 and =3. It
is distinct from MSTP(14)=1 in that different sets are used for the parton distributions
— in MSTP(14)=1 all the contributions to the photon distributions are lumped together,
while they are split in VMD and anomalous parts for MSTP(14)=10. Also the beam
remnant treatment is different, with a simple Gaussian distribution (at least by default)
for MSTP(14)=1 and the VMD part of MSTP(14)=10, but a powerlike distribution dk2

⊥/k
2
⊥

between PARP(15) and Q for the anomalous part of MSTP(14)=10.
To access this option for e and γ as incoming beams, it is only necessary to set

MSTP(14)=10 and keep MSEL at its default value. Unlike the corresponding option for γp
and γγ, no cuts are overwritten, i.e. it is still your responsibility to set these appropriately.

Cuts especially appropriate for DIS usage include either CKIN(21)-CKIN(22) or
CKIN(23)-CKIN(24) for the x range (former or latter depending on which side is the
incoming real photon), CKIN(35)-CKIN(36) for the Q2 range, and CKIN(39)-CKIN(40)
for the W 2 range.

In principle, the DIS x variable of an event corresponds to the x value stored in
PARI(33) or PARI(34), depending on which side the incoming hadron is on, while the
DIS Q2 = −t̂ =-PARI(15). However, just like initial- and final-state radiation can shift
jet momenta, they can modify the momentum of the scattered lepton. Therefore the DIS
x and Q2 variables are not automatically conserved. An option, on by default, exists in
MSTP(23), where the event can be ‘modified back’ so as to conserve x and Q2, but this
option is rather primitive and should not be taken too literally.

Process 83 is the equivalent of process 10 for W± exchange only, but with the heavy-
quark mass included in the matrix element. In hadron colliders it is mainly of interest for
the production of very heavy flavours, where the possibility of producing just one heavy
quark is kinematically favoured over pair production. The selection of the heavy flavour
is already discussed in section 8.2.2.

Turning to the other processes, part of the γ∗p and γ∗γ∗ process-mixing machineries,
99 has close similarities with the above discussed 10 one. Whereas 10 would simulate the
full process eq → eq, 99 assumes a separate machinery for the flux of virtual photons,
e → eγ∗ and only covers the second half of the process, γ∗q → q. One limitation of this
factorization is that only virtual photons are considered in process 99, not contributions
from the Z0 neutral current or the W± charged current.

Note that 99 has no correspondence in the real-photon case, but has to vanish in
this limit by gauge invariance, or indeed by simple kinematics considerations. This, plus
the desire to avoid double-counting with real-photon physics processes, is why the cross
section for this process is explicitly made to vanish for photon virtuality Q2 → 0, eq. (127),
also when parton distributions have not been constructed to fulfil this, see MSTP(19). (No
such safety measures are present in 10, again illustrating how the two are intended mainly
to be used at large or at small Q2, respectively.)

For a virtual photon, processes 131–136 may be viewed as first-order corrections to

134

99. The three with a transversely polarized photon, 131, 133 and 135, smoothly reduce
to the real-photon direct (single-resolved for γγ) processes 33, 34 and 54. The other
three, corresponding to the exchange of a longitudinal photon, vanish like Q2 for Q2 → 0.
The double-counting issue with process 99 is solved by requiring the latter process not to
contain any shower branchings with a p⊥ above the lower p⊥ cut-off of processes 131-136.
The cross section is then to be reduced accordingly, see eq. (128) and the discussion there,
and again MSTP(19).

We thus see that process 99 by default is a low-p⊥ process in about the same sense
as process 95, giving ‘what is left’ of the total cross section when jet events have been
removed. Therefore, it will be switched off in event class mixes such as MSTP(14)=30 if
CKIN(3) is above p⊥min(W 2) and MSEL is not 2. There is a difference, however, in that
process 99 events still are allowed to contain shower evolution (although currently only
the final-state kind has been implemented), since the border to the other processes is at
p⊥ = Q for large Q and thus need not be so small. The p⊥ scale of the ‘hard process’,
stored e.g. in PARI(17) always remains 0, however. (Other PARI variables defined for
normal 2→ 2 and 2→ 1 processes are not set at all, and may well contain irrelevant junk
left over from previous events.)

Processes 137–140, finally, are extensions of process 58 from the real-photon limit to
the virtual-photon case, and correspond to the direct process of γ∗γ∗ physics. The four
cases correspond to either of the two photons being either transversely or longitudinally
polarized. As above, the cross section of a longitudinal photon vanishes when its virtuality
approaches 0.

8.3.3 Photon physics at all virtualities

ISUB = direct×direct: 137, 138, 139, 140

direct×resolved: 131, 132, 135, 136

DIS×resolved: 99

resolved×resolved, high-p⊥: 11, 12, 13, 28, 53, 68

resolved×resolved, low-p⊥: 91, 92, 93, 94, 95
where ‘resolved’ is a hadron or a VMD or GVMD photon.

At intermediate photon virtualities, processes described in both of the sections above
are allowed, and have to be mixed appropriately. The sets are of about equal importance
at around Q2 ∼ m2

ρ ∼ 1 GeV2, but the transition is gradual over a larger Q2 range. The
ansatz for this mixing is given by eq. (129) for γ∗p events and eq. (130) for γ∗γ∗ ones. In
short, for direct and DIS processes the photon virtuality explicitly enters in the matrix
element expressions, and thus is easily taken into account. For resolved photons, pertur-
bation theory does not provide a unique answer, so instead cross sections are suppressed
by dipole factors, (m2/(m2 +Q2))2, where m = mV for a VMD state and m = 2k⊥ for a
GVMD state characterized by a k⊥ scale of the γ∗ → qq branching. These factors appear
explicitly for total, elastic and diffractive cross sections, and are also implicitly used e.g. in
deriving the SaS parton distributions for virtual photons. Finally, some double-counting
need to be removed, between direct and DIS processes as mentioned in the previous
section, and between resolved and DIS at large x.

Since the mixing is not trivial, it is recommended to use the default MSTP(14)=30 to
obtain it in one go and hopefully consistently, rather than building it up by combining
separate runs. The main issues still under your control include, among others
• The CKIN(61) - CKIN(78) should be used to set the range of x and Q2 values

emitted from the lepton beams. That way one may decide between almost real or
very virtual photons, say. Also some other quantities, like W 2, can be constrained
to desirable ranges.
• Whether or not minimum bias events are simulated depends on the CKIN(3) value,

135

just like in hadron physics. The only difference is that the initialization energy scale
Winit is selected in the allowed W range rather than to be the full c.m. energy.
For a high CKIN(3), CKIN(3)> p⊥min(W 2

init), only jet production is included. Then
further CKIN values can be set to constrain e.g. the rapidity of the jets produced.
For a low CKIN(3), CKIN(3)< p⊥min(W 2

init), like the default value CKIN(3) = 0,
low-p⊥ physics is switched on together with jet production, with the latter properly
eikonalized to be lower than the total one. The ordinary CKIN cuts, not related to
the photon flux, cannot be used here.
For a low CKIN(3), when MSEL=2 instead of the default =1, also elastic and diffractive
events are simulated.
• The impact of resolved longitudinal photons is not unambiguous, e.g. only recently

the first parameterization of parton distributions appeared [Chý00]. Different simple
alternatives can be probed by changing MSTP(17) and associated parameters.
• The choice of scales to use in parton distributions for jet rates is always ambiguous,

but depends on even more scales for virtual photons than in hadronic collisions.
MSTP(32) allows a choice between several alternatives.
• The matching of p⊥ generation by shower evolution to that by primordial k⊥ is a

general problem, for photons with an additional potential source in the γ∗ → qq
vertex. MSTP(66) offer some alternatives.
• PARP(15) is the k0 parameter separating VMD from GVMD.
• PARP(18) is the kρ parameter in GVMD total cross sections.
• MSTP(16) selects the momentum variable for an e→ eγ∗ branching.
• MSTP(18) regulates the choice of p⊥min for direct processes.
• MSTP(19) regulates the choice of partonic cross section in process 99, γ∗q→ q.
• MSTP(20) regulates the suppression of the resolved cross section at large x.

The above list is not complete, but gives some impression what can be done.

8.4 Electroweak Gauge Bosons

This section covers the production and/or exchange of γ, Z0 and W± gauge bosons, singly
and in pairs. The topic of longitudinal gauge-boson scattering at high energies is deferred
to the Higgs section, since the presence or absence of a Higgs here makes a big difference.

8.4.1 Prompt photon production

MSEL = 10
ISUB = 14 qiqi → gγ

18 fifi → γγ

29 qig→ qiγ

114 gg→ γγ

115 gg→ gγ
In hadron colliders, processes ISUB = 14 and 29 give the main source of single-γ

production, with ISUB = 115 giving an additional contribution which, in some kinematics
regions, may become important. For γ-pair production, the process ISUB = 18 is often
overshadowed in importance by ISUB = 114.

Another source of photons is bremsstrahlung off incoming or outgoing quarks. This
has to be treated on an equal footing with QCD parton showering. For time-like parton-
shower evolution, i.e. in the final-state showering and in the side branches of the initial-
state showering, photon emission may be switched on or off with MSTJ(41). Photon
radiation off the space-like incoming quark legs is not yet included, but should be of
lesser importance for production at reasonably large p⊥ values. Radiation off an incoming
electron is included in a leading-log approximation.

136

Warning: the cross sections for the box graphs 114 and 115 become very complicated,
numerically unstable and slow when the full quark mass dependence is included. For quark
masses much below the ŝ scale, the simplified massless expressions are therefore used
— a fairly accurate approximation. However, there is another set of subtle numerical
cancellations between different terms in the massive matrix elements in the region of
small-angle scattering. The associated problems have not been sorted out yet. There
are therefore two possible solutions. One is to use the massless formulae throughout.
The program then becomes faster and numerically stable, but does not give, for example,
the characteristic dip (due to destructive interference) at top threshold. This is the
current default procedure, with five flavours assumed, but this number can be changed
in MSTP(38). The other possibility is to impose cuts on the scattering angle of the hard
process, see CKIN(27) and CKIN(28), since the numerically unstable regions are when
| cos θ̂| is close to unity. It is then also necessary to change MSTP(38) to 0.

8.4.2 Single W/Z production

MSEL = 11, 12, 13, 14, 15, (21)

ISUB = 1 fifi → γ∗/Z0

2 fifj →W+

15 fifi → g(γ∗/Z0)

16 fifj → gW+

19 fifi → γ(γ∗/Z0)

20 fifj → γW+

30 fig→ fi(γ
∗/Z0)

31 fig→ fkW
+

35 fiγ → fi(γ
∗/Z0)

36 fiγ → fkW
+

(141) fifi → γ/Z0/Z′0

This group consists of 2 → 1 processes, i.e. production of a single resonance, and
2→ 2 processes, where the resonance is recoiling against a jet or a photon. The process
141, which also is listed here, is described further elsewhere.

With initial-state showers turned on, the 2→ 1 processes also generate additional jets;
in order to avoid double-counting, the corresponding 2→ 2 processes should therefore not
be turned on simultaneously. The basic rule is to use the 2 → 1 processes for inclusive
generation of W/Z, i.e. where the bulk of the events studied have p⊥ � mW/Z. With the
introduction of explicit matrix-element-inspired corrections to the parton shower [Miu99],
also the high-p⊥ tail is well described in this approach, thus offering an overall good
decription of the full p⊥ spectrum of gauge bosons [Bál01].

If one is interested in the high-p⊥ tail only, however, the generation efficiency will be
low. It is here better to start from the 2→ 2 matrix elements and add showers to these.
However, the 2 → 2 matrix elements are divergent for p⊥ → 0, and should not be used
down to the low-p⊥ region, or one may get unphysical cross sections. As soon as the
generated 2→ 2 cross section corresponds to a non-negligible fraction of the total 2→ 1
one, say 10%–20%, Sudakov effects are likely to be affecting the shape of the p⊥ spectrum
to a corresponding extent, and results should not be trusted.

The problems of double-counting and Sudakov effects apply not only to W/Z produc-
tion in hadron colliders, but also to a process like e+e− → Z0γ, which clearly is part of
the initial-state radiation corrections to e+e− → Z0 obtained for MSTP(11)=1. As is the
case for Z production in association with jets, the 2→ 2 process should therefore only be
used for the high-p⊥ region.

The Z0 of subprocess 1 includes the full interference structure γ∗/Z0; via MSTP(43)

137

you can select to produce only γ∗, only Z0, or the full γ∗/Z0. The same holds true for the
Z′0 of subprocess 141; via MSTP(44) any combination of γ∗, Z0 and Z′0 can be selected.
Thus, subprocess 141 with MSTP(44)=4 is essentially equivalent to subprocess 1 with
MSTP(43)=3; however, process 141 also includes the possibility of a decay into Higgses.
Also processes 15, 19, 30 and 35 contain the full mixture of γ∗/Z0, with MSTP(43) available
to change this.

Note that process 1, with only qq → γ∗ → `+`− allowed, and studied in the region
well below the Z0 mass, is what is conventionally called Drell–Yan. This latter process
therefore does not appear under a separate heading, but can be obtained by a suitable
setting of switches and parameters.

A process like fifj → γW+ is only included in the limit that the γ is emitted in the
‘initial state’, while the possibility of a final-state radiation off the W+ decay products is
not explicitly included (but can be obtained implicitly by the parton-shower machinery)
and various interference terms are not at all present. Some caution must therefore be
exercised; see also section 8.4.3 for related comments.

For the 2 → 1 processes, the Breit–Wigner includes an ŝ-dependent width, which
should provide an improved description of line shapes. In fact, from a line-shape point
of view, process 1 should provide a more accurate simulation of e+e− annihilation events
than the dedicated e+e− generation scheme of PYEEVT (see section 6.1). Another differ-
ence is that PYEEVT only allows the generation of γ∗/Z0 → qq, while process 1 additionally
contains γ∗/Z0 → `+`− and γ∗/Z0 → νν. The parton-shower and fragmentation descrip-
tions are the same, but the process 1 implementation only contains a partial interface to
the first- and second-order matrix-element options available in PYEEVT, see MSTP(48).

All processes in this group have been included with the correct angular distribution
in the subsequent W/Z→ ff decays. In process 1 also fermion mass effects have been in-
cluded in the angular distributions, while this is not the case for the other ones. Normally
mass effects are not large anyway.

The process e+e− → e+e−Z0 can be simulated in two different ways. One is to make
use of the e ‘sea’ distribution inside e, i.e. have splittings e → γ → e. This can be
obtained, together with ordinary Z0 production, by using subprocess 1, with MSTP(11)=1
and MSTP(12)=1. Then the contribution of the type above is 5.0 pb for a 500 GeV e+e−

collider, compared with the correct 6.2 pb [Hag91]. Alternatively one may use process 35,
with MSTP(11)=1 and MSTP(12)=0. This process has a singularity in the forward direction,
regularized by the electron mass and also sensitive to the virtuality of the photon. It is
therefore among the few where the incoming masses have been included in the matrix
element expression. Nevertheless, it may be advisable to set small lower cut-offs, e.g.
CKIN(3)=CKIN(5)=0.01, if one should experience problems (e.g. at higher energies).

Process 36, fγ → f ′W± may have corresponding problems; except that in e+e− the
forward scattering amplitude for eγ → νW is killed (radiation zero), which means that
the differential cross section is vanishing for p⊥ → 0. It is therefore feasible to use the
default CKIN(3) and CKIN(5) values in e+e−, and one also comes closer to the correct
cross section.

The process gg → Z0bb, formerly available as process 131, has been removed
from the current version, since the implementation turned out to be slow and un-
stable. However, process 1 with incoming flavours set to be bb (by KFIN(1,5)=
KFIN(1,-5)=KFIN(2,5)=KFIN(2,-5)=1 and everything else =0) provides an alternative
description, where the additional bb are generated by g → bb branchings in the initial-
state showers. (Away from the low-p⊥ region, process 30 with KFIN values as above except
that also incoming gluons are allowed, offers yet another description. Here it is in terms
of gb → Z0b, with only one further g → bb branching constructed by the shower.) At
first glance, the shower approach would seem less reliable than the full 2→ 3 matrix ele-
ment. The relative lightness of the b quark will generate large logs of the type ln(m2

Z/m
2
b),

however, that ought to be resummed [Car00]. This is implicit in the parton-density ap-

138

proach of incoming b quarks but absent from the lowest-order gg→ Z0bb matrix elements.
Therefore actually the shower approach may be the more accurate of the two. Within the
general range of uncertainty of any leading-order description, at least it is not any worse.

8.4.3 W/Z pair production

MSEL = 15
ISUB = 22 fifi → (γ∗/Z0)(γ∗/Z0)

23 fifj → Z0W+

25 fifi →W+W−

69 γγ →W+W−

70 γW+ → Z0W+

In this section we mainly consider the production of W/Z pairs by fermion–antifermion
annihilation, but also include two processes which involve γ/W beams. Scatterings be-
tween gauge-boson pairs, i.e. processes like W+W− → Z0Z0, depend so crucially on the
assumed Higgs scenario that they are considered separately in section 8.5.2.

The cross sections used for the above processes are those derived in the narrow-width
limit, but have been extended to include Breit–Wigner shapes with mass-dependent
widths for the final-state particles. In process 25, the contribution from Z0 exchange
to the cross section is now evaluated with the fixed nominal Z0 mass and width in the
propagator. If instead the actual mass and the running width were to be used, it gives a
diverging cross section at large energies, by imperfect gauge cancellation.

However, one should realize that other graphs, not included here, can contribute in
regions away from the W/Z mass. This problem is especially important if several flavours
coincide in the four-fermion final state. Consider, as an example, e+e− → µ+µ−νµνµ. Not
only would such a final state receive contributions from intermediate Z0Z0 and W+W−

states, but also from processes e+e− → Z0 → µ+µ−, followed either by µ+ → µ+Z0 →
µ+νµνµ, or by µ+ → νµW+ → νµµ

+νµ. In addition, all possible interferences should
be considered. Since this is not done, the processes have to be used with some sound
judgement. Very often, one may wish to constrain a lepton pair mass to be close to mZ,
in which case a number of the possible ‘other’ processes are negligible.

For the W pair production graph, one experimental objective is to do precision mea-
surements of the cross section near threshold. Then also other effects enter. One such is
Coulomb corrections, induced by photon exchange between the two W’s and their decay
products. The gauge invariance issues induced by the finite W lifetime are not yet fully
resolved, and therefore somewhat different approximate formulae may be derived [Kho96].
The options in MSTP(40) provide a reasonable range of uncertainty.

Of the above processes, the first contains the full fifi → (γ∗/Z0)(γ∗/Z0) structure,
obtained by a straightforward generalization of the formulae in ref. [Gun86] (done by one
of the Pythia authors). Of course, the possibility of there being significant contributions
from graphs that are not included is increased, in particular if one γ∗ is very light and
therefore could be a bremsstrahlung-type photon. It is possible to use MSTP(43) to recover
the pure Z0 case, i.e. fifi → Z0Z0 exclusively. In processes 23 and 70, only the pure Z0

contribution is included.
Full angular correlations are included for the first three processes, i.e. the full 2→ 2→

4 matrix elements are included in the resonance decays, including the appropriate γ∗/Z0

interference in process 22. In the latter two processes no spin information is currently
preserved, i.e. the W/Z bosons are allowed to decay isotropically.

We remind you that the mass ranges of the two resonances may be set with the
CKIN(41) - CKIN(44) parameters; this is particularly convenient, for instance, to pick
one resonance almost on the mass shell and the other not.

139

8.5 Higgs Production

A fair fraction of all the processes in Pythia deal with Higgs production in one form or
another. This multiplication is caused by the need to consider production by several differ-
ent processes, depending on Higgs mass and machine type. Further, the program contains
a full two-Higgs-multiplet scenario, as predicted for example in the Minimal Supersym-
metric extension of the Standard Model (MSSM). Therefore the continued discussion is,
somewhat arbitrarily, subdivided into a few different scenarios. Doubly-charged Higgs
particles appear in left–right symmetric models, and are covered in section 8.6.3.

8.5.1 Light Standard Model Higgs

MSEL = 16, 17, 18
ISUB = 3 fifi → h0

24 fifi → Z0h0

26 fifj →W+h0

102 gg→ h0

103 γγ → h0

110 fifi → γh0

111 fifi → gh0

112 fig→ fih
0

113 gg→ gh0

121 gg→ QkQkh
0

122 qiqi → QkQkh
0

123 fifj → fifjh
0 (Z0Z0 fusion)

124 fifj → fkflh
0 (W+W− fusion)

In this section we discuss the production of a reasonably light Standard Model Higgs,
below 700 GeV, say, so that the narrow width approximation can be used with some
confidence. Below 400 GeV there would certainly be no trouble, while above that the
narrow width approximation is gradually starting to break down.

In a hadron collider, the main production processes are 102, 123 and 124, i.e. gg, Z0Z0

and W+W− fusion. In the latter two processes, it is also necessary to take into account
the emission of the space-like W/Z bosons off quarks, which in total gives the 2 → 3
processes above.

Further processes of lower cross sections may be of interest because of easier signals.
For instance, processes 24 and 26 give associated production of a Z or a W together with
the h0. There is also the processes 3 (see below), 121 and 122, which involve production
of heavy flavours.

Process 3 contains contributions from all flavours, but is completely dominated by the
subprocess tt → h0, i.e. by the contribution from the top sea distributions. Assuming,
of course, that parton densities for top quarks are available, which is no longer the case
in current parameterizations. This process is by now known to overestimate the cross
section for Higgs production as compared with a more careful calculation based on the
subprocess gg → tth0, process 121. The difference between the two is that in process 3
the t and t are added by the initial-state shower, while in 121 the full matrix element
is used. The price to be paid is that the complicated multibody phase space in process
121 makes the program run slower than with most other processes. As usual, it would be
double-counting to include the same flavour both with 3 and 121. Process 122 is similar
in structure to 121, but is less important. In both process 121 and 122 the produced
quark is assumed to be a t; this can be changed in KFPR(121,2) and KFPR(122,2) before
initialization, however. For b quarks it could well be that process 3 with bb→ h0 is more

140

reliable than process 121 with gg→ bbh0 [Car00]; see the discussion on Z0bb final states
in section 8.4.2. Thus it would make sense to run with all quarks up to and including b
simulated in process 3 and then consider t quarks separately in process 121. Assuming
no t parton densities, this would actually be the default behaviour, meaning that the two
could be combined in the same run without doublecounting.

The two subprocess 112 and 113, with a Higgs recoiling against a quark or gluon
jet, are also effectively generated by initial-state corrections to subprocess 102. Thus, in
order to avoid double-counting, just as for the case of Z0/W+ production, section 8.4.2,
these subprocesses should not be switched on simultaneously. Process 111, qq → gh0 is
different, in the sense that it proceeds through an s-channel gluon coupling to a heavy-
quark loop, and that therefore the emitted gluon is necessary in the final state in order to
conserve colours. It is not to be confused with a gluon-radiation correction to the Born-
level process 3, qq→ h0, since process 3 vanishes for massless quarks while process 111 is
mainly intended for such. The lack of a matching Born-level process shows up by process
111 being vanishing in the p⊥ → 0 limit. Numerically it is of negligible importance, except
at very large p⊥ values. Process 102, possibly augmented by 111, should thus be used
for inclusive production of Higgs, and 111–113 for the study of the Higgs subsample with
high transverse momentum.

A warning is that the matrix-element expressions for processes 111–113 are very
lengthy and the coding therefore more likely to contain some errors and numerical in-
stabilities than for most other processes. Therefore the full expressions are only available
by setting the non-default value MSTP(38)=0. Instead the default is based on the sim-
plified expressions obtainable if only the top quark contribution is considered, in the
mt → ∞ limit [Ell88]. As a slight improvement, this expression is rescaled by the ratio
of the gg→ h0 cross sections (or, equivalently, the h→ gg partial widths) of the full cal-
culation and that in the mt →∞ limit. Simple checks show that this approach normally
agrees with the full expressions to within ∼ 20%, which is small compared with other
uncertainties. The agreement is worse for process 111 alone, about a factor of 2, but this
process is small anyway. We also note that the matrix element correction factors, used in
the initial-state parton shower for process 102, subsection 10.3.5, are based on the same
mt →∞ limit expressions, so that the high-p⊥ tail of process 102 is well matched to the
simple description of process 112 and 113.

In e+e− annihilation, associated production of an h0 with a Z0, process 24, is usually
the dominant one close to threshold, while the Z0Z0 and W+W− fusion processes 123 and
124 win out at high energies. Process 103, γγ fusion, may also be of interest, in particular
when the possibilities of beamstrahlung photons and backscattered photons are included
(see subsection 7.1.3). Process 110, which gives an h0 in association with a γ, is a loop
process and is therefore suppressed in rate. It would have been of interest for a h0 mass
above 60 GeV at LEP 1, since its phase space suppression there is less severe than for the
associated production with a Z0. Now it is not likely to be of any further interest.

The branching ratios of the Higgs are very strongly dependent on the mass. In prin-
ciple, the program is set up to calculate these correctly, as a function of the actual Higgs
mass, i.e. not just at the nominal mass. However, higher-order corrections may at times
be important and not fully unambiguous; see for instance MSTP(37).

Since the Higgs is a spin-0 particle it decays isotropically. In decay processes such
as h0 → W+W−/Z0Z0 → 4 fermions angular correlations are included [Lin97]. Also in
processes 24 and 26, Z0 and W± decay angular distributions are correctly taken into
account.

141

8.5.2 Heavy Standard Model Higgs

ISUB = 5 Z0Z0 → h0

8 W+W− → h0

71 Z0Z0 → Z0Z0 (longitudinal)

72 Z0Z0 →W+W− (longitudinal)

73 Z0W+ → Z0W+ (longitudinal)

76 W+W− → Z0Z0 (longitudinal)

77 W+W± →W+W± (longitudinal)
Processes 5 and 8 are the simple 2 → 1 versions of what is now available in 123 and

124 with the full 2→ 3 kinematics. For low Higgs masses processes 5 and 8 overestimate
the correct cross sections and should not be used, whereas good agreement between the
2→ 1 and 2→ 3 descriptions is observed when heavy Higgs production is studied.

The subprocesses 5 and 8, V V → h0, which contribute to the processes V V → V ′V ′,
show a bad high-energy behaviour. Here V denotes a longitudinal intermediate gauge
boson, Z0 or W±. This can be cured only by the inclusion of all V V → V ′V ′ graphs, as
is done in subprocesses 71, 72, 73, 76 and 77. In particular, subprocesses 5 and 8 give
rise to a fictitious high-mass tail of the Higgs. If this tail is thrown away, however, the
agreement between the s-channel graphs only (subprocesses 5 and 8) and the full set of
graphs (subprocesses 71 etc.) is very good: for a Higgs of nominal mass 300 (800) GeV, a
cut at 600 (1200) GeV retains 95% (84%) of the total cross section, and differs from the
exact calculation, cut at the same values, by only 2% (11%) (numbers for SSC energies).
With this prescription there is therefore no need to use subprocesses 71 etc. rather than
subprocesses 5 and 8.

For subprocess 77, there is an option, see MSTP(45), to select the charge combination
of the scattering W’s: like-sign, opposite-sign (relevant for Higgs), or both.

Process 77 contains a divergence for p⊥ → 0 due to γ-exchange contributions. This
leads to an infinite total cross section, which is entirely fictitious, since the simple parton-
distribution function approach to the longitudinal W flux is not appropriate in this limit.
For this process, it is therefore necessary to make use of a cut, e.g. p⊥ > mW.

For subprocesses 71, 72, 76 and 77, an option is included (see MSTP(46)) whereby
you can select only the s-channel Higgs graph; this will then be essentially equivalent to
running subprocess 5 or 8 with the proper decay channels (i.e. Z0Z0 or W+W−) set via
MDME. The difference is that the Breit–Wigners in subprocesses 5 and 8 contain a mass-
dependent width, whereas the width in subprocesses 71–77 is calculated at the nominal
Higgs mass; also, higher-order corrections to the widths are treated more accurately in
subprocesses 5 and 8. Further, processes 71–77 assume the incoming W/Z to be on the
mass shell, with associated kinematics factors, while processes 5 and 8 have W/Z correctly
space-like. All this leads to differences in the cross sections by up to a factor of 1.5.

In the absence of a Higgs, the sector of longitudinal Z and W scattering will become
strongly interacting at energies above 1 TeV. The models proposed by Dobado, Herrero
and Terron [Dob91] to describe this kind of physics have been included as alternative
matrix elements for subprocesses 71, 72, 73, 76 and 77, selectable by MSTP(46). From
the point of view of the general classification scheme for subprocesses, this kind of models
should appropriately be included as separate subprocesses with numbers above 100, but
the current solution allows a more efficient reuse of existing code. By a proper choice of
parameters, it is also here possible to simulate the production of a techni-ρ (see subsection
8.6.7).

Currently, the scattering of transverse gauge bosons has not been included, neither that
of mixed transverse–longitudinal scatterings. These are expected to be less important at
high energies, and do not contain an h0 resonance peak, but need not be entirely negligible
in magnitude. As a rule of thumb, processes 71–77 should not be used for V V invariant

142

masses below 500 GeV.
The decay products of the longitudinal gauge bosons are correctly distributed in angle.

8.5.3 Extended neutral Higgs sector

MSEL = 19
ISUB = h0 H0 A0

3 151 156 fifi → X

102 152 157 gg→ X

103 153 158 γγ → X

111 183 188 qq→ gX

112 184 189 qg→ qX

113 185 190 gg→ gX

24 171 176 fifi → Z0X

26 172 177 fifj →W+X

123 173 178 fifj → fifjX (ZZ fusion)

124 174 179 fifj → fkflX (W+W− fusion)

121 181 186 gg→ QkQkX

122 182 187 qiqi → QkQkX
In Pythia, the particle content of a two-Higgs-doublet scenario is included: two

neutral scalar particles, 25 and 35, one pseudoscalar one, 36, and a charged doublet, ±37.
(Of course, these particles may also be associated with corresponding Higgs states in
larger multiplets.) By convention, we choose to call the lighter scalar Higgs h0 and the
heavier H0. The pseudoscalar is called A0 and the charged H±. Charged-Higgs production
is covered in section 8.5.4.

A number of h0 processes have been duplicated for H0 and A0. The correspondence
between ISUB numbers is shown in the table above: the first column of ISUB numbers
corresponds to X = h0, the second to X = H0, and the third to X = A0. Note that several
of these processes are not expected to take place at all, owing to vanishing Born term
couplings. We have still included them for flexibility in simulating arbitrary couplings
at the Born or loop level, or for the case of mixing between the scalar and pseudoscalar
sectors.

A few Standard Model Higgs processes have no correspondence in the scheme above.
These include
• 5 and 8, which anyway have been superseded by 123 and 124;
• 71, 72, 73, 76 and 77, which deal with what happens if there is no light Higgs, and

so is a scenario complementary to the one above, where several light Higgses are
assumed; and
• 110, which is mainly of interest in Standard Model Higgs searches.
The processes 111–113, 183–185 and 188–190 have only been worked out in full detail

for the Standard Model Higgs case, and not when e.g. squark loop contributions need be
considered. The approximate procedure outlined in subsection 8.5.1, based on combining
the kinematics shape from simple expressions in the mt →∞ limit with a normalization
derived from the gg→ X cross section, should therefore be viewed as a first ansatz only.
In particular, it is not recommended to try the non-default MSTP(38)=0 option, which is
incorrect beyond the Standard Model.

In processes 121, 122, 181, 182, 186 and 187 the recoiling heavy flavour is assumed to
be top, which is the only one of interest in the Standard Model, and the one where the
parton-distribution-function approach invoked in processes 3, 151 and 156 is least reliable.
However, it is possible to change the quark flavour in 121 etc.; for each process ISUB this
flavour is given by KFPR(ISUB,2). This may become relevant if couplings to bb states are

143

enhanced, e.g. if tan β � 1 in the MSSM. The matrix elements in this group are based
on scalar Higgs couplings; differences for a pseudoscalar Higgs remains to be worked out.

By default, the h0 has the couplings of the Standard Model Higgs, while the H0

and A0 have couplings set in PARU(171) - PARU(178) and PARU(181) - PARU(190),
respectively. The default values for the H0 and A0 have no deep physics motivation,
but are set just so that the program will not crash due to the absence of any couplings
whatsoever. You should therefore set the above couplings to your desired values if you
want to simulate either H0 or A0. Also the couplings of the h0 particle can be modified,
in PARU(161) - PARU(165), provided that MSTP(4) is set to 1.

For MSTP(4)=2, the mass of the h0 (in PMAS(25,1)) and the tan β value (in PARU(141))
are used to derive the masses of the other Higgses, as well as all Higgs couplings.
PMAS(35,1) - PMAS(37,1) and PARU(161) - PARU(195) are overwritten accordingly.
The relations used are the ones of the Born-level MSSM [Gun90]. Loop corrections to
those expressions have been calculated within specific supersymmetric scenarios, and are
known to have a non-negligible effects on the resulting phenomenology. By switching on
supersymmetry simulation and setting parameters appropriately, one will gain access to
these mass formulae, see section 9.5.

Note that not all combinations of mh and tan β are allowed; for MSTP(4)=2 the re-
quirement of a finite A0 mass imposes the constraint

mh < mZ
tan2 β − 1

tan2 β + 1
, (139)

or, equivalently,

tan2 β >
mZ +mh

mZ −mh

. (140)

If this condition is not fulfilled, the program will crash.
A more realistic approach to the Higgs mass spectrum is to include radiative correc-

tions to the Higgs potential. Such a machinery has never been implemented as such in
Pythia, but appears as part of the Supersymmetry framework described in subsection 8.7.
At tree level, the minimal set of inputs would be IMSS(1)=1 to switch on Susy, RMSS(5)
to set the tan β value (this overwrites the PARU(141) value when Susy is switched on)
and RMSS(19) to set A0 mass. However, the significant radiative corrections depend on
the properties of all particles that couple to the Higgs boson, and the user may want to
change the default values of the relevant RMSS inputs. In practice, the most important
are those related indirectly to the physical masses of the third generation supersymmetric
quarks and the Higgsino: RMSS(10) to set the left–handed doublet Susy mass parame-
ter, RMSS(11) to set the right stop mass parameter, RMSS(12) to set the right sbottom
mass parameter, RMSS(4) to set the Higgsino mass and a portion of the squark mixing,
and RMSS(16) and RMSS(17) to set the stop and bottom trilinear couplings, respectively,
which specifies the remainder of the squark mixing. From these inputs, the Higgs masses
and couplings would be derived. Note that switching on Susy also implies that Super-
symmetric decays of the Higgs particles become possible if kinematically allowed. If you
do not want this to happen, you may want to increase the Susy mass parameters. (Use
CALL PYSTAT(2) after initialization to see the list of branching ratios.)

Pair production of Higgs states may be a relevant source, see section 8.5.5 below.
Finally, heavier Higgses may decay into lighter ones, if kinematically allowed, in pro-

cesses like A0 → Z0h0 or H+ → W+h0. Such modes are included as part of the general
mixture of decay channels, but they can be enhanced if the uninteresting channels are
switched off.

144

8.5.4 Charged Higgs sector

MSEL = 23
ISUB = 143 fifj → H+

161 fig→ fkH
+

A charged Higgs doublet, H±, is included in the program. This doublet may be the
one predicted in the MSSM scenario, see section 8.5.3, or in any other scenario. The tan β
parameter, which is relevant also for charged Higgs couplings, is set via PARU(141) or, if
Susy is switched on, via RMSS(5).

The basic subprocess for charged Higgs production in hadron colliders is ISUB = 143.
However, this process is dominated by tb→ H+, and so depends on the choice of t parton
distribution, if at all present. A better representation is provided by subprocess 161,
fg → f ′H+; i.e. actually bg → tH+. It is therefore recommended to use 161 and not 143;
to use both would be double-counting.

Pair production of Higgs states may be a relevant source, see section 8.5.5 below.
A major potential source of charged Higgs production is top decay. It is possible to

switch on the decay channel t→ bH+. Top will then decay to H+ a fraction of the time,
whichever way it is produced. The branching ratio is automatically calculated, based on
the tan β value and masses. It is possible to only have the H+ decay mode switched on,
in which case the cross section is reduced accordingly.

8.5.5 Higgs pairs

ISUB = (141) fifi → γ/Z0/Z′0

297 fifj → H±h0

298 fifj → H±H0

299 fifi → Ah0

300 fifi → AH0

301 fifi → H+H−

The subprocesses 297–301 give the production of a pair of Higgses via the s-channel
exchange of a γ∗/Z0 or a W± state.

Note that Higgs pair production is still possible through subprocess 141, as part of the
decay of a generic combination of γ∗/Z0/Z′0. Thus it can be used to simulate Z0 → h0A0

and Z0 → H0A0 for associated neutral Higgs production. The fact that we here make use
of the Z′0 can easily be discounted, either by letting the relevant couplings vanish, or by
the option MSTP(44)=4.

Similarly the decay γ∗/Z0/Z′0 → H+H− allows the production of a pair of charged
Higgs particles. This process is especially important in e+e− colliders. The coupling of
the γ∗ to H+H− is determined by the charge alone (neglecting loop effects), while the Z0

coupling is regulated by PARU(142), and that of the Z′0 by PARU(143). The Z′0 piece
can be switched off, e.g. by MSTP(44)=4. An ordinary Z0, i.e. particle code 23, cannot be
made to decay into a Higgs pair, however.

The advantage of the explicit pair production processes is the correct implementation
of the pair threshold.

8.6 Non-Standard Physics

The number of possible non-Standard Model scenarios is essentially infinite, but many of
the studied scenarios still share a lot of aspects. For instance, new W′ and Z′ gauge bosons
can arise in a number of different ways. Therefore it still makes sense to try to cover a few
basic classes of particles, with enough freedom in couplings that many kinds of detailed
scenarios can be accommodated by suitable parameter choices. We have already seen one

145

example of this, in the extended Higgs sector above. In this section a few other kinds of
non-standard generic physics are discussed. Supersymmetry is covered separately in the
following section, since it is such a large sector by itself.

8.6.1 Fourth-generation fermions

MSEL = 7, 8, 37, 38
ISUB = 1 fifi → γ∗/Z0

2 fifj →W+

81 qiqi → QkQk

82 gg→ QkQk

83 qifj → Qkfl
84 gγ → QkQk

85 γγ → FkFk
141 fifi → γ/Z0/Z′0

142 fifj →W′+

The prospects of a fourth generation currently seem rather dim, but the appropriate
flavour content is still found in the program. In fact, the fourth generation is included on
an equal basis with the first three, provided MSTP(1)=4. Also processes other than the
ones above can therefore be used, e.g. all other processes with gauge bosons, including
non-standard ones such as the Z′0. We therefore do not repeat the descriptions found
elsewhere, e.g. how to set only the desired flavour in processes 81–85. Note that it may be
convenient to set CKIN(1) and other cuts such that the mass of produced gauge bosons
is enough for the wanted particle production — in principle the program will cope even
without that, but possibly at the expense of very slow execution.

8.6.2 New gauge bosons

MSEL = 21, 22, 24
ISUB = 141 fifi → γ/Z0/Z′0

142 fifj →W′+

144 fifj → R
The Z′0 of subprocess 141 contains the full γ∗/Z0/Z′0 interference structure for cou-

plings to fermion pairs. With MSTP(44) it is possible to pick only a subset, e.g. only the
pure Z′0 piece. The couplings of the Z′0 to quarks and leptons in the first generation can
be set via PARU(121) - PARU(128), in the second via PARJ(180) - PARJ(187) and in
the third via PARJ(188) - PARJ(195). The eight numbers correspond to the vector and
axial couplings of down-type quarks, up-type quarks, leptons and neutrinos, respectively.
The default corresponds to the same couplings as that of the Standard Model Z0, with
axial couplings af = ±1 and vector couplings vf = af − 4ef sin2θW . This implies a reso-
nance width that increases linearly with the mass. By a suitable choice of the parameters,
it is possible to simulate just about any imaginable Z′0 scenario, with full interference ef-
fects in cross sections and decay angular distributions. Note that also the possibility of a
generation dependence has been included for the Z′0, which is normally not the case.

The coupling to the decay channel Z′0 → W+W− is regulated by PARU(129) -
PARU(130). The former gives the strength of the coupling, which determines the rate. The
default, PARU(129)=1., corresponds to the ‘extended gauge model’ of [Alt89], wherein the
Z0 → W+W− coupling is used, scaled down by a factor m2

W/m
2
Z′ , to give a Z′0 partial

width into this channel that again increases linearly. If this factor is cancelled, by having
PARU(129) proportional to m2

Z′/m
2
W, one obtains a partial width that goes like the fifth

146

power of the Z′0 mass, the ‘reference model’ of [Alt89]. In the decay angular distribution
one could imagine a much richer structure than is given by the one parameter PARU(130).

Other decay modes include Z′0 → Z0h0, predicted in left–right symmetric models (see
PARU(145) and ref. [Coc91]), and a number of other Higgs decay channels, see sections
8.5.3 and 8.5.4.

The W′± of subprocess 142 so far does not contain interference with the Standard
Model W± — in practice this should not be a major limitation. The couplings of the W′

to quarks and leptons are set via PARU(131) - PARU(134). Again one may set vector
and axial couplings freely, separately for the qq′ and the `ν` decay channels. The defaults
correspond to the V − A structure of the Standard Model W, but can be changed to
simulate a wide selection of models. One possible limitation is that the same Cabibbo–
Kobayashi–Maskawa quark mixing matrix is assumed as for the standard W.

The coupling W′ → Z0W can be set via PARU(135) - PARU(136). Further comments
on this channel as for Z′; in particular, default couplings again agree with the ‘extended
gauge model’ of [Alt89]. A W′ → Wh0 channel is also included, in analogy with the
Z′0 → Z0h0 one, see PARU(146).

The R boson (particle code 41) of subprocess 144 represents one possible scenario for a
horizontal gauge boson, i.e. a gauge boson that couples between the generations, inducing
processes like sd→ R0 → µ−e+. Experimental limits on flavour-changing neutral currents
forces such a boson to be fairly heavy. The model implemented is the one described in
[Ben85a].

A further example of new gauge groups follows right after this.

8.6.3 Left–Right Symmetry and Doubly Charged Higgses

ISUB = 341 `i`j → H±±L
342 `i`j → H±±R
343 `iγ → H±±L e∓

344 `iγ → H±±R e∓

345 `iγ → H±±L µ∓

346 `iγ → H±±R µ∓

347 `iγ → H±±L τ∓

348 `iγ → H±±R τ∓

349 fifi → H++
L H−−L

350 fifi → H++
R H−−R

351 fifj → fkflH
±±
L (WW fusion)

352 fifj → fkflH
±±
R (WW fusion)

353 fifi → Z0
R

354 fifi →W±
R

At current energies, the world is lefthanded, i.e. the Standard Model contains an
SU(2)L group. Left–right symmetry at some larger scale implies the need for an SU(2)R
group. Thus the particle content is expanded by righthanded Z0

R and W±
R and righthanded

neutrinos. The Higgs fields have to be in a triplet representation, leading to doubly-
charged Higgs particles, one set for each of the two SU(2) groups. Also the number of
neutral and singly-charged Higgs states is increased relative to the Standard Model, but a
search for the lowest-lying states of this kind is no different from e.g. the freedom already
accorded by the MSSM Higgs scenarios.

Pythia implements the scenario of [Hui97]. The expanded particle content with
default masses is:

147

KF name m (GeV)
9900012 νRe 500
9900014 νRµ 500
9900016 νRτ 500
9900023 Z0

R 1200
9900024 W+

R 750
9900041 H++

L 200
9900042 H++

R 200
The main decay modes implemented are
H++
L →W+

LW+
L , `

+
i `

+
j (i, j generation indices); and

H++
R →W+

RW+
R, `

+
i `

+
j .

The physics parameters of the scenario are found in PARP(181) - PARP(192).
The W±

R has been implemented as a simple copy of the ordinary W±, with the ex-
ception that it couple to righthanded neutrinos instead of the ordinary lefthanded ones.
Thus the standard CKM matrix is used in the quark sector, and the same vector and
axial coupling strengths, leaving only the mass as free parameter. The Z0

R implemen-
tation (without interference with γ or the ordinary Z0) allows decays both to left- and
righthanded neutrinos, as well as other fermions, according to one specific model ansatz
[Fer00]. Obviously both the W±

R and the Z0
R descriptions are likely to be simplifications,

but provide a starting point.
The righthanded neutrinos can be allowed to decay further [Riz81, Fer00]. Assuming

them to have a mass below that of W+
R, they decay to three-body states via a virtual

W+
R, νR` → `+ff

′
and νR` → `−ff ′, where both choices are allowed owing to the Majorana

character of the neutrinos. If there is a significant mass splitting, also sequential decays
νR` → `±`′∓ν ′R` are allowed. Currently the decays are isotropic in phase space. If the
neutrino masses are close to or above the WR ones, this description has to be substituted
by a sequential decay via a real WR (not implemented, but actually simpler to do than
the one here).

8.6.4 Leptoquarks

MSEL = 25
ISUB = 145 qi`j → LQ

162 qg→ `LQ

163 gg→ LQLQ

164 qiqi → LQLQ

Several processes that can generate a leptoquark have been included. Currently only
one leptoquark has been implemented, as particle 42, denoted LQ. The leptoquark is
assumed to carry specific quark and lepton quantum numbers, by default u quark plus
electron. These flavour numbers are conserved, i.e. a process such as ue− → LQ → dνe

is not allowed. This may be a bit restrictive, but it represents one of many leptoquark
possibilities. The spin of the leptoquark is assumed to be zero, i.e. its decay is isotropical.

Although only one leptoquark is implemented, its flavours may be changed arbitrarily
to study the different possibilities. The flavours of the leptoquark are defined by the
quark and lepton flavours in the decay mode list. Since only one decay channel is allowed,
this means that the quark flavour is stored in KFDP(MDCY(42,2),1) and the lepton one
in KFDP(MDCY(42,2),2). The former must always be a quark, while the latter could
be a lepton or an antilepton; a charge-conjugate partner is automatically defined by the
program. At initialization, the charge is recalculated as a function of the flavours defined;
also the leptoquark name is redefined to be of the type ’LQ (q)(l)’, where actual quark
(q) and lepton (l) flavours are displayed.

The LQ → q` vertex contains an undetermined Yukawa coupling strength, which

148

affects both the width of the leptoquark and the cross section for many of the production
graphs. This strength may be changed in PARU(151). The definition of PARU(151)
corresponds to the k factor of [Hew88], i.e. to λ2/(4παem), where λ is the Yukawa coupling
strength of [Wud86]. Note that PARU(151) is thus quadratic in the coupling.

The leptoquark is likely to be fairly long-lived, in which case it has time to fragment
into a mesonic- or baryonic-type state, which would decay later on. This is a bit tedious to
handle; therefore the leptoquark is always assumed to decay before fragmentation. This
may give some imperfections in the event generation, but should not be off by much in
the final analysis [Fri97].

Inside the program, the leptoquark is treated as a resonance. Since it carries colour,
some extra care is required. In particular, it is not allowed to put the leptoquark stable,
by modifying either MDCY(42,1) or MSTP(41): then the leptoquark would be handed
undecayed to Pythia, which would try to fragment it (as it does with any other coloured
object), and most likely crash.

8.6.5 Compositeness and anomalous couplings

ISUB = 11 fifj → fifj (QCD)

12 fifi → fkfk
20 fifj → γW+

165 fifi → fkfk (via γ∗/Z0)

166 fifj → fkf l (via W±)
Some processes have been set up to allow anomalous coupling to be introduced, in

addition to the Standard Model ones. These can be switched on by MSTP(5)≥ 1; the
default MSTP(5)=0 corresponds to the Standard Model behaviour.

In processes 11 and 12, the quark substructure is included in the left–left isoscalar
model [Eic84, Chi90] for MSTP(5)=1, with compositeness scale Λ given in PARU(155)
(default 1000 GeV) and sign η of interference term in PARU(156) (default +1; only other
alternative −1). The above model assumes that only u and d quarks are composite
(at least at the scale studied); with MSTP(5)=2 compositeness terms are included in the
interactions between all quarks.

The processes 165 and 166 are basically equivalent to 1 and 2, i.e. γ∗/Z0 and W±

exchange, respectively, but a bit less fancy (no mass-dependent width etc.). The reason for
this duplication is that the resonance treatment formalism of processes 1 and 2 could not
easily be extended to include other than s-channel graphs. In processes 165 and 166, only
one final-state flavour is generated at the time; this flavour should be set in KFPR(165,1)
and KFPR(166,1), respectively. For process 166 one gives the down-type flavour, and
the program will associate the up-type flavour of the same generation. Defaults are
11 in both cases, i.e. e+e− and e+νe (e−νe) final states. While MSTP(5)=0 gives the
Standard Model results, MSTP(5)=1 contains the left–left isoscalar model (which does not
affect process 166), and MSTP(5)=3 the helicity-non-conserving model (which affects both)
[Eic84, Lan91]. Both models above assume that only u and d quarks are composite; with
MSTP(5)= 2 or 4, respectively, contact terms are included for all quarks in the initial state.
Parameters are PARU(155) and PARU(156), as above.

Note that processes 165 and 166 are book-kept as 2→ 2 processes, while 1 and 2 are
2 → 1 ones. This means that the default Q2 scale in parton distributions is p2

⊥ for the
former and ŝ for the latter. To make contact between the two, it is recommended to set
MSTP(32)=4, so as to use ŝ as scale also for processes 165 and 166.

In process 20, for Wγ pair production, it is possible to set an anomalous magnetic
moment for the W in PARU(153) (= η = κ−1; where κ = 1 is the Standard Model value).
The production process is affected according to the formulae of [Sam91], while W decay
currently remains unaffected. It is necessary to set MSTP(5)=1 to enable this extension.

149

8.6.6 Excited fermions

ISUB = 146 eγ → e∗

147 dg→ d∗

148 ug→ u∗

167 qiqj → qkd
∗

168 qiqj → qku
∗

169 qiqi → e±e∗∓

Compositeness scenarios may also give rise to sharp resonances of excited quarks and
leptons. An excited copy of the first generation is implemented, consisting of spin 1/2
particles d∗ (code 4000001), u∗ (4000002), e∗ (4000011) and ν∗e (4000012).

The current implementation contains gauge interaction production by quark–gluon
fusion (processes 147 and 148) or lepton–photon fusion (process 146) and contact interac-
tion production by quark–quark or quark–antiquark scattering (processes 167–169) . The
couplings f , f ′ and fs to the SU(2), U(1) and SU(3) groups are stored in PARU(157)
- PARU(159), the scale parameter Λ in PARU(155); you are also expected to change the
f∗ masses in accordance with what is desired — see [Bau90] for details on conventions.
Decay processes are of the types q∗ → qg, q∗ → qγ, q∗ → qZ0 or q∗ → q′W±, with the
latter three (two) available also for e∗ (ν∗e). A non-trivial angular dependence is included
in the q∗ decay for processes 146–148, but has not been included for processes 167–169.

8.6.7 Technicolor

MSEL = 50
ISUB = 149 gg→ ηtc

191 fifi → ρ0
tc

192 fifj → ρ+
tc

193 fifi → ω0
tc

194 fifi → fkfk
195 fifj → fkf l
361 fifi →W+

L W−
L

362 fifi →W±
Lπ
∓
tc

363 fifi → π+
tcπ
−
tc

364 fifi → γπ0
tc

365 fifi → γπ′0tc
366 fifi → Z0π0

tc

367 fifi → Z0π′0tc
368 fifi →W±π∓tc
370 fifj →W±

L Z0
L

371 fifj →W±
Lπ

0
tc

372 fifj → π±tcZ0
L

373 fifj → π±tcπ0
tc

374 fifj → γπ±tc
375 fifj → Z0π±tc
376 fifj →W±π0

tc

377 fifj →W±π′0tc
The technicolor (TC) scenario offers an alternative to the ordinary Higgs mechanism

for giving masses to the W and Z, by using strong dynamics for the electroweak symmetry
breaking. The technicolor gauge group is an analogue of QCD, with a rich spectrum of

150

technimesons made out of techniquarks. An effective Lagrangian can be derived for the
lightest resonances. In TC, the breaking of a chiral symmetry in the new, strongly inter-
acting gauge theory generates the Goldstone bosons necessary for electroweak symmetry
breaking. Thus three of the technipions assume the rôle of the longitudinal components
of the W and Z bosons, but many other states remain as separate particles: technipions
(πtc), technirhos (ρtc), techniomegas (ωtc), etc. The mass hierarchies, however, are unlike
QCD because of the behaviour of the gauge couplings in realistic models of extended
TC (ETC). The difficulties of ETC in explaining the top quark mass while suppressing
FCNC’s is circumvented by the addition of topcolor interactions, which provide the bulk
of mt.

No fully realistic model has been found so far, however, so any phenomenology has
to be taken as indicative only. As experimental constraints have accumulated, also the
sophistication of model building has had to follow suit. The processes represented here
correspond to several generations of development. Thus processes 149, 191, 192 and 193
should nowadays be considered as obsolete and superseded by the other processes 194,
195 and 361–377.

In section 8.5.2 it is discussed how processes 71–77, in some of its options, can be used
to simulate a scenario with techni-ρ resonances in longitudinal gauge boson scattering.

Process 149 is that of the production of a techni-η, particle code KF = 3000331. This
particle has zero spin, is a singlet under electroweak SU(2)×U(1), but carries octet
colour charge. It is one of the possible techni-π particles; the name techni-η is part of a
sub-classification not used by all authors.

The techni-η couples to ordinary fermions according to the fermion squared mass. The
dominant decay mode is therefore tt, if allowed. The coupling to a gg state is roughly
comparable with that to bb. Production at hadron colliders is therefore predominantly
through gg fusion, as implemented in process 149.

The two main free parameters are the techni-η mass and the decay constant Fπ. The
latter appears inversely quadratically in all the partial widths. Also the total cross section
is affected, since the cross section is proportional to the gg partial width. Fπ is stored
in PARP(46) and has the default value 123 GeV, which is the number predicted in some
models.

All the other processes refer to ETC models, where hard mass contributions to tech-
nipion masses make decays like ρtc → πtcπtc kinematically inaccessible. Instead, decays
like ρew

tc → πew
tc WL, for example, dominate, where ew denotes constituent technifermions

with only electroweak quantum numbers and WL is a longitudinal W bosons. As a result,
the ew technirho and techniomega tend to have small total widths.

Effective couplings are derived in the valence technifermion approximation, and the
techniparticle decays can be calculated directly [Eic96, Lan99]. Technirhos and tech-
niomegas are produced through kinematic mixing with gauge bosons, leading to final
states containing Standard Model particles and/or pseudo-Goldstone bosons (technipi-
ons).

As an additional possibility, SUc(3) non-singlet states are included along with the
coloron of topcolor assisted technicolor. In this case, coloured technirhos (and the coloron)
can have substantial total widths and enhanced couplings to bottom and top quarks.

The expanded particle content with default masses is:
KF name m (GeV)
3000111 π0

tc 110
3000211 π+

tc 110
3000221 π′0tc 110
3000113 ρ0

tc 210
3000213 ρ+

tc 210
3000223 ω0

tc 210
The ρtc and ω0

tc masses are not pole masses. Parameters regulating production and decay

151

rates are stored in PARP(137) - PARP(150).
Processes 191, 192 and 193 are based on s-channel production of the respective res-

onance [Eic96]. All decay modes implemented can be simulated separately or in com-
bination, in the standard fashion. These include pairs of fermions, of gauge bosons, of
technipions, and of mixtures of gauge bosons and technipions

Process 194 is intended to more accurately represent the mixing between the γ∗, Z0, ρ0
tc

and ω0
tc particles in the Drell-Yan process [Lan99]. Process 195 is the analogous charged

channel process including W± and ρ±tc mixing. By default, the final state fermions are e+e−

and e±νe, respectively. These can be changed through the parameters KFPR(194,1) and
KFPR(195,1), respectively (where the KFPR value should represent a charged fermion).

Processes 361–368 give the pair production of technipions and gauge bosons by ρ0
tc/ω

0
tc

exchange, with processes 370–377 corresponding pair production by ρ±tc exchange. It
is worth mentioning that the decay products of the W and Z bosons are distributed
according to phase space, regardless of their designation as longitudinal WL/ZL or ordinary
transverse gauge bosons. The exact meaning of longitudinal or transverse polarizations
in this case requires more thought from the side of the model authors.

The possibility of coloured technihadrons has been included, specifically for the case
of Topcolor assisted Technicolor. The main effects of these particles are indirect, in that
they modify the underlying two-parton QCD processes much like compositeness terms,
except that resonances are visible. More details will be forthcoming. The parameter
dependence of the ‘model’ is included in the tangent of the mixing angle PARP(155)
and a mass parameter PARP(156). Similar to compositeness, the effects of these colored
technihadrons are simulated by setting MSTP(5)=5.

8.6.8 Extra Dimensions

ISUB = 391 ff → G∗

392 gg→ G∗

393 qq→ gG∗

394 qg→ qG∗

395 gg→ gG∗

In recent years, the area of observable consequences of extra dimensions has attracted
a strong interest. The field is still in rapid development, so there still does not exist a
‘standard phenomenology’. The topic is also fairly new in Pythia, and currently only a
first scenario is available.

The G∗, temporarily introduced as new particle code 41, is intended to represent the
lowest excited graviton state in a Randall-Sundrum scenario [Ran99] of extra dimensions.
The lowest-order production processes by fermion or gluon fusion are found in 391 and
392. The further processes 393–395 are intended for the high-p⊥ tail in hadron colliders.
As usual, it would be double-counting to have both sets of processes switched on at the
same time. Processes 391 and 392, with initial-state showers switched on, are appropriate
for the full cross section at all p⊥ values, and gives a reasonable description also of the
high-p⊥ tail. Processes 393–395 could be useful e.g. for the study of invisible decays of
the G∗, where a large p⊥ imbalance would be required. It also serves to test/confirm the
shower expectations of different p⊥ spectra for different production processes [Bij01].

Decay channels of the G∗ to ff, gg, γγ, Z0Z0 and W+W− contribute to the total
width. The correct angular distributions are included for decays to a fermion pair in the
lowest-order processes, whereas other decays currently are taken to be isotropic.

The G∗ mass is to be considered a free parameter. The other degree of freedom in this
scenario is a dimensionless coupling, see PARP(50).

152

8.7 Supersymmetry

MSEL = 39–45
ISUB = 201–296 (see tables at the beginning of the chapter)

Pythia simulates the Minimal Supersymmetric Standard Model (MSSM), based on
an effective Lagrangian of softly-broken Susy with parameters defined at the weak scale,
which is typically between mZ and 1 TeV. The MSSM particle spectrum is minimal in the
sense that it includes only the partners of all Standard Model particles (presently without
massive neutrinos), two Higgs doublets with partners, and the gravitino.

Each SM fermion has a scalar partner with the same quantum numbers. For counting
purposes, the fermion states ψL and ψR are separate particles with scalar partners φL and
φR. Each SM gauge boson has a fermion partner with the same quantum numbers. The
Higgs sector is extended to two complex scalar doublets — one Higgs Hu which couples
only to up-type fermions and one Hd which couples only to down-type fermions — leading
to 3 additional physical Higgs bosons H0, A0 and H± to complement the SM Higgs h0.
Fermion higgsino partners are added for the two scalar doublets. Additionally, a light
gravitino G̃ is included to allow studies of gauge mediated dynamical Susy breaking
[Din96].

Because of the large Yukawa couplings and the running masses for coloured particles,
the interaction and mass eigenstates for the third generation sfermions can be significantly
mixed. We denote the top and bottom squark mass eigenstates t̃1 ,̃t2,b̃1, and b̃2 to distin-
guish them from the nearly degenerate eigenstates for the lighter squarks. In addition,
the tau slepton mass eigenstates are τ̃1 and τ̃2. The subscript 1 or 2 refers to the lightest
and heaviest state respectively. In SUGRA inspired models, in the absence of mixing
so that interaction eigenstates are the same as mass eigenstates, the right eigenstate is
lighter than the left. In this case, for example, b̃1 = b̃R and b̃2 = b̃L. For completeness,
we include the sterile ν̃R particles. The mixing of the partners to the electroweak gauge
bosons (gauginos) and the two Higgs doublets (higgsinos) lead to the mass eigenstates for
neutralino χ0

i and chargino χ̃±i particles.
The particle partners and KF codes are listed in Table 13. Note that, at times, an-

tiparticles of scalar particles are denoted by ∗, i.e. t̃∗ rather than the more correct but

cumbersome t̃ or t̃.
Once the parameters of the softly-broken Susy Lagrangian are specified, the inter-

actions are fixed, and the sparticle masses can be calculated [Hab85]. The masses of
the scalar partners to fermions, sfermions, depend on soft scalar masses, trilinear cou-
plings, the Higgsino mass µ, and tan β, the ratio of Higgs vacuum expectation values
〈Hu〉/〈Hd〉. The masses of the fermion partners to the gauge and Higgs bosons, the
neutralinos and charginos, depend on soft gaugino masses, µ, and tan β. Finally, the
properties of the Higgs scalar sector is calculated from the input pseudoscalar Higgs bo-
son mass mA, tan β, µ, trilinear couplings and the sparticle properties in an effective
potential approach [Car95]. Of course, these calculations also depend on SM parameters
(mt,mZ, αs, etc.). Any modifications to these quantities from virtual MSSM effects are
not taken into account. In principle, the sparticle masses also acquire loop corrections
that depend on all MSSM masses.

Several models exist for deriving the rich set of directly measurable mass and mixing
parameters from the assumed soft Susy breaking scenario with a much smaller set of free
parameters. One example is Supergravity (SUGRA) inspired models, where the num-
ber of free parameters is reduced by imposing universality and exploiting the apparent
unification of gauge couplings. Five parameters fixed at the gauge coupling unification
scale, tan β,M0,m1/2, A0, and sign(µ), are then related to the mass parameters at the
scale of EWSB by renormalization group equations (see e.g. [Pie97]). Isasusy/Isajet
[Bae93] and Susygen [Kat98] numerically solve these equations to determine the mass
parameters. Alternatively, they can input a general set of parameters. Pythia operates

153

in the second manner, with a slightly more general set of input parameters. There are
three reasons for this: (1) programs already exist to calculate the SUGRA inspired mass
parameters, (2) approximate analytic formulae [Dre95] also exist which reproduce the
output of Isasusy within ' 10%, and (3) we desire to study a much richer phenomenol-
ogy than that possible in SUGRA inspired models. The Pythia input parameters are
described in detail later, in section 9.5.

R-parity conservation is assumed (at least on the time and distance scale of a typ-
ical collider experiment), and only lowest order, sparticle pair production processes are
included. Only those processes with e+e−, µ+µ−, or quark and gluon initial states are
simulated. Tables 21, 22 and 23 list available Susy processes. In processes 210 and 213,
˜̀ refers to both ẽ and µ̃. For ease of readability, we have removed the subscript L on ν̃.
t̃it̃
∗
i , τ̃iτ̃

∗
j and τ̃iν̃

∗
τ production correctly account for sfermion mixing. Several processes are

conspicuously absent from the table. For example, processes 255 and 257 would simulate
the associated production of right handed squarks with charginos. Since the right handed
squark only couples to the higgsino component of the chargino, the interaction strength
is proportional to the quark mass, so these processes can be ignored.

Likewise, only R-parity conserving decays are allowed, so that one sparticle is stable,
either the lightest neutralino, the gravitino, or a sneutrino. Susy decays of the top quark
are included, but all other SM particle decays are unaltered.

The decays of superpartners are calculated using the formulae of refs. [Gun88, Bar86a,
Bar86b, Bar95]. All decays are spin averaged. For simplicity, the kinematics of three body
decays of neutralinos, charginos, and the gluino are sampled using only the phase space
weight. Decays involving b̃ and t̃ use the formulae of [Bar95], so they are valid for large
values of tan β. The one loop decays χ̃j → χ̃iγ and t̃→ cχ̃1 are also included.

One difference between the Susy simulation and the other parts of the program is
that it is not beforehand known which sparticles may be stable. Normally this would
mean either the χ̃0

1 or the gravitino G̃, but in principle also other sparticles could be
stable. The ones found to be stable have their MWID(KC) and MDCY(KC,1) values set zero
at initialization. If several PYINIT calls are made in the same run, with different Susy
parameters, the ones set zero above are not necessarily set back to nonzero values, since
most original values are not saved anywhere. As an exception to this rule, the PYMSIN
Susy initialization routine, called by PYINIT, does save and restore the MWID(KC) and
MDCY(KC,1) values of the lightest Susy particle. It is therefore possible to combine several
PYINIT calls in a single run, provided that only the lightest Susy particle is stable. If
this is not the case, MWID(KC) and MDCY(KC,1) values may have to be reset by hand, or
else some particles that ought to decay will not do that.

Various improvements to the simulation are being implemented in stages. Some of
these can have a significant impact on the collider phenomenology. Among these are:
the generalization to complex-valued soft Susy-breaking parameters in the neutralino
and chargino sector; the same in the Higgs sector, which removes the possibility of CP-
even or CP-odd labels; the calculation of neutralino and chargino decay rates which are
accurate for large tan β; and matrix element weighting of particle distributions in three-
body decays.

Recently, several improvements have been introduced to the supersymmetric machin-
ery:
• Complex phases in the neutralino, chargino, and gluino sector. The parameters M1,
M2, M3, and µ (specifically RMSS(1) - RMSS(4)) now refer only to the modulus of
these parameters. Phases are specified by the parameters RMSS(30) - RMSS(33),
respectively. Chargino and neutralino masses and mixing angles now differ from
the case with vanishing phases, and the production cross sections and decay rates
including pairs of neutralinos and charginos have been modified accordingly. Gluino
decays to neutralinos and charginos are also affected (but the effect on gluino +
neutralino/chargino production has not yet been simulated).

154

The PYSSMT commonblock has been expanded to
COMMON/PYSSMT/ZMIX(4,4),UMIX(2,2),VMIX(2,2),SMZ(4),SMW(2),

&SFMIX(16,4),ZMIXI(4,4),UMIXI(2,2),VMIXI(2,2)

where ZMIX, UMIX, VMIX give the real and ZMIXI, UMIXI, VMIXI the imaginary
parts of the complex mixing matrices.
• Matrix Element weighting in 3-body sparticle decays. This replaces the older ap-

proach based purely on phase space. The matrix element includes the dependence
on complex phases.
• Large tan β corrections to Higgs boson properties have been included. The array

values RMSS(40) and RMSS(41) are used for temporary storage of the corrections
∆mt and ∆mb. The updated version of SubHpole, written by Carena et al, also
includes some bug fixes, so that it is generally better behaved.
• More flexibility in the treatment of stops, sbottoms and staus. With the flag
IMSS(5)=1, the properties of the third generation sparticles can be specified by their
mixing angle and mass eigenvalues (instead of being derived from the soft Susy-
breaking parameters). The parameters RMSS(26) - RMSS(28) specify the mixing
angle (in radians) for the sbottom, stop, and stau. The parameters RMSS(10) -
RMSS(14) specify the two stop masses, the one sbottom mass (the other being fixed
by the other parameters) and the two stau masses. Note that the masses RMSS(10),
RMSS(11) and RMSS(13) correspond to the left-left entries of the diagonalized ma-
trices, while RMSS(12) and RMSS(14) correspond to the right-right entries. Note
that these entries need not be ordered in mass. Also, one technical change has
arisen with the stau sector. Previously, it was assumed that the soft Susy-breaking
parameters associated with the stau included D-terms. This is no longer the case,
and is more consistent with the treatment of the stop and sbottom.

8.7.1 SUSY examples

The Susy routines and commonblock variables are described in section 9.5. To illustrate
the usage of the switches and parameters, we give three simple examples.

Example 1: Light Stop
The first example is an MSSM model with a light neutralino χ̃1 and a light stop t̃1, so
that t→ t̃1χ̃1 can occur. The input parameters are
IMSS(1)=1, RMSS(1)=70., RMSS(2)=70., RMSS(3)=225., RMSS(4)=-40., RMSS(5)=1.5,
RMSS(6)=100., RMSS(7)=125., RMSS(8)=250., RMSS(9)=250., RMSS(10)=1500.,
RMSS(11)=1500., RMSS(12)=-128., RMSS(13)=100., RMSS(14)=125., RMSS(15)=800.,
RMSS(16)=800., RMSS(17)=0., and RMSS(19)=400.0.
The top mass is fixed at 175 GeV, PMAS(6,1)=175.0. The resulting model has Mt̃1

= 55
GeV and Mχ̃1 = 38 GeV. IMSS(1)=1 turns on the MSSM simulation. By default, there
are no intrinsic relations between the gaugino masses, so M1 = 70 GeV, M2 = 70 GeV,
and M3 = 225 GeV. The pole mass of the gluino is slightly higher than the parameter
M3, and the decay g̃→ t̃∗1t + t̃1t occurs almost 100% of the time.

Example 2: Approximate SUGRA
The second example is an approximate SUGRA model. The input parameters are
IMSS(1)=2, RMSS(1)=200., RMSS(4)=1., RMSS(5)=10., RMSS(8)=800., and
RMSS(16)=0.0.
The resulting model has Md̃L

= 901 GeV, MũR = 890 GeV, Mt̃1
= 538 GeV, MẽL = 814

GeV, Mg̃ = 560 GeV, Mχ̃1 = 80 GeV, Mχ̃±1
= 151 GeV, Mh = 110 GeV, and MA = 883

GeV. It corresponds to the choice M0=800 GeV, M1/2 =200 GeV, tan β = 10, A0 = 0, and
sign(µ) > 0. The output is similar to an Isasusy run, but there is not exact agreement.

Example 3: Isasusy Model
The final example demonstrates how to convert the output of an Isasusy run using the
same SUGRA inputs into the Pythia format. This assumes that you already made an

155

Isasusy run, e.g. with the equivalents of the input parameters above. From the output
of this run you can now extract those physical parameters that need to be handed to
Pythia, in the above example
IMSS(1)=1, IMSS(3)=1, RMSS(1)=83.81, RMSS(2)=168.90, RMSS(3)=581.83,
RMSS(4)=283.37, RMSS(5)=10., RMSS(6)=813.63, RMSS(7)=804.87, RMSS(8)=917.73,
RMSS(9)=909.89, RMSS(10)=772.87, RMSS(11)=901.52, RMSS(12)=588.33,
RMSS(13)=813.63, RMSS(14)=804.87, RMSS(15)=610.54, RMSS(16)=422.35,
RMSS(17)=600., and RMSS(19)=858.412.

8.7.2 Lepton number violation

The most general SUSY Lagrangian contains both lepton and baryon number violating
couplings, customarily forbidden by the introduction of R parity to avoid problems with
proton decay. This is not the only possible choice, but certainly the simplest. On the
other hand, the violation of baryon or lepton number is allowed without resulting in
proton decay, and both give rise to very distinct phenomenologies, most notably the
consequences of a decaying LSP and the removal of the cosmological constraint that the
LSP should be neutral.

In the current version of Pythia, decays of supersymmetric particles to SM parti-
cles via two different lepton number violating couplings can be invoked (Details about
the implementation and tests can be found in [Ska01], to which references concering L-
violation in Pythia can be made). These couplings, λ and λ′, correspond to the two
lepton number violating terms possible in the most general supersymmetric Lagrangian,
usually denoted LLE and LQD respectively. They are Yuakawa-type trilinear couplings
carrying three generation indices, i, j, and k. The LLE coupling (λijk) is antisymmetric
in i and j whereas no similar constraint applies to the LQD coupling (λ′ijk).

Complete matrix elements for all two-body sfermion and three-body neutralino and
chargino decays are included (as given in [Dre00]). Lepton number violating decays of the
gluino are not yet implemented. This should not lead to a large source of error since the
gluino, being heavy in most scenarios, often has a number of other, unsuppressed decay
modes available, keeping the probability that it branches into an L-violating mode small
as long as the L-violating couplings are small compared with the gauge couplings.

The existence of R-odd couplings also allows for single sparticle production, i.e. there
is no requirement that SUSY particles should be produced in pairs. These production
cross sections are likewise not yet included in the program. For low-mass sparticles, the
associated error is estimated to be negligible, as long as the L-violating couplings are
smaller than the gauge couplings. For higher mass sparticles, the reduction of the phase
space for pair production becomes an important factor, and single sparticle production
could dominate even for very small values of the L-violating couplings. The total SUSY
production cross sections, as calculated by Pythia in its current form are thus underes-
timated, possibly quite severely for heavy-mass sparticles.

Three possibilities exist for the initializations of the couplings. The first, selected
by setting IMSS(51)=1 for LLE and IMSS(52)=1 for LQD type couplings, sets all the
couplings, independent of generation, to a common value of 10−RMSS(51) or 10−RMSS(52), as
the case may be.

Setting IMSS(51)=2 and/or IMSS(52)=2 causes the couplings to be initialized (in
PYINIT) to so-called ‘natural’ generation-hierarchical values, as proposed in [Hin93].
These values, inspired by the structure of the Yukawa couplings in the SM, are defined
by:

|λijk|2 = (RMSS(51))2m̂eim̂ejm̂ek

|λ′ijk|2 = (RMSS(52))2m̂eim̂qjm̂dk
; m̂ ≡ m

v
=

m

126GeV
(141)

where mqj is the arithmetic mean of muj and mdj .

156

The third option available is to set IMSS(51)=3 and/or IMSS(52)=3, in which case
all the relevant couplings are zero by default (but the lepton number violating processes
are turned on) and the user is expected to enter all non-zero coupling values by hand.
RVLAM(i,j,k) contains the λijk and RVLAMP(i,j,k) contains the λ′ijk couplings.

8.8 Polarization

In most processes, incoming beams are assumed unpolarized. However, especially for e+e−

linear collider studies, polarized beams would provide further important information on
many new physics phenomena, and at times help to suppress backgrounds. Therefore a few
process cross sections are now available also for polarized incoming beams. The average
polarization of the two beams is then set by PARJ(131) and PARJ(132), respectively. In
some cases, noted below, MSTP(50) need also be switched on to access the formulae for
polarized beams.

Process 25, W+W− pair production, allows polarized incoming lepton beam particles.
The polarization effects are included both in the production matrix elements and in the
angular distribution of the final four fermions. Note that the matrix element used [Mah98]
is for on-shell W production, with a suppression factor added for finite width effects.
This polarized cross section expression, evaluated at vanishing polarization, disagrees
with the standard unpolarized one, which presumably is the more accurate of the two.
The difference can be quite significant below threshold and at very high energies. This
can be traced to the simplified description of off-shell W’s in the polarized formulae.
Good agreement is obtained either by switching off the W width with MSTP(42)=0 or by
restricting the W mass ranges (with CKIN(41) - CKIN(44)) to be close to on-shell. It is
therefore necessary to set MSTP(50)=1 to switch from the default standard unpolarized
formulae to the polarized ones.

Also many Susy production processes now include the effects from polarization of the
incoming fermion beams. This applies for scalar pair production, with the exception of
sneutrino pair production and h0A0 and H0A0 production, this omission being an oversight
at the time of this release, but easily remedied in the future.

The effect of polarized photons is included in the process γγ → FkFk, process 85. Here
the array values PARJ(131) and PARJ(132) are used to define the average longitudinal
polarization of the two photons.

8.9 Main Processes by Machine

In the previous section we have already commented on which processes have limited
validity, or have different meanings (according to conventional terminology) in different
contexts. Let us just repeat a few of the main points to be remembered for different
machines.

8.9.1 e+e− collisions

The main annihilation process is number 1, e+e− → Z0, where in fact the full γ∗/Z0

interference structure is included. This process can be used, with some confidence, for
c.m. energies from about 4 GeV upwards, i.e. at DORIS/CESR, PETRA/PEP, TRISTAN,
LEP, and any future linear colliders. (To get below 10 GeV, you have to change PARP(2),
however.) This is the default process obtained when MSEL=1, i.e. when you do not change
anything yourself.

Process 141 contains a Z′0, including full interference with the standard γ∗/Z0. With
the value MSTP(44)=4 in fact one is back at the standard γ∗/Z0 structure, i.e. the Z′0

piece has been switched off. Even so, this process may be useful, since it can simulate
e.g. e+e− → h0A0. Since the h0 may in its turn decay to Z0Z0, a decay channel of

157

the ordinary Z0 to h0A0, although physically correct, would be technically confusing. In
particular, it would be messy to set the original Z0 to decay one way and the subsequent
ones another. So, in this sense, the Z′0 could be used as a copy of the ordinary Z0, but
with a distinguishable label.

The process e+e− → Υ does not exist as a separate process in Pythia, but can be
simulated by using PYONIA, see section 6.2.

At LEP 2 and even higher energy machines, the simple s-channel process 1 loses out
to other processes, such as e+e− → Z0Z0 and e+e− → W+W−, i.e. processes 22 and 25.
The former process in fact includes the structure e+e− → (γ∗/Z0)(γ∗/Z0), which means
that the cross section is singular if either of the two γ∗/Z0 masses is allowed to vanish. A
mass cut therefore needs to be introduced, and is actually also used in other processes,
such as e+e− →W+W−.

For practical applications, both with respect to cross sections and to event shapes,
it is imperative to include initial-state radiation effects. Therefore MSTP(11)=1 is the
default, wherein exponentiated electron-inside-electron distributions are used to give the
momentum of the actually interacting electron. By radiative corrections to process 1,
such processes as e+e− → γZ0 are therefore automatically generated. If process 19 were
to be used at the same time, this would mean that radiation were to be double-counted.
In the alternative MSTP(11)=0, electrons are assumed to deposit their full energy in the
hard process, i.e. initial-state QED radiation is not included. This option is very useful,
since it often corresponds to the ‘ideal’ events that one wants to correct back to.

Resolved electrons also means that one may have interactions between photons. This
opens up the whole field of γγ processes, which is described in section 8.3. In particular,
with ’gamma/e+’,’gamma/e-’ as beam and target particles in a PYINIT call, a flux of
photons of different virtualities is convoluted with a description of direct and resolved
photon interaction processes, including both low-p⊥ and high-p⊥ processes. This machin-
ery is directed to the description of the QCD processes, and does e.g. not address the
production of gauge bosons or other such particles by the interactions of resolved pho-
tons. For the latter kind of applications, a simpler description of partons inside photons
inside electrons may be obtained with the MSTP(12)=1 options and e± as beam and target
particles.

The thrust of the Pythia programs is towards processes that involve hadron pro-
duction, one way or another. Because of generalizations from other areas, also a
few completely non-hadronic processes are available. These include Bhabha scattering,
e+e− → e+e− in process 10, and photon pair production, e+e− → γγ in process 18. How-
ever, note that the precision that could be expected in a Pythia simulation of those
processes is certainly far less than that of dedicated programs. For one thing, electroweak
loop effects are not included. For another, nowhere is the electron mass taken into account,
which means that explicit cut-offs at some minimum p⊥ are always necessary.

8.9.2 Lepton–hadron collisions

The main option for photoproduction and Deeply Inelastic Scattering (DIS) physics is
provided by the ’gamma/lepton’ option as beam or target in a PYINIT call, see section
8.3. The Q2 range to be covered, and other kinematics constraints, can be set by CKIN
values. By default, when the whole Q2 range is populated, obviously photoproduction
dominates.

The older DIS process 10, `q→ `′q′, includes γ0/Z0/W± exchange, with full interfer-
ence, as described in section 8.3.2. The Z0/W± contributions are not implemented in the
’gamma/lepton’ machinery. Therefore process 10 is still the main option for physics at
very high Q2, but has been superseded for lower Q2. Radiation off the incoming lepton leg
is included by MSTP(11)=1 and off the outgoing one by MSTJ(41)=2 (both are default).
Note that both QED and QCD radiation (off the e and the q legs, respectively) are al-

158

lowed to modify the x and Q2 values of the process, while the conventional approach in
the literature is to allow only the former. Therefore an option (on by default) has been
added to preserve these values by a post-facto rescaling, MSTP(23)=1. Further comments
on HERA applications are found in [Sjö92b].

8.9.3 Hadron–hadron collisions

The default is to include QCD jet production by 2→ 2 processes, see section 8.2.1. Since
the differential cross section is divergent for p⊥ → 0, a lower cut-off has to be introduced.
Normally that cut-off is given by the user-set p⊥min value in CKIN(3). If CKIN(3) is
chosen smaller than a given value of the order of 2 GeV (see PARP(81) and PARP(82)),
then low-p⊥ events are also switched on. The jet cross section is regularized at low p⊥, so
as to obtain a smooth joining between the high-p⊥ and the low-p⊥ descriptions, see further
section 11.2. As CKIN(3) is varied, the jump from one scenario to another is abrupt, in
terms of cross section: in a high-energy hadron collider, the cross section for jets down
to a p⊥min scale of a few GeV can well reach values much larger than the total inelastic,
non-diffractive cross section. Clearly this is nonsense; therefore either p⊥min should be
picked so large that the jet cross section be only a fraction of the total one, or else one
should select p⊥min = 0 and make use of the full description.

If one switches to MSEL=2, also elastic and diffractive processes are switched on, see
section 8.2.4. However, the simulation of these processes is fairly primitive, and should
not be used for dedicated studies, but only to estimate how much they may contaminate
the class of non-diffractive minimum bias events.

Most processes can be simulated in hadron colliders, since the bulk of Pythia pro-
cesses can be initiated by quarks or gluons. However, there are limits. Currently we in-
clude no photon or lepton parton distributions, which means that a process like γq→ γq
is not accessible. Further, the possibility of having Z0 and W± interacting in processes
such as 71–77 has been hardwired process by process, and does not mean that there is a
generic treatment of Z0 and W± distributions.

The emphasis in the hadron–hadron process description is on high energy hadron col-
liders. The program can be used also at fixed-target energies, but the multiple interaction
model for underlying events then breaks down and should not be used. The limit of ap-
plicability is somewhere at around 100 GeV. Only with the simpler model obtained for
MSTP(82)=1 can one go arbitrarily low.

159

9 The Process Generation Program Elements

In the previous two sections, the physics processes and the event-generation schemes of
Pythia have been presented. Here, finally, the event-generation routines and the common
block variables are described. However, routines and variables related to initial- and final-
state showers, beam remnants and underlying events, and fragmentation and decay are
relegated to subsequent sections on these topics.

In the presentation in this section, information less important for an efficient use of
Pythia has been put closer to the end. We therefore begin with the main event generation
routines, and follow this by the main common block variables.

It is useful to distinguish three phases in a normal run with Pythia. In the first
phase, the initialization, the general character of the run is determined. At a minimum,
this requires the specification of the incoming hadrons and the energies involved. At
the discretion of the user, it is also possible to select specific final states, and to make
a number of decisions about details in the subsequent generation. This step is finished
by a PYINIT call, at which time several variables are initialized in accordance with the
values set. The second phase consists of the main loop over the number of events, with
each new event being generated by a PYEVNT call. This event may then be analysed,
using information stored in some common blocks, and the statistics accumulated. In the
final phase, results are presented. This may often be done without the invocation of any
Pythia routines. From PYSTAT, however, it is possible to obtain a useful list of cross
sections for the different subprocesses.

9.1 The Main Subroutines

There are two routines that you must know: PYINIT for initialization and PYEVNT for the
subsequent generation of each new event. In addition, the cross section and other kinds of
information available with PYSTAT are frequently useful. The other two routines described
here, PYFRAM and PYKCUT, are of more specialized interest.

CALL PYINIT(FRAME,BEAM,TARGET,WIN)

Purpose: to initialize the generation procedure.
FRAME : a character variable used to specify the frame of the experiment. Upper-case

and lower-case letters may be freely mixed.
= ’CMS’ : colliding beam experiment in c.m. frame, with beam momentum in +z

direction and target momentum in −z direction.
= ’FIXT’ : fixed-target experiment, with beam particle momentum pointing in +z

direction.
= ’3MOM’ : full freedom to specify frame by giving beam momentum in P(1,1),

P(1,2) and P(1,3) and target momentum in P(2,1), P(2,2) and
P(2,3) in common block PYJETS. Particles are assumed on the mass
shell, and energies are calculated accordingly.

= ’4MOM’ : as ’3MOM’, except also energies should be specified, in P(1,4) and
P(2,4), respectively. The particles need not be on the mass shell; effec-
tive masses are calculated from energy and momentum. (But note that
numerical precision may suffer; if you know the masses the option ’5MOM’
below is preferable.)

= ’5MOM’ : as ’3MOM’, except also energies and masses should be specified, i.e the
full momentum information in P(1,1) - P(1,5) and P(2,1) - P(2,5)
should be given for beam and target, respectively. Particles need not be
on the mass shell. Space-like virtualities should be stored as −√−m2.

160

Especially useful for physics with virtual photons. (The virtuality could
be varied from one event to the next, but then it is convenient to initialize
for the lowest virtuality likely to be encountered.) Four-momentum and
mass information must match.

= ’USER’ : a run primarily intended to involve external, user-defined processes,
see subsection 9.9. Information on incoming beam particles and energies
is read from the HEPRUP common block. In this option, the BEAM, TARGET
and WIN arguments are dummy.

= ’NONE’ : there will be no initialization of any processes, but only of resonance
widths and a few other process-independent variables. Subsequent to
such a call, PYEVNT cannot be used to generate events, so this option is
mainly intended for those who will want to construct their own events
afterwards, but still want to have access to some of the Pythia facilities.
In this option, the BEAM, TARGET and WIN arguments are dummy.

BEAM, TARGET : character variables to specify beam and target particles. Upper-case
and lower-case letters may be freely mixed. An antiparticle can be denoted by
‘bar’ at the end of the name (‘∼’ is a valid alternative for reasons of backwards
compatibility). It is also possible to leave out the underscore (‘ ’) directly after
‘nu’ in neutrino names, and the charge for proton and neutron. The arguments
are dummy when the FRAME argument above is either ’USER’ or ’NONE’.

= ’e-’ : electron.
= ’e+’ : positron.
= ’nu e’ : νe.
= ’nu ebar’ : νe.
= ’mu-’ : µ−.
= ’mu+’ : µ+.
= ’nu mu’ : νµ.
= ’nu mubar’ : νµ.
= ’tau-’ : τ−.
= ’tau+’ : τ+.
= ’nu tau’ : ντ .
= ’nu taubar’ : ντ .
= ’gamma’ : photon (real, i.e. on the mass shell).
= ’gamma/e-’ : photon generated by the virtual-photon flux in an electron beam;

WIN below refers to electron, while photon energy and virtuality varies
between events according to what is allowed by CKIN(61) - CKIN(78).

= ’gamma/e+’ : as above for a positron beam.
= ’gamma/mu-’ : as above for a µ− beam.
= ’gamma/mu+’ : as above for a µ+ beam.
= ’gamma/tau-’ : as above for a τ− beam.
= ’gamma/tau+’ : as above for a τ+ beam.
= ’pi0’ : π0.
= ’pi+’ : π+.
= ’pi-’ : π−.
= ’n0’ : neutron.
= ’nbar0’ : antineutron.
= ’p+’ : proton.
= ’pbar-’ : antiproton.
= ’K+’ : K+ meson; since parton distributions for strange hadrons are not avail-

able, very simple and untrustworthy recipes are used for this and subse-
quent hadrons, see subsection 7.1.

= ’K-’ : K− meson.
= ’KS0’ : K0

S meson.

161

= ’KL0’ : K0
L meson.

= ’Lambda0’ : Λ baryon.
= ’Sigma-’ : Σ− baryon.
= ’Sigma0’ : Σ0 baryon.
= ’Sigma+’ : Σ+ baryon.
= ’Xi-’ : Ξ− baryon.
= ’Xi0’ : Ξ0 baryon.
= ’Omega-’ : Ω− baryon.
= ’pomeron’ : the pomeron IP; since pomeron parton distribution functions have

not been defined this option can not be used currently.
= ’reggeon’ : the reggeon IR, with comments as for the pomeron above.

WIN : related to energy of system, exact meaning depends on FRAME.
FRAME=’CMS’ : total energy of system (in GeV).
FRAME=’FIXT’ : momentum of beam particle (in GeV/c).
FRAME=’3MOM’, ’4MOM’, ’5MOM’ : dummy (information is taken from the P vec-

tors, see above).
FRAME=’USER’ : dummy (information is taken from the HEPRUP common block, see

above).
FRAME=’NONE’ : dummy (no information required).

CALL PYEVNT

Purpose: to generate one event of the type specified by the PYINIT call. (This is the
main routine, which calls a number of other routines for specific tasks.)

CALL PYSTAT(MSTAT)

Purpose: to print out cross-sections statistics, decay widths, branching ratios, status
codes and parameter values. PYSTAT may be called at any time, after the
PYINIT call, e.g. at the end of the run, or not at all.

MSTAT : specification of desired information.
= 1 : prints a table of how many events of the different kinds that have been

generated and the corresponding cross sections. All numbers already
include the effects of cuts required by you in PYKCUT.
Note that no errors are given on the cross sections. In most cases a
cross section is obtained by Monte Carlo integration during the course
of the run. (Exceptions include e.g. total and elastic hadron–hadron
cross sections, which are parameterized and thus known from the very
onset.) A rule of thumb would then be that the statistical error of a
given subprocess scales like δσ/σ ≈ 1/

√
n, where n is the number of

events generated of this kind. In principle, the numerator of this relation
could be decreased by making use of the full information accumulated
during the run, i.e. also on the cross section in those phase space points
that are eventually rejected. This is actually the way the cross section
itself is calculated. However, once you introduce further cuts so that
only some fraction of the generated events survive to the final analysis,
you would be back to the simple 1/

√
n scaling rule for that number of

surviving events. Statistical errors are therefore usually better evaluated
within the context of a specific analysis. Furthermore, systematic errors
often dominate over the statistical ones.
Also note that runs with very few events, in addition to having large
errors, tend to have a bias towards overestimating the cross sections.

162

In a typical case, the average cross section obtained with many runs
of only one event each may be twice that of the correct answer of a
single run with many events. The reason is a ‘quit while you are ahead’
phenomenon, that an upwards fluctuation in the differential cross section
in an early try gives an acceptable event and thus terminates the run,
while a downwards one leads to rejection and a continuation of the run.

= 2 : prints a table of the resonances defined in the program, with their par-
ticle codes (KF), and all allowed decay channels. (If the number of gen-
erations in MSTP(1) is 3, however, channels involving fourth-generation
particles are not displayed.) For each decay channel is shown the se-
quential channel number (IDC) of the Pythia decay tables, the decay
products (usually two but sometimes three), the partial decay width,
branching ratio and effective branching ratio (in the event some channels
have been excluded by you).

= 3 : prints a table with the allowed hard interaction flavours KFIN(I,J) for
beam and target particles.

= 4 : prints a table of the kinematical cuts CKIN(I) set by you in the current
run.

= 5 : prints a table with all the values of the status codes MSTP(I) and the
parameters PARP(I) used in the current run.

= 6 : prints a table of all subprocesses implemented in the program.
= 7 : prints two tables related to R-violating supersymmetry. The first is a

collection of semi-inclusive branching ratios where the entries have the
form ~chi 10 --> nu + q + q where a sum has been performed over
all lepton and quark flavours. In the rightmost coloumn of the table, the
number of modes that went into the sum is given. The purpose of this
table is to give a quick overview of the branching fractions, since there
are currently more than 1200 individual R-violating processes included
in the generator. Note that only the pure 1 → 3 parts of the 3-body
modes are included in this sum. If a process can also proceed via two
successive 1→ 2 branchings (i.e. the intermediate resonance is on shell)
the product of these branchings should be added to the number given
in this table. A small list at the bottom of the table shows the total
number of R-violating processes in the generator, the number with non-
zero branching ratios in the current run, and the number with branching
ratios larger than 10−3. The second table which is printed by this call
merely lists the R-violating λ, λ′, and λ′′ couplings.

CALL PYFRAM(IFRAME)

Purpose: to transform an event listing between different reference frames, if so desired.
The use of this routine assumes you do not do any boosts yourself.

IFRAME : specification of frame the event is to be boosted to.
= 1 : frame specified by you in the PYINIT call.
= 2 : c.m. frame of incoming particles.
= 3 : hadronic c.m. frame of lepton–hadron interaction events. Mainly in-

tended for Deeply Inelastic Scattering, but can also be used in photo-
production. Is not guaranteed to work with the ’gamma/lepton’ options,
however, and so of limited use. Note that both the lepton and any pho-
tons radiated off the lepton remain in the event listing, and have to be
removed separately if you only want to study the hadronic subsystem.

163

CALL PYKCUT(MCUT)

Purpose: to enable you to reject a given set of kinematic variables at an early stage of the
generation procedure (before evaluation of cross sections), so as not to spend
unnecessary time on the generation of events that are not wanted. The routine
will not be called unless you require is by setting MSTP(141)=1, and never if
‘minimum-bias’-type events (including elastic and diffractive scattering) are to
be generated as well. Furthermore it is never called for user-defined external
processes. A dummy routine PYKCUT is included in the program file, so as to
avoid unresolved external references when the routine is not used.

MCUT : flag to signal effect of user-defined cuts.
= 0 : event is to be retained and generated in full.
= 1 : event is to be rejected and a new one generated.

Remark : at the time of selection, several variables in the MINT and VINT arrays in
the PYINT1 common block contain information that can be used to make the
decision. The routine provided in the program file explicitly reads the variables
that have been defined at the time PYKCUT is called, and also calculates some
derived quantities. The information available includes subprocess type ISUB,
Ecm, ŝ, t̂, û, p̂⊥, x1, x2, xF, τ , y, τ ′, cos θ̂, and a few more. Some of these may
not be relevant for the process under study, and are then set to zero.

9.2 Switches for Event Type and Kinematics Selection

By default, if Pythia is run for a hadron collider, only QCD 2→ 2 processes are gener-
ated, composed of hard interactions above p⊥min =PARP(81), with low-p⊥ processes added
on so as to give the full (parameterized) inelastic, non-diffractive cross section. In an e+e−

collider, γ∗/Z0 production is the default, and in an ep one it is Deeply Inelastic Scattering.
With the help of the common block PYSUBS, it is possible to select the generation of an-
other process, or combination of processes. It is also allowed to restrict the generation to
specific incoming partons/particles at the hard interaction. This often automatically also
restricts final-state flavours but, in processes such as resonance production or QCD/QED
production of new flavours, switches in the Pythia program may be used to this end; see
section 14.4.

The CKIN array may be used to impose specific kinematics cuts. You should here be
warned that, if kinematical variables are too strongly restricted, the generation time per
event may become very long. In extreme cases, where the cuts effectively close the full
phase space, the event generation may run into an infinite loop. The generation of 2→ 1
resonance production is performed in terms of the ŝ and y variables, and so the ranges
CKIN(1) - CKIN(2) and CKIN(7) - CKIN(8) may be arbitrarily restricted without a
significant loss of speed. For 2→ 2 processes, cos θ̂ is added as a third generation variable,
and so additionally the range CKIN(27) - CKIN(28) may be restricted without any loss
of efficiency..

Effects from initial- and final-state radiation are not included, since they are not known
at the time the kinematics at the hard interaction is selected. The sharp kinematical cut-
offs that can be imposed on the generation process are therefore smeared, both by QCD
radiation and by fragmentation. A few examples of such effects follow.
• Initial-state radiation implies that each of the two incoming partons has a non-

vanishing p⊥ when they interact. The hard scattering subsystem thus receives a net
transverse boost, and is rotated with respect to the beam directions. In a 2 → 2
process, what typically happens is that one of the scattered partons receives an
increased p⊥, while the p⊥ of the other parton is reduced.
• Since the initial-state radiation machinery assigns space-like virtualities to the in-

164

coming partons, the definitions of x in terms of energy fractions and in terms of
momentum fractions no longer coincide, and so the interacting subsystem may re-
ceive a net longitudinal boost compared with näıve expectations, as part of the
parton-shower machinery.
• Initial-state radiation gives rise to additional jets, which in extreme cases may be

mistaken for either of the jets of the hard interaction.
• Final-state radiation gives rise to additional jets, which smears the meaning of the

basic 2 → 2 scattering. The assignment of soft jets is not unique. The energy of a
jet becomes dependent on the way it is identified, e.g. what jet cone size is used.
• The beam remnant description assigns primordial k⊥ values, which also gives a

net p⊥ shift of the hard-interaction subsystem; except at low energies this effect
is overshadowed by initial-state radiation, however. Beam remnants may also add
further activity under the ‘perturbative’ event.
• Fragmentation will further broaden jet profiles, and make jet assignments and energy

determinations even more uncertain.
In a study of events within a given window of experimentally defined variables, it is up
to you to leave such liberal margins that no events are missed. In other words, cuts have
to be chosen such that a negligible fraction of events migrate from outside the simulated
region to inside the interesting region. Often this may lead to low efficiency in terms of
what fraction of the generated events are actually of interest to you. See also section 3.6.

In addition to the variables found in PYSUBS, also those in the PYPARS common block
may be used to select exactly what one wants to have simulated. These possibilities will
be described in the following section.

The notation used above and in the following is that ‘̂ ’ denotes internal variables in
the hard scattering subsystem, while ‘∗’ is for variables in the c.m. frame of the event as
a whole.

COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

Purpose: to allow you to run the program with any desired subset of processes, or restrict
flavours or kinematics. If the default values, denoted below by (D=. . .), are
not satisfactory, they must be changed before the PYINIT call.

MSEL : (D=1) a switch to select between full user control and some preprogrammed
alternatives.

= 0 : desired subprocesses have to be switched on in MSUB, i.e. full user control.
= 1 : depending on incoming particles, different alternatives are used.

Lepton–lepton: Z or W production (ISUB = 1 or 2).
Lepton–hadron: Deeply Inelastic Scattering (ISUB = 10; this option is
now out of date for most applications, superseded by the ’gamma/lepton’
machinery).
Hadron–hadron: QCD high-p⊥ processes (ISUB = 11, 12, 13, 28, 53,
68); additionally low-p⊥ production if CKIN(3)<PARP(81) or PARP(82),
depending on MSTP(82) (ISUB = 95). If low-p⊥ is switched on, the other
CKIN cuts are not used.
A resolved photon counts as hadron. When the photon is not resolved,
the following cases are possible.
Photon–lepton: Compton scattering (ISUB = 34).
Photon–hadron: photon-parton scattering (ISUB = 33, 34, 54).
Photon–photon: fermion pair production (ISUB = 58).
When photons are given by the ’gamma/lepton’ argument in the PYINIT
call, the outcome depends on the MSTP(14) value. Default is a mixture
of many kinds of processes, as described in section 8.3.

165

= 2 : as MSEL = 1 for lepton–lepton, lepton–hadron and unresolved photons.
For hadron–hadron (including resolved photons) all QCD processes, in-
cluding low-p⊥, single and double diffractive and elastic scattering, are
included (ISUB = 11, 12, 13, 28, 53, 68, 91, 92, 93, 94, 95). The CKIN
cuts are here not used.
For photons given with the ’gamma/lepton’ argument in the PYINIT call,
the above processes are replaced by other ones that also include the pho-
ton virtuality in the cross sections. The principle remains to include both
high- and low-p⊥ processes, however.

= 4 : charm (cc) production with massive matrix elements (ISUB = 81, 82, 84,
85).

= 5 : bottom (bb) production with massive matrix elements (ISUB = 81, 82,
84, 85).

= 6 : top (tt) production with massive matrix elements (ISUB = 81, 82, 84,
85).

= 7 : fourth generation b′ (b′b
′
) production with massive matrix elements

(ISUB = 81, 82, 84, 85).
= 8 : fourth generation t′ (t′t′) production with massive matrix elements (ISUB

= 81, 82, 84, 85).
= 10 : prompt photons (ISUB = 14, 18, 29).
= 11 : Z0 production (ISUB = 1).
= 12 : W± production (ISUB = 2).
= 13 : Z0 + jet production (ISUB = 15, 30).
= 14 : W± + jet production (ISUB = 16, 31).
= 15 : pair production of different combinations of γ, Z0 and W± (except γγ;

see MSEL = 10) (ISUB = 19, 20, 22, 23, 25).
= 16 : h0 production (ISUB = 3, 102, 103, 123, 124).
= 17 : h0Z0 or h0W± (ISUB = 24, 26).
= 18 : h0 production, combination relevant for e+e− annihilation (ISUB = 24,

103, 123, 124).
= 19 : h0, H0 and A0 production, excepting pair production (ISUB = 24, 103,

123, 124, 153, 158, 171, 173, 174, 176, 178, 179).
= 21 : Z′0 production (ISUB = 141).
= 22 : W′± production (ISUB = 142).
= 23 : H± production (ISUB = 143).
= 24 : R0 production (ISUB = 144).
= 25 : LQ (leptoquark) production (ISUB = 145, 162, 163, 164).
= 35: single bottom production by W exchange (ISUB = 83).
= 36: single top production by W exchange (ISUB = 83).
= 37: single b′ production by W exchange (ISUB = 83).
= 38: single t′ production by W exchange (ISUB = 83).
= 39: all MSSM processes except Higgs production.
= 40: squark and gluino production (ISUB = 243, 244, 258, 259, 271–280).
= 41: stop pair production (ISUB = 261–265).
= 42: slepton pair production (ISUB = 201–214).
= 43: squark or gluino with chargino or neutralino, (ISUB = 237–242, 246–256).
= 44: chargino–neutralino pair production (ISUB = 216–236).
= 45: sbottom production (ISUB = 281–296).
= 50: pair production of technipions and gauge bosons by π0,±

tc /ω0
tc exchange

(ISUB = 361–377).

MSUB : (D=500*0) array to be set when MSEL=0 (for MSEL≥ 1 relevant entries are set in
PYINIT) to choose which subset of subprocesses to include in the generation.

166

The ordering follows the ISUB code given in section 8.1 (with comments as
given there).

MSUB(ISUB) = 0 : the subprocess is excluded.
MSUB(ISUB) = 1 : the subprocess is included.
Note: when MSEL=0, the MSUB values set by you are never changed by Pythia.

If you want to combine several different ‘subruns’, each with its own
PYINIT call, into one single run, it is up to you to remember not only
to switch on the new processes before each new PYINIT call, but also to
switch off the old ones that are no longer desired.

KFIN(I,J) : provides an option to selectively switch on and off contributions to the cross
sections from the different incoming partons/particles at the hard interaction.
In combination with the Pythia resonance decay switches, this also allows
you to set restrictions on flavours appearing in the final state.

I : is 1 for beam side of event and 2 for target side.
J : enumerates flavours according to the KF code; see section 5.1.
KFIN(I,J) = 0 : the parton/particle is forbidden.
KFIN(I,J) = 1 : the parton/particle is allowed.
Note: By default, the following are switched on: d, u, s, c, b, e−, νe, µ

−, νµ,
τ−, ντ , g, γ, Z0, W+ and their antiparticles. In particular, top is off, and
has to be switched on explicitly if needed.

CKIN : kinematics cuts that can be set by you before the PYINIT call, and that affect
the region of phase space within which events are generated. Some cuts are
‘hardwired’ while most are ‘softwired’. The hardwired ones are directly related
to the kinematical variables used in the event selection procedure, and there-
fore have negligible effects on program efficiency. The most important of these
are CKIN(1) - CKIN(8), CKIN(27) - CKIN(28), and CKIN(31) - CKIN(32).
The softwired ones are most of the remaining ones, that cannot be fully taken
into account in the kinematical variable selection, so that generation in con-
strained regions of phase space may be slow. In extreme cases the phase space
may be so small that the maximization procedure fails to find any allowed
points at all (although some small region might still exist somewhere), and
therefore switches off some subprocesses, or aborts altogether.

CKIN(1), CKIN(2) : (D=2.,-1. GeV) range of allowed m̂ =
√
ŝ values. If CKIN(2)< 0.,

the upper limit is inactive.
CKIN(3), CKIN(4) : (D=0.,-1. GeV) range of allowed p̂⊥ values for hard 2 → 2 pro-

cesses, with transverse momentum p̂⊥ defined in the rest frame of the hard
interaction. If CKIN(4)< 0., the upper limit is inactive. For processes that are
singular in the limit p̂⊥ → 0 (see CKIN(6)), CKIN(5) provides an additional
constraint. The CKIN(3) and CKIN(4) limits can also be used in 2 → 1 → 2
processes. Here, however, the product masses are not known and hence are as-
sumed to be vanishing in the event selection. The actual p⊥ range for massive
products is thus shifted downwards with respect to the nominal one.

CKIN(5) : (D=1. GeV) lower cut-off on p̂⊥ values, in addition to the CKIN(3) cut above,
for processes that are singular in the limit p̂⊥ → 0 (see CKIN(6)).

CKIN(6) : (D=1. GeV) hard 2 → 2 processes, which do not proceed only via an inter-
mediate resonance (i.e. are 2 → 1→ 2 processes), are classified as singular in
the limit p̂⊥ → 0 if either or both of the two final-state products has a mass
m <CKIN(6).

CKIN(7), CKIN(8) : (D=-10.,10.) range of allowed scattering subsystem rapidities y =
y∗ in the c.m. frame of the event, where y = (1/2) ln(x1/x2). (Following the
notation of this section, the variable should be given as y∗, but because of its
frequent use, it was called y in section 7.2.)

167

CKIN(9), CKIN(10) : (D=-40.,40.) range of allowed (true) rapidities for the product
with largest rapidity in a 2 → 2 or a 2 → 1 → 2 process, defined in the c.m.
frame of the event, i.e. max(y∗3, y

∗
4). Note that rapidities are counted with sign,

i.e. if y∗3 = 1 and y∗4 = −2 then max(y∗3, y
∗
4) = 1.

CKIN(11), CKIN(12) : (D=-40.,40.) range of allowed (true) rapidities for the prod-
uct with smallest rapidity in a 2 → 2 or a 2 → 1 → 2 process, defined
in the c.m. frame of the event, i.e. min(y∗3, y

∗
4). Consistency thus requires

CKIN(11)≤CKIN(9) and CKIN(12)≤CKIN(10).
CKIN(13), CKIN(14) : (D=-40.,40.) range of allowed pseudorapidities for the product

with largest pseudorapidity in a 2 → 2 or a 2 → 1 → 2 process, defined in
the c.m. frame of the event, i.e. max(η∗3, η

∗
4). Note that pseudorapidities are

counted with sign, i.e. if η∗3 = 1 and η∗4 = −2 then max(η∗3, η
∗
4) = 1.

CKIN(15), CKIN(16) : (D=-40.,40.) range of allowed pseudorapidities for the product
with smallest pseudorapidity in a 2 → 2 or a 2 → 1 → 2 process, defined
in the c.m. frame of the event, i.e. min(η∗3, η

∗
4). Consistency thus requires

CKIN(15)≤CKIN(13) and CKIN(16)≤CKIN(14).
CKIN(17), CKIN(18) : (D=-1.,1.) range of allowed cos θ∗ values for the product with

largest cos θ∗ value in a 2 → 2 or a 2 → 1 → 2 process, defined in the c.m.
frame of the event, i.e. max(cos θ∗3, cos θ∗4).

CKIN(19), CKIN(20) : (D=-1.,1.) range of allowed cos θ∗ values for the product with
smallest cos θ∗ value in a 2 → 2 or a 2 → 1 → 2 process, defined in the
c.m. frame of the event, i.e. min(cos θ∗3, cos θ∗4). Consistency thus requires
CKIN(19)≤CKIN(17) and CKIN(20)≤CKIN(18).

CKIN(21), CKIN(22) : (D=0.,1.) range of allowed x1 values for the parton on side 1
that enters the hard interaction.

CKIN(23), CKIN(24) : (D=0.,1.) range of allowed x2 values for the parton on side 2
that enters the hard interaction.

CKIN(25), CKIN(26) : (D=-1.,1.) range of allowed Feynman-x values, where xF = x1−
x2.

CKIN(27), CKIN(28) : (D=-1.,1.) range of allowed cos θ̂ values in a hard 2→ 2 scatter-

ing, where θ̂ is the scattering angle in the rest frame of the hard interaction.
CKIN(31), CKIN(32) : (D=2.,-1. GeV) range of allowed m̂′ =

√
ŝ′ values, where m̂′ is

the mass of the complete three- or four-body final state in 2 → 3 or 2 → 4
processes (while m̂, constrained in CKIN(1) and CKIN(2), here corresponds
to the one- or two-body central system). If CKIN(32)< 0., the upper limit is
inactive.

CKIN(35), CKIN(36) : (D=0.,-1. GeV2) range of allowed |t̂| = −t̂ values in 2 → 2
processes. Note that for Deeply Inelastic Scattering this is nothing but the
Q2 scale, in the limit that initial- and final-state radiation is neglected. If
CKIN(36)< 0., the upper limit is inactive.

CKIN(37), CKIN(38) : (D=0.,-1. GeV2) range of allowed |û| = −û values in 2 → 2
processes. If CKIN(38)< 0., the upper limit is inactive.

CKIN(39), CKIN(40) : (D=4., -1. GeV2) the W 2 range allowed in DIS processes, i.e.
subprocess number 10. If CKIN(40)< 0., the upper limit is inactive. Here W 2

is defined in terms of W 2 = Q2(1− x)/x. This formula is not quite correct, in
that (i) it neglects the target mass (for a proton), and (ii) it neglects initial-
state photon radiation off the incoming electron. It should be good enough for
loose cuts, however. These cuts are not checked if process 10 is called for two
lepton beams.

CKIN(41) - CKIN(44) : (D=12.,-1.,12.,-1. GeV) range of allowed mass values of the
two (or one) resonances produced in a ‘true’ 2→ 2 process, i.e. one not (only)
proceeding through a single s-channel resonance (2→ 1→ 2). (These are the
ones listed as 2→ 2 in the tables in section 8.1.) Only particles with a width

168

above PARP(41) are considered as bona fide resonances and tested against the
CKIN limits; particles with a smaller width are put on the mass shell without
applying any cuts. The exact interpretation of the CKIN variables depends on
the flavours of the two produced resonances.
For two resonances like Z0W+ (produced from fifj → Z0W+), which are not
identical and which are not each other’s antiparticles, one has
CKIN(41)< m1 <CKIN(42), and
CKIN(43)< m2 <CKIN(44),
where m1 and m2 are the actually generated masses of the two resonances,
and 1 and 2 are defined by the order in which they are given in the production
process specification.
For two resonances like Z0Z0, which are identical, or W+W−, which are each
other’s antiparticles, one instead has
CKIN(41)< min(m1,m2) <CKIN(42), and
CKIN(43)< max(m1,m2) <CKIN(44).
In addition, whatever limits are set on CKIN(1) and, in particular, on CKIN(2)
obviously affect the masses actually selected.

Note 1: If MSTP(42)=0, so that no mass smearing is allowed, the CKIN values have
no effect (the same as for particles with too narrow a width).

Note 2: If CKIN(42)<CKIN(41) it means that the CKIN(42) limit is inactive;
correspondingly, if CKIN(44)<CKIN(43) then CKIN(44) is inactive.

Note 3: If limits are active and the resonances are identical, it is up to you to
ensure that CKIN(41)≤CKIN(43) and CKIN(42)≤CKIN(44).

Note 4: For identical resonances, it is not possible to preselect which of the res-
onances is the lighter one; if, for instance, one Z0 is to decay to leptons
and the other to quarks, there is no mechanism to guarantee that the
lepton pair has a mass smaller than the quark one.

Note 5: The CKIN values are applied to all relevant 2→ 2 processes equally, which
may not be what one desires if several processes are generated simulta-
neously. Some caution is therefore urged in the use of the CKIN(41) -
CKIN(44) values. Also in other respects, you are recommended to take
proper care: if a Z0 is only allowed to decay into bb, for example, setting
its mass range to be 2–8 GeV is obviously not a good idea.

CKIN(45) - CKIN(48) : (D=12.,-1.,12.,-1. GeV) range of allowed mass values of the two
(or one) secondary resonances produced in a 2 → 1 → 2 process (like gg →
h0 → Z0Z0) or even a 2→ 2→ 4 (or 3) process (like qq→ Z0h0 → Z0W+W−).
Note that these CKIN values only affect the secondary resonances; the primary
ones are constrained by CKIN(1), CKIN(2) and CKIN(41) - CKIN(44) (indi-
rectly, of course, the choice of primary resonance masses affects the allowed
mass range for the secondary ones). What is considered to be a resonance is
defined by PARP(41); particles with a width smaller than this are automat-
ically put on the mass shell. The description closely parallels the one given
for CKIN(41) - CKIN(44). Thus, for two resonances that are not identical or
each other’s antiparticles, one has
CKIN(45)< m1 <CKIN(46), and
CKIN(47)< m2 <CKIN(48),
where m1 and m2 are the actually generated masses of the two resonances, and
1 and 2 are defined by the order in which they are given in the decay channel
specification in the program (see e.g. output from PYSTAT(2) or PYLIST(12)).
For two resonances that are identical or each other’s antiparticles, one instead
has
CKIN(45)< min(m1,m2) <CKIN(46), and
CKIN(47)< max(m1,m2) <CKIN(48).

169

Notes 1 - 5: as for CKIN(41) - CKIN(44), with trivial modifications.
Note 6: Setting limits on secondary resonance masses is possible in any of the

channels of the allowed types (see above). However, so far only h0 → Z0Z0

and h0 → W+W− have been fully implemented, such that an arbitrary
mass range below the näıve mass threshold may be picked. For other
possible resonances, any restrictions made on the allowed mass range are
not reflected in the cross section; and further it is not recommendable to
pick mass windows that make a decay on the mass shell impossible.

CKIN(49) - CKIN(50) : allow minimum mass limits to be passed from PYRESD to
PYOFSH. They are used for tertiary and higher resonances, i.e. those not con-
trolled by CKIN(41)-CKIN(48). They should not be touched by the user.

CKIN(51) - CKIN(56) : (D=0.,-1.,0.,-1.,0.,-1. GeV) range of allowed transverse mo-
menta in a true 2 → 3 process. This means subprocesses such as 121–124 for
h0 production, and their H0, A0 and H±± equivalents. CKIN(51) - CKIN(54)
corresponds to p⊥ ranges for scattered partons, in order of appearance, i.e.
CKIN(51) - CKIN(52) for the parton scattered off the beam and CKIN(53) -
CKIN(54) for the one scattered off the target. CKIN(55) and CKIN(56) here
sets p⊥ limits for the third product, the h0, i.e. the CKIN(3) and CKIN(4)
values have no effect for this process. Since the p⊥ of the Higgs is not one of
the primary variables selected, any constraints here may mean reduced Monte
Carlo efficiency, while for these processes CKIN(51) - CKIN(54) are ‘hard-
wired’ and therefore do not cost anything. As usual, a negative value implies
that the upper limit is inactive.

CKIN(61) - CKIN(78) : allows to restrict the range of kinematics for the photons gen-
erated off the lepton beams with the ’gamma/lepton’ option of PYINIT. In
each quartet of numbers, the first two corresponds to the range allowed on
incoming side 1 (beam) and the last two to side 2 (target). The cuts are only
applicable for a lepton beam. Note that the x and Q2 (P 2) variables are the
basis for the generation, and so can be restricted with no loss of efficiency. For
leptoproduction (i.e. lepton on hadron) the W is uniquely given by the one x
value of the problem, so here also W cuts are fully efficient. The other cuts
may imply a slowdown of the program, but not as much as if equivalent cuts
only are introduced after events are fully generated. See [Fri00] for details.

CKIN(61) - CKIN(64) : (D=0.0001,0.99,0.0001,0.99) allowed range for the energy frac-
tions x that the photon take of the respective incoming lepton energy. These
fractions are defined in the c.m. frame of the collision, and differ from energy
fractions as defined in another frame. (Watch out at HERA!) In order to avoid
some technical problems, absolute lower and upper limits are set internally at
0.0001 and 0.9999.

CKIN(65) - CKIN(68) : (D=0.,-1.,0.,-1. GeV2) allowed range for the spacelike virtuality
of the photon, conventionally called either Q2 or P 2, depending on process. A
negative number means that the upper limit is inactive, i.e. purely given by
kinematics. A nonzero lower limit is implicitly given by kinematics constraints.

CKIN(69) - CKIN(72) : (D=0.,-1.,0.,-1.) allowed range of the scattering angle θ of the
lepton, defined in the c.m. frame of the event. (Watch out at HERA!) A
negative number means that the upper limit is inactive, i.e. equal to π.

CKIN(73) - CKIN(76) : (D=0.0001,0.99,0.0001,0.99) allowed range for the light-cone
fraction y that the photon take of the respective incoming lepton energy. The
light-cone is defined by the four-momentum of the lepton or hadron on the
other side of the event (and thus deviates from true light-cone fraction by
mass effects that normally are negligible). The y value is related to the x and
Q2 (P 2) values by y = x+Q2/s if mass terms are neglected.

CKIN(77), CKIN(78) : (D=2.,-1. GeV) allowed range for W , i.e. either the photon–

170

hadron or photon–photon invariant mass. A negative number means that the
upper limit is inactive.

9.3 The General Switches and Parameters

The PYPARS common block contains the status code and parameters that regulate the
performance of the program. All of them are provided with sensible default values, so that
a novice user can neglect them, and only gradually explore the full range of possibilities.
Some of the switches and parameters in PYPARS will be described later, in the shower and
beam remnants sections.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Purpose: to give access to status code and parameters that regulate the performance of
the program. If the default values, denoted below by (D=. . .), are not satis-
factory, they must in general be changed before the PYINIT call. Exceptions,
i.e. variables that can be changed for each new event, are denoted by (C).

MSTP(1) : (D=3) maximum number of generations. Automatically set ≤ 4.
MSTP(2) : (D=1) calculation of αs at hard interaction, in the routine PYALPS.

= 0 : αs is fixed at value PARU(111).
= 1 : first-order running αs.
= 2 : second-order running αs.

MSTP(3) : (D=2) selection of Λ value in αs for MSTP(2)≥ 1.
= 1 : Λ is given by PARP(1) for hard interactions, by PARP(61) for space-like

showers, by PARP(72) for time-like showers not from a resonance decay,
and by PARJ(81) for time-like ones from a resonance decay (including e.g.
γ/Z0 → qq decays, i.e. conventional e+e− physics). This Λ is assumed
to be valid for 5 flavours; for the hard interaction the number of flavours
assumed can be changed by MSTU(112).

= 2 : Λ value is chosen according to the parton-distribution-function para-
meterizations. The choice is always based on the proton parton-
distribution set selected, i.e. is unaffected by pion and photon parton-
distribution selection. All the Λ values are assumed to refer to 4 flavours,
and MSTU(112) is set accordingly. This Λ value is used both for the hard
scattering and the initial- and final-state radiation. The ambiguity in the
choice of the Q2 argument still remains (see MSTP(32), MSTP(64) and
MSTJ(44)). This Λ value is used also for MSTP(57)=0, but the sensible
choice here would be to use MSTP(2)=0 and have no initial- or final-state
radiation. This option does not change the PARJ(81) value of timelike
parton showers in resonance decays, so that LEP experience on this spe-
cific parameter is not overwritten unwittingly. Therefore PARJ(81) can
be updated completely independently.

= 3 : as =2, except that here also PARJ(81) is overwritten in accordance with
the Λ value of the proton parton-distribution-function set.

MSTP(4) : (D=0) treatment of the Higgs sector, predominantly the neutral one.
= 0 : the h0 is given the Standard Model Higgs couplings, while H0 and A0 cou-

plings should be set by you in PARU(171) - PARU(175) and PARU(181)
- PARU(185), respectively.

= 1 : you should set couplings for all three Higgses, for the h0 in PARU(161) -
PARU(165), and for the H0 and A0 as above.

= 2 : the mass of h0 in PMAS(25,1) and the tan β value in PARU(141) are used
to derive H0, A0 and H± masses, and h0, H0, A0 and H± couplings, using

171

the relations of the Minimal Supersymmetric extension of the Standard
Model at Born level [Gun90]. Existing masses and couplings are overwrit-
ten by the derived values. See section 8.5.3 for discussion on parameter
constraints.

= 3: as =2, but using relations at the one-loop level. This option is not yet
implemented as such. However, if you initialize the Susy machinery with
IMSS(1)=1, then the Susy parameters will be used to calculate also Higgs
masses and couplings. These are stored in the appropriate slots, and the
value of MSTP(4) is overwritten to 1.

MSTP(5) : (D=0) presence of anomalous couplings in processes. See section 8.6.5 for
further details.

= 0 : absent.
= 1 : left–left isoscalar model, with only u and d quarks composite (at the

probed scale).
= 2 : left–left isoscalar model, with all quarks composite.
= 3 : helicity-non-conserving model, with only u and d quarks composite (at

the probed scale).
= 4 : helicity-non-conserving model, with all quarks composite.
= 5 : coloured technihadrons, affecting the standard QCD 2→ 2 cross sections,

see subsection 8.6.7 and parameters PARP(155) and PARP(156).
MSTP(7) : (D=0) choice of heavy flavour in subprocesses 81–85. Does not apply for

MSEL=4-8, where the MSEL value always takes precedence.
= 0 : for processes 81–84 (85) the ‘heaviest’ flavour allowed for gluon (photon)

splitting into a quark–antiquark (fermion–antifermion) pair, as set in the
MDME array. Note that ‘heavy’ is defined as the one with largest KF code,
so that leptons take precedence if they are allowed.

= 1 - 8 : pick this particular quark flavour; e.g., MSTP(7)=6 means that top will
be produced.

= 11 - 18 : pick this particular lepton flavour. Note that neutrinos are not possi-
ble, i.e. only 11, 13, 15 and 17 are meaningful alternatives. Lepton pair
production can only occur in process 85, so if any of the other processes
have been switched on they are generated with the same flavour as would
be obtained in the option MSTP(7)=0.

MSTP(8) : (D=0) choice of electroweak parameters to use in the decay widths of reso-
nances (W, Z, h, . . .) and cross sections (production of W’s, Z’s, h’s, . . .).

= 0 : everything is expressed in terms of a running αem(Q2) and a fixed sin2θW ,
i.e. GF is nowhere used.

= 1 : a replacement is made according to αem(Q2) → √2GFm
2
W sin2θW/π in

all widths and cross sections. If GF and mZ are considered as given, this
means that sin2θW and mW are the only free electroweak parameter.

= 2 : a replacement is made as for =1, but additionally sin2θW is constrained
by the relation sin2θW = 1 −m2

W/m
2
Z. This means that mW remains as

a free parameter, but that the sin2θW value in PARU(102) is never used,
except in the vector couplings in the combination v = a−4 sin2θW e. This
latter degree of freedom enters e.g. for forward-backward asymmetries in
Z0 decays.

Note: This option does not affect the emission of real photons in the initial and
final state, where αem is always used. However, it does affect also purely
electromagnetic hard processes, such as qq→ γγ.

MSTP(9) : (D=0) inclusion of top (and fourth generation) as allowed remnant flavour q′

in processes that involve q→ q′+ W branchings as part of the overall process,
and where the matrix elements have been calculated under the assumption
that q′ is massless.

172

= 0 : no.
= 1 : yes, but it is possible, as before, to switch off individual channels by the

setting of MDME switches. Mass effects are taken into account, in a crude
fashion, by rejecting events where kinematics becomes inconsistent when
the q′ mass is included.

MSTP(11) : (D=1) use of electron parton distribution in e+e− and ep interactions.
= 0 : no, i.e. electron carries the whole beam energy.
= 1 : yes, i.e. electron carries only a fraction of beam energy in agreement with

next-to-leading electron parton-distribution function, thereby including
the effects of initial-state bremsstrahlung.

MSTP(12) : (D=0) use of e− (‘sea’, i.e. from e→ γ → e), e+, quark and gluon distribution
functions inside an electron.

= 0 : off.
= 1 : on, provided that MSTP(11)≥ 1. Quark and gluon distributions are ob-

tained by numerical convolution of the photon content inside an electron
(as given by the bremsstrahlung spectrum of MSTP(11)=1) with the quark
and gluon content inside a photon. The required numerical precision is
set by PARP(14). Since the need for numerical integration makes this op-
tion somewhat more time-consuming than ordinary parton-distribution
evaluation, one should only use it when studying processes where it is
needed.

Note: for all traditional photoproduction/DIS physics this option is superseded
by the ’gamma/lepton’ option for PYINIT calls, but can still be of use for
some less standard processes.

MSTP(13) : (D=1) choice of Q2 range over which electrons are assumed to radiate pho-
tons; affects normalization of e− (sea), e+, γ, quark and gluon distributions
inside an electron for MSTP(12)=1.

= 1 : range set by Q2 argument of parton-distribution-function call, i.e. by Q2

scale of the hard interaction. Therefore parton distributions are propor-
tional to ln(Q2/m2

e).
= 2 : range set by the user-determined Q2

max, given in PARP(13). Parton distri-
butions are assumed to be proportional to ln((Q2

max/m
2
e)(1−x)/x2). This

is normally most appropriate for photoproduction, where the electron is
supposed to go undetected, i.e. scatter less than Q2

max.
Note: the choice of effective range is especially touchy for the quark and gluon

distributions. An (almost) on-the-mass-shell photon has a VMD piece
that dies away for a virtual photon. A simple convolution of distribu-
tion functions does not take this into account properly. Therefore the
contribution from Q values above the ρ mass should be suppressed. A
choice of Qmax ≈ 1 GeV is then appropriate for a photoproduction limit
description of physics. See also note for MSTP(12).

MSTP(14) : (D=30) structure of incoming photon beam or target. Historically, numbers
up to 10 were set up for real photons, and subsequent ones have been added
also to allow for virtual photon beams. The reason is that the existing options
specify e.g. direct×VMD, summing over the possibilities of which photon is
direct and which VMD. This is allowed when the situation is symmetric, i.e.
for two incoming real photons, but not if one is virtual. Some of the new options
agree with previous ones, but are included to allow a more consistent pattern.
Further options above 25 have been added also to include DIS processes.

= 0 : a photon is assumed to be point-like (a direct photon), i.e. can only
interact in processes which explicitly contain the incoming photon, such
as fiγ → fig for γp interactions. In γγ interactions both photons are
direct, i.e the main process is γγ → fifi.

173

= 1 : a photon is assumed to be resolved, i.e. can only interact through its
constituent quarks and gluons, giving either high-p⊥ parton–parton scat-
terings or low-p⊥ events. Hard processes are calculated with the use of
the full photon parton distributions. In γγ interactions both photons are
resolved.

= 2 : a photon is assumed resolved, but only the VMD piece is included in the
parton distributions, which therefore mainly are scaled-down versions
of the ρ0/π0 ones. Both high-p⊥ parton–parton scatterings and low-pT
events are allowed. In γγ interactions both photons are VMD-like.

= 3 : a photon is assumed resolved, but only the anomalous piece of the photon
parton distributions is included. (This event class is called either anoma-
lous or GVMD; we will use both interchangeably, though the former is
more relevant for high-p⊥ phenomena and the latter for low-p⊥ ones.) In
γγ interactions both photons are anomalous.

= 4 : in γγ interactions one photon is direct and the other resolved. A typical
process is thus fiγ → fig. Hard processes are calculated with the use
of the full photon parton distributions for the resolved photon. Both
possibilities of which photon is direct are included, in event topologies
and in cross sections. This option cannot be used in configurations with
only one incoming photon.

= 5 : in γγ interactions one photon is direct and the other VMD-like. Both
possibilities of which photon is direct are included, in event topologies
and in cross sections. This option cannot be used in configurations with
only one incoming photon.

= 6 : in γγ interactions one photon is direct and the other anomalous. Both
possibilities of which photon is direct are included, in event topologies
and in cross sections. This option cannot be used in configurations with
only one incoming photon.

= 7 : in γγ interactions one photon is VMD-like and the other anomalous.
Only high-p⊥ parton–parton scatterings are allowed. Both possibilities
of which photon is VMD-like are included, in event topologies and in
cross sections. This option cannot be used in configurations with only
one incoming photon.

= 10 : the VMD, direct and anomalous/GVMD components of the photon are
automatically mixed. For γp interactions, this means an automatic mix-
ture of the three classes 0, 2 and 3 above [Sch93, Sch93a], for γγ ones
a mixture of the six classes 0, 2, 3, 5, 6 and 7 above [Sch94a]. Various
restrictions exist for this option, as discussed in section 8.3.1.

= 11 : direct×direct (see note 5); intended for virtual photons.
= 12 : direct×VMD (i.e. first photon direct, second VMD); intended for virtual

photons.
= 13 : direct×anomalous; intended for virtual photons.
= 14 : VMD×direct; intended for virtual photons.
= 15 : VMD×VMD; intended for virtual photons.
= 16 : VMD×anomalous; intended for virtual photons.
= 17 : anomalous×direct; intended for virtual photons.
= 18 : anomalous×VDM; intended for virtual photons.
= 19 : anomalous×anomalous; intended for virtual photons.
= 20 : a mixture of the nine above components, 11–19, in the same spirit as =10

provides a mixture for real gammas (or a virtual gamma on a hadron).
For gamma-hadron, this option coincides with =10.

= 21 : direct×direct (see note 5).
= 22 : direct×resolved.

174

= 23 : resolved×direct.
= 24 : resolved×resolved.
= 25 : a mixture of the four above components, offering a simpler alternative

to =20 in cases where the parton distributions of the photon have not
been split into VMD and anomalous components. For γ-hadron, only
two components need be mixed.

= 26 : DIS×VMD/p.
= 27 : DIS×anomalous.
= 28 : VMD/p×DIS.
= 29 : anomalous×DIS.
= 30 : a mixture of all the 4 (for γ∗p) or 13 (for γ∗γ∗) components that are

available, i.e. (the relevant ones of) 11–19 and 26–29 above; is as =20
with the DIS processes mixed in.

Note 1: The MSTP(14) options apply for a photon defined by a ’gamma’ or
’gamma/lepton’ beam in the PYINIT call, but not to those photons im-
plicitly obtained in a ’lepton’ beam with the MSTP(12)=1 option. This
latter approach to resolved photons is more primitive and is no longer
recommended for QCD processes.

Note 2: for real photons our best understanding of how to mix event classes is
provided by the option 10 above, which also can be obtained by combin-
ing three (for γp) or six (for γγ) separate runs. In a simpler alternative
the VMD and anomalous classes are joined into a single resolved class.
Then γp physics only requires two separate runs, with 0 and 1, and γγ
physics requires three, with 0, 1 and 4.

Note 3: most of the new options from 11 onwards are not needed and there-
fore not defined for ep collisions. The recommended ’best’ value thus is
MSTP(14)=30, which also is the new default value.

Note 4: as a consequence of the appearance of new event classes, the MINT(122)
and MSTI(9) codes are not the same for γ∗γ∗ events as for γp, γ∗p or
γγ ones. Instead the code is 3(i1 − 1) + i2, where i is 1 for direct, 2 for
VMD and 3 for anomalous/GVMD and indices refer to the two incoming
photons. For γ∗p code 4 is DIS, and for γ∗γ∗ codes 10–13 corresponds to
the MSTP(14) codes 26–29. As before, MINT(122) and MSTI(9) are only
defined when several processes are to be mixed, not when generating one
at a time. Also the MINT(123) code is modified (not shown here).

Note 5: The direct×direct event class excludes lepton pair production when run
with the default MSEL=1 option (or MSEL=2), in order not to confuse
users. You can obtain lepton pairs as well, e.g. by running with MSEL=0
and switching on the desired processes by hand.

Note 6: For all non-QCD processes, a photon is assumed unresolved when
MSTP(14)= 10, 20 or 25. In principle, both the resolved and direct
possibilities ought to be explored, but this mixing is not currently im-
plemented, so picking direct at least will explore one of the two main
alternatives rather than none. Resolved processes can be accessed by the
more primitive machinery of having a lepton beam and MSTP(12)=1.

MSTP(15) : (D=0) possibility to modify the nature of the anomalous photon component
(as used with the appropriate MSTP(14) options), in particular with respect
to the scale choices and cut-offs of hard processes. These options are mainly
intended for comparative studies and should not normally be touched. Some
of the issues are discussed in [Sch93a], while others have only been used for
internal studies and are undocumented.

= 0 : none, i.e. the same treatment as for the VMD component.
= 1 : evaluate the anomalous parton distributions at a scale Q2/PARP(17)2.

175

= 2 : as =1, but instead of PARP(17) use either PARP(81)/PARP(15) or
PARP(82)/PARP(15), depending on MSTP(82) value.

= 3 : evaluate the anomalous parton distribution functions of the photon as
fγ,anom(x,Q2, p2

0)− fγ,anom(x,Q2, r2Q2) with r =PARP(17).
= 4 : as =3, but instead of PARP(17) use either PARP(81)/PARP(15) or

PARP(82)/PARP(15), depending on MSTP(82) value.
= 5 : use larger p⊥min for the anomalous component than for the VMD one,

but otherwise no difference.
MSTP(16) : (D=1) choice of definition of the fractional momentum taken by a photon

radiated off a lepton. Enters in the flux factor for the photon rate, and thereby
in cross sections.

= 0 : x, i.e. energy fraction in the rest frame of the event.
= 1 : y, i.e. light-cone fraction.

MSTP(17) : (D=4) possibility of a extrafactor for processes involving resolved virtual
photons, to approximately take into account the effects of longitudinal pho-
tons. Given on the form
R = 1 + PARP(165) r(Q2, µ2) fL(y,Q2)/fT (y,Q2).
Here the 1 represents the basic transverse contribution, PARP(165) is some
arbitrary overall factor, and fL/fT the (known) ratio of longitudinal to trans-
verse photon flux factors. The arbitrary function r depends on the photon
virtuality Q2 and the hard scale µ2 of the process. See [Fri00] for a discussion
of the options.

= 0 : No contribution, i.e. r = 0.
= 1 : r = 4µ2Q2/(µ2 +Q2)2.
= 2 : r = 4Q2/(µ2 +Q2).
= 3 : r = 4Q2/(m2

ρ +Q2).

= 4 : r = 4m2
VQ

2/(m2
V + Q2)2, where mV is the vector meson mass for VMD

and 2k⊥ for GVMD states. Since there is no µ dependence here (as well
as for =3 and =5) also minimum-bias cross sections are affected, where
µ would be vanishing. Currently the actual vector meson mass in the
VMD case is replaced by mρ, for simplicity.

= 5 : r = 4Q2/(m2
V +Q2), with mV and comments as above.

Note: For a photon given by the ’gamma/lepton’ option in the PYINIT call, the
y spectrum is dynamically generated and y is thus known from event to
event. For a photon beam in the PYINIT call, y is unknown from the
onset, and has to be provided by you if any longitudinal factor is to be
included. So long as these values, in PARP(167) and PARP(168), are at
their default values, 0, it is assumed they have not been set and thus the
MSTP(17) and PARP(165) values are inactive.

MSTP(18) : (D=3) choice of p⊥min for direct processes.
= 1 : same as for VMD and GVMD states, i.e. the p⊥min(W 2) scale. Primarily

intended for real photons.
= 2 : p⊥min is chosen to be PARP(15), i.e. the original old behaviour proposed in

[Sch93, Sch93a]. In that case, also parton distributions, jet cross sections
and αs values were dampened for small p⊥, so it may not be easy to
obtain full backwards compatibility with this option.

= 3 : as =1, but if the Q scale of the virtual photon is above the VMD/GVMD
p⊥min(W 2), p⊥min is chosen equal to Q. This is part of the strategy to
mix in DIS processes at p⊥ below Q, e.g. in MSTP(14)=30.

MSTP(19) : (D=4) choice of partonic cross section in the DIS process 99.
= 0 : QPM answer 4π2αem/Q

2 ∑
q e

2
q(xq(x,Q2) + xq(x,Q2)) (with parton dis-

tributions frozen below the lowest Q allowed in the parameterization).
Note that this answer is divergent for Q2 → 0 and thus violates gauge

176

invariance.
= 1 : QPM answer is modified by a factor Q2/(Q2 + m2

ρ) to provide a finite

cross section in the Q2 → 0 limit. A minimal regularization recipe.
= 2 : QPM answer is modified by a factor Q4/(Q2+m2

ρ)
2 to provide a vanishing

cross section in the Q2 → 0 limit. Appropriate if one assumes that
the normal photoproduction description gives the total cross section for
Q2 = 0, without any DIS contribution.

= 3 : as = 2, but additionally suppression by a parameterized factor f(W 2, Q2)
(different for γ∗p and γ∗γ∗) that avoids double-counting the direct-
process region where p⊥ > Q. Shower evolution for DIS events is then
also restricted to be at scales below Q, whereas evolution all the way up
to W is allowed in the other options above.

= 4 : as = 3, but additionally include factor 1/(1− x) for conversion from F2

to σ. This is formally required, but is only relevant for small W 2 and
therefore often neglected.

MSTP(20) : (D=3) suppression of resolved (VMD or GVMD) cross sections, introduced
to compensate for an overlap with DIS processes in the region of intermediate
Q2 and rather small W 2.

= 0 : no; used as is.

> 1 : yes, by a factor (W 2/(W 2 + Q2
1 + Q2

2))MSTP(20) (where Q2
i = 0 for an

incoming hadron).
Note: the suppression factor is joined with the dipole suppression stored in

VINT(317) and VINT(318).
MSTP(21) : (D=1) nature of fermion–fermion scatterings simulated in process 10 by t-

channel exchange.
= 0 : all off (!).
= 1 : full mixture of γ∗/Z0 neutral current and W± charged current.
= 2 : γ neutral current only.
= 3 : Z0 neutral current only.
= 4 : γ∗/Z0 neutral current only.
= 5 : W± charged current only.

MSTP(22) : (D=0) special override of normal Q2 definition used for maximum of parton-
shower evolution, intended for Deeply Inelastic Scattering in lepton–hadron
events, see section 10.4.

MSTP(23) : (D=1) for Deeply Inelastic Scattering processes (10 and 83), this option
allows the x and Q2 of the original hard scattering to be retained by the
final electron when showers are considered (with warnings as below; partly
obsolete).

= 0 : no correction procedure, i.e. x and Q2 of the scattered electron differ
from the originally generated x and Q2.

= 1 : post facto correction, i.e. the change of electron momentum, by initial
and final QCD radiation, primordial k⊥ and beam remnant treatment,
is corrected for by a shuffling of momentum between the electron and
hadron side in the final state. Only process 10 is corrected, while process
83 is not.

= 2 : as =1, except that both process 10 and 83 are treated. This option is
dangerous, especially for top, since it may well be impossible to ‘correct’
in process 83: the standard DIS kinematics definitions are based on the
assumption of massless quarks. Therefore infinite loops are not excluded.

Note 1: the correction procedure will fail for a fraction of the events, which are
thus rejected (and new ones generated in their place). The correction op-
tion is not unambiguous, and should not be taken too seriously. For very

177

small Q2 values, the x is not exactly preserved even after this procedure.
Note 2: This switch does not affect the recommended DIS description obtained

with a ’gamma/lepton’ beam/target in PYINIT, where x and Q2 are al-
ways conserved.

MSTP(31) : (D=1) parameterization of total, elastic and diffractive cross sections.
= 0 : everything is to be set by you yourself in the PYINT7 common block. For

photoproduction, additionally you need to set VINT(281). Normally you
would set these values once and for all before the PYINIT call, but if you
run with variable energies (see MSTP(171)) you can also set it before each
new PYEVNT call.

= 1 : Donnachie–Landshoff for total cross section [Don92], and Schuler–
Sjöstrand for elastic and diffractive cross sections [Sch94, Sch93a].

MSTP(32) : (D=8) Q2 definition in hard scattering for 2 → 2 processes. For resonance
production Q2 is always chosen to be ŝ = m2

R, where mR is the mass of the res-
onance. For gauge boson scattering processes V V → V V the W or Z0 squared
mass is used as scale in parton distributions. See PARP(34) for a possibility to
modify the choice below by a multiplicative factor.
The newer options 6–10 are specifically intended for processes with incoming
virtual photons. These are ordered from a ‘minimal’ dependence on the virtu-
alities to a ‘maximal’ one, based on reasonable kinematics considerations. The
old default value MSTP(32)=2 forms the starting point, with no dependence
at all, and the new default is some intermediate choice. Notation is that P 2

1

and P 2
2 are the virtualities of the two incoming particles, p⊥ the transverse

momentum of the scattering process, and m3 and m4 the masses of the two
outgoing partons. For a direct photon, P 2 is the photon virtuality and x = 1.
For a resolved photon, P 2 still refers to the photon, rather than the unknown
virtuality of the reacting parton in the photon, and x is the momentum fraction
taken by this parton.

= 1 : Q2 = 2ŝt̂û/(ŝ2 + t̂2 + û2).
= 2 : Q2 = (m2

⊥3 +m2
⊥4)/2 = p2

⊥ + (m2
3 +m2

4)/2.
= 3 : Q2 = min(−t̂,−û).
= 4 : Q2 = ŝ.
= 5 : Q2 = −t̂.
= 6 : Q2 = (1 + x1P

2
1 /ŝ+ x2P

2
2 /ŝ)(p

2
⊥ +m2

3/2 +m2
4/2).

= 7 : Q2 = (1 + P 2
1 /ŝ+ P 2

2 /ŝ)(p
2
⊥ +m2

3/2 +m2
4/2).

= 8 : Q2 = p2
⊥ + (P 2

1 + P 2
2 +m2

3 +m2
4)/2.

= 9 : Q2 = p2
⊥ + P 2

1 + P 2
2 +m2

3 +m2
4.

= 10 : Q2 = s (the full energy-squared of the process).
Note: options 6 and 7 are motivated by assuming that one wants a scale that

interpolates between t̂ for small t̂ and û for small û, such asQ2 = −t̂û/(t̂+
û). When kinematics for the 2 → 2 process is constructed as if an
incoming photon is massless when it is not, it gives rise to a mismatch
factor 1+P 2/ŝ (neglecting the other masses) in thisQ2 definition, which is
then what is used in option 7 (with the neglect of some small cross-terms
when both photons are virtual). When a virtual photon is resolved, the
virtuality of the incoming parton can be anything from xP 2 and upwards.
So option 6 uses the smallest kinematically possible value, while 7 is more
representative of the typical scale. Option 8 and 9 are more handwaving
extensions of the default option, with 9 specially constructed to ensure
that the Q2 scale is always bigger than P 2.

MSTP(33) : (D=0) inclusion of K factors in hard cross sections for parton–parton inter-
actions (i.e. for incoming quarks and gluons).

= 0 : none, i.e. K = 1.

178

= 1 : a common K factor is used, as stored in PARP(31).
= 2 : separate factors are used for ordinary (PARP(31)) and colour annihilation

graphs (PARP(32)).
= 3 : A K factor is introduced by a shift in the αs Q2 argument, αs =

αs(PARP(33)Q
2).

MSTP(34) : (D=1) use of interference term in matrix elements for QCD processes, see
section 8.2.1.

= 0 : excluded (i.e. string-inspired matrix elements).
= 1 : included (i.e. conventional QCD matrix elements).
Note: for the option MSTP(34)=1, i.e. interference terms included, these terms

are divided between the different possible colour configurations according
to the pole structure of the (string-inspired) matrix elements for the
different colour configurations.

MSTP(35) : (D=0) threshold behaviour for heavy-flavour production, i.e. ISUB = 81, 82,
84, 85, and also for Z and Z′ decays. The non-standard options are mainly
intended for top, but can be used, with less theoretical reliability, also for
charm and bottom (for Z and Z′ only top and heavier flavours are affected).
The threshold factors are given in eqs. (137) and (138).

= 0 : näıve lowest-order matrix-element behaviour.
= 1 : enhancement or suppression close to threshold, according to the colour

structure of the process. The αs value appearing in the threshold factor
(which is not the same as the αs of the lowest-order 2 → 2 process) is
taken to be fixed at the value given in PARP(35). The threshold factor
used in an event is stored in PARI(81).

= 2 : as =1, but the αs value appearing in the threshold factor is taken to

be running, with argument Q2 = mQ

√
(m̂− 2mQ)2 + Γ2

Q. Here mQ is

the nominal heavy-quark mass, ΓQ is the width of the heavy-quark-mass
distribution, and m̂ is the invariant mass of the heavy-quark pair. The
ΓQ value has to be stored by you in PARP(36). The regularization of αs

at low Q2 is given by MSTP(36).
MSTP(36) : (D=2) regularization of αs in the limit Q2 → 0 for the threshold factor ob-

tainable in the MSTP(35)=2 option; see MSTU(115) for a list of the possibilities.
MSTP(37) : (D=1) inclusion of running quark masses in Higgs production (qq → h0)

and decay (h0 → qq) couplings, obtained by calls to the PYMRUN function.
Also included for charged Higgs and technipion production and decay.

= 0 : not included, i.e. fixed quark masses are used according to the values in
the PMAS array.

= 1 : included, with running starting from the value given in the PMAS array, at
a Q0 scale of PARP(37) times the quark mass itself, up to a Q scale given
by the Higgs mass. This option only works when αs is allowed to run
(so one can define a Λ value). Therefore it is only applied if additionally
MSTP(2)≥ 1.

MSTP(38) : (D=5) handling of quark loop masses in the box graphs gg→ γγ and gg→
gγ, and in the Higgs production loop graphs qq → gh0, qg → qh0 and gg →
gh0, and their equivalents with H0 or A0 instead of h0.

= 0 : for gg → γγ and gg → gγ the program will for each flavour automat-
ically choose the massless approximation for light quarks and the full
massive formulae for heavy quarks, with a dividing line between light
and heavy quarks that depends on the actual ŝ scale. For Higgs produc-
tion, all quark loop contributions are included with the proper masses.
This option is then correct only in the Standard Model Higgs scenario,
and should not be used e.g. in the MSSM.

≥1 : for gg→ γγ and gg→ gγ the program will use the massless approxima-

179

tion throughout, assuming the presence of MSTP(38) effectively massless
quark species (however, at most 8). Normally one would use =5 for the
inclusion of all quarks up to bottom, and =6 to include top as well. For
Higgs production, the approximate expressions derived in the mt → ∞
limit are used, rescaled to match the correct gg → h0/H0/A0 cross sec-
tions. This procedure should work, approximately, also for non-standard
Higgs particles.

Warning: for =0, numerical instabilities may arise in gg → γγ and gg → gγ for
scattering at small angles. You are therefore recommended in this case
to set CKIN(27) and CKIN(28) so as to exclude the range of scattering
angles that is not of interest anyway. Numerical problems may also occur
for Higgs production with =0, and additionally the lengthy expressions
make the code error-prone.

MSTP(39) : (D=2) choice of Q2 scale for parton distributions and initial state parton
showers in processes gg→ QQh or qq→ QQh.

= 1 : m2
Q.

= 2 : max(m2
⊥Q,m

2
⊥Q

) = m2
Q + max(p2

⊥Q, p
2
⊥Q

).

= 3 : m2
h, where mh is the actual Higgs mass of the event, fluctuating from one

event to the next.
= 4 : ŝ = (ph + pQ + pQ)2.

= 5 : m2
h, where mh is the nominal, fixed Higgs mass.

MSTP(40) : (D=0) option for Coulomb correction in process 25, W+W− pair production,
see [Kho96]. The value of the Coulomb correction factor for each event is stored
in VINT(95).

= 0 : ‘no Coulomb’. Is the often-used reference point.
= 1 : ‘unstable Coulomb’, gives the correct first-order expression valid in the

non-relativistic limit. Is the reasonable option to use as a ‘best bet’
description of LEP 2 physics.

= 2 : ‘second-order Coulomb’ gives the correct second-order expression valid
in the non-relativistic limit. In principle this is even better than =1, but
the differences are negligible and computer time does go up because of
the need for a numerical integration in the weight factor.

= 3 : ‘dampened Coulomb’, where the unstable Coulomb expression has been
modified by a (1 − β)2 factor in front of the arctan term. This is in-
tended as an alternative to =1 within the band of our uncertainty in the
relativistic limit.

= 4 : ‘stable Coulomb’, i.e. effects are calculated as if the W’s were stable. Is
incorrect, and mainly intended for comparison purposes.

Note : Unfortunately the W’s at LEP 2 are not in the non-relativistic limit,
so the separation of Coulomb effects from other radiative corrections is
not gauge invariant. The options above should therefore be viewed as
indicative only, not as the ultimate answer.

MSTP(41) : (D=2) master switch for all resonance decays (Z0, W±, t, h0, Z′0, W′±, H0,
A0, H±, LQ, R0, d∗, u∗, . . .).

= 0 : all off.
= 1 : all on.
= 2 : on or off depending on their individual MDCY values.
Note: also for MSTP(41)=1 it is possible to switch off the decays of specific

resonances by using the MDCY(KC,1) switches in Pythia. However, since
the MDCY values are overwritten in the PYINIT call when MSTP(41)=1 (or
0), individual resonances should then be switched off after the PYINIT
call.

180

Warning: for top, leptoquark and other colour-carrying resonances it is danger-
ous to switch off decays if one later on intends to let them decay (with
PYEXEC); see section 8.6.4.

MSTP(42) : (D=1) mass treatment in 2 → 2 processes, where the final-state resonances
have finite width (see PARP(41)). (Does not apply for the production of a single
s-channel resonance, where the mass appears explicitly in the cross section of
the process, and thus is always selected with width.)

= 0 : particles are put on the mass shell.
= 1 : mass generated according to a Breit–Wigner.

MSTP(43) : (D=3) treatment of Z0/γ∗ interference in matrix elements. So far imple-
mented in subprocesses 1, 15, 19, 22, 30 and 35; in other processes what is
called a Z0 is really a Z0 only, without the γ∗ piece.

= 1 : only γ∗ included.
= 2 : only Z0 included.
= 3 : complete Z0/γ∗ structure (with interference) included.

MSTP(44) : (D=7) treatment of Z′0/Z0/γ∗ interference in matrix elements.
= 1 : only γ∗ included.
= 2 : only Z0 included.
= 3 : only Z′0 included.
= 4 : only Z0/γ∗ (with interference) included.
= 5 : only Z′0/γ∗ (with interference) included.
= 6 : only Z′0/Z0 (with interference) included.
= 7 : complete Z′0/Z0/γ∗ structure (with interference) included.

MSTP(45) : (D=3) treatment of WW→WW structure (ISUB = 77).
= 1 : only W+W+ →W+W+ and W−W− →W−W− included.
= 2 : only W+W− →W+W− included.
= 3 : all charge combinations WW→WW included.

MSTP(46) : (D=1) treatment of V V → V ′V ′ structures (ISUB = 71–77), where V repre-
sents a longitudinal gauge boson.

= 0 : only s-channel Higgs exchange included (where existing). With this op-
tion, subprocesses 71–72 and 76–77 will essentially be equivalent to sub-
processes 5 and 8, respectively, with the proper decay channels (i.e. only
Z0Z0 or W+W−) set via MDME. The description obtained for subprocesses
5 and 8 in this case is more sophisticated, however; see section 8.5.2.

= 1 : all graphs contributing to V V → V ′V ′ processes are included.
= 2 : only graphs not involving Higgs exchange (either in s, t or u channel) are

included; this option then gives the näıve behaviour one would expect if
no Higgs exists, including unphysical unitarity violations at high energies.

= 3 : the strongly interacting Higgs-like model of Dobado, Herrero and Ter-
ron [Dob91] with Padé unitarization. Note that to use this option it
is necessary to set the Higgs mass to a large number like 20 TeV (i.e.
PMAS(25,1)=20000). The parameter ν is stored in PARP(44), but should
not have to be changed.

= 4 : as =3, but with K-matrix unitarization [Dob91].
= 5 : the strongly interacting QCD-like model of Dobado, Herrero and Terron

[Dob91] with Padé unitarization. The parameter ν is stored in PARP(44),
but should not have to be changed. The effective techni-ρ mass in this
model is stored in PARP(45); by default it is 2054 GeV, which is the
expected value for three technicolors, based on scaling up the ordinary ρ
mass appropriately.

= 6 : as =5, but with K-matrix unitarization [Dob91]. While PARP(45) still is
a parameter of the model, this type of unitarization does not give rise to
a resonance at a mass of PARP(45).

181

MSTP(47) : (D=1) (C) angular orientation of decay products of resonances (Z0, W±, t,
h0, Z′0, W′±, etc.), either when produced singly or in pairs (also from an h0

decay), or in combination with a single quark, gluon or photon.
= 0 : independent decay of each resonance, isotropic in c.m. frame of the res-

onance.
= 1 : correlated decay angular distributions according to proper matrix ele-

ments, to the extent these are implemented.
MSTP(48) : (D=0) (C) switch for the treatment of γ∗/Z0 decay for process 1 in e+e−

events.
= 0 : normal machinery.
= 1 : if the decay of the Z0 is to either of the five lighter quarks, d, u, s, c or b,

the special treatment of Z0 decay is accessed, including matrix element
options, according to section 6.1.
This option is based on the machinery of the PYEEVT and associated rou-
tines when it comes to the description of QCD multijet structure and the
angular orientation of jets, but relies on the normal PYEVNT machinery for
everything else: cross section calculation, initial state photon radiation,
flavour composition of decays (i.e. information on channels allowed), etc.
The initial state has to be e+e−; forward-backward asymmetries would
not come out right for quark-annihilation production of the γ∗/Z0 and
therefore the machinery defaults to the standard one in such cases.
You can set the behaviour for the MSTP(48) option using the normal
matrix element related switches. This especially means MSTJ(101) for
the selection of first- or second-order matrix elements (=1 and =2, respec-
tively). Further selectivity is obtained with the switches and parameters
MSTJ(102) (for the angular orientation part only), MSTJ(103) (except the
production threshold factor part), MSTJ(106), MSTJ(108) - MSTJ(111),
PARJ(121), PARJ(122), and PARJ(125) - PARJ(129). Information
can be read from MSTJ(120), MSTJ(121), PARJ(150), PARJ(152) -
PARJ(156), PARJ(168), PARJ(169), PARJ(171).
The other e+e− switches and parameters should not be touched. In most
cases they are simply not accessed, since the related part is handled by
the PYEVNT machinery instead. In other cases they could give incor-
rect or misleading results. Beam polarization as set by PARJ(131) -
PARJ(134), for instance, is only included for the angular orientation, but
is missing for the cross section information. PARJ(123) and PARJ(124)
for the Z0 mass and width are set in the PYINIT call based on the input
mass and calculated widths.
The cross section calculation is unaffected by the matrix element ma-
chinery. Thus also for negative MSTJ(101) values, where only specific jet
multiplicities are generated, the PYSTAT cross section is the full one.

MSTP(49) : (D=1) assumed variation of the Higgs width to boson pairs, as a function of

the actual mass m̂ =
√
ŝ and the nominal mass mh. The switch applies both

to h0, H0, A0 and H± decays.
= 0 : the width is proportional to m̂3; thus the high-mass tail of the Breit-

Wigner is enhanced.
= 1 : the width is proportional to m2

hm̂. For a fixed Higgs mass mh this means
a width variation across the Breit-Wigner more in accord with other
resonances (such as the Z0). This alternative gives more emphasis to
the low-mass tail, where the parton distributions are peaked (for hadron
colliders). This option is favoured by resummation studies [Sey95a].

Note 1: the partial width of a Higgs to a fermion pair is always taken to be
proportional to the actual Higgs mass m̂, irrespectively of MSTP(49).

182

Note 2: this switch does not affect processes 71–77, where a fixed Higgs width is
used in order to control cancellation of divergences.

MSTP(50) : (D=0) Switch to allow or not longitudinally polarized incoming beams, with
the two polarizations stored in PARJ(131) and PARJ(132), respectively. Most
cross section expressions with polarization reduce to the unpolarized behaviour
for the default PARJ(131)=PARJ(132)=0, and then this switch is not imple-
mented. Currently it is only used in process 25, ff → W+W−, for reasons
explained in subsection 8.8.

= 0 : no polarization effects, no matter what PARJ(131) and PARJ(132) values
are set.

= 1 : include polarization information in the cross section of the process and
for angular correlations.

MSTP(51) : (D=7) choice of proton parton-distribution set; see also MSTP(52).
= 1 : CTEQ 3L (leading order).
= 2 : CTEQ 3M (MS).
= 3 : CTEQ 3D (DIS).
= 4 : GRV 94L (leading order).
= 5 : GRV 94M (MS).
= 6 : GRV 94D (DIS).
= 7 : CTEQ 5L (leading order).
= 8 : CTEQ 5M1 (MS; slightly update version of CTEQ 5M).
= 11 : GRV 92L (leading order).
= 12 : EHLQ set 1 (leading order; 1986 updated version).
= 13 : EHLQ set 2 (leading order; 1986 updated version).
= 14 : Duke–Owens set 1 (leading order).
= 15 : Duke–Owens set 2 (leading order).
= 16 : simple ansatz with all parton distributions of the form c/x, with c some

constant; intended for internal debug use only.
Note 1: distributions 11–15 are obsolete and should not be used for current

physics studies. They are only implemented to have some sets in common
between Pythia 5 and 6, for cross-checks.

Note 2: since all parameterizations have some region of applicability, the par-
ton distributions are assumed frozen below the lowest Q2 covered by
the parameterizations. In some cases, evolution is also frozed above the
maximum Q2.

MSTP(52) : (D=1) choice of proton parton-distribution-function library.
= 1 : the internal Pythia one, with parton distributions according to the

MSTP(51) above.
= 2 : the Pdflib one [Plo93], with the Pdflib (version 4) NGROUP and NSET

numbers to be given as MSTP(51) = 1000×NGROUP + NSET.
Note: to make use of option 2, it is necessary to link Pdflib. Additionally,

on most computers, the three dummy routines PDFSET, STRUCTM and
(for virtual photons) STRUCTP at the end of the Pythia file should be
removed or commented out.

Warning: For external parton distribution libraries, Pythia does not check
whether MSTP(51) corresponds to a valid code, or if special x and Q2 re-
strictions exist for a given set, such that crazy values could be returned.
This puts an extra responsibility on you.

MSTP(53) : (D=3) choice of pion parton-distribution set; see also MSTP(54).
= 1 : Owens set 1.
= 2 : Owens set 2.
= 3 : GRV LO (updated version).

MSTP(54) : (D=1) choice of pion parton-distribution-function library.

183

= 1 : the internal Pythia one, with parton distributions according to the
MSTP(53) above.

= 2 : the Pdflib one [Plo93], with the Pdflib (version 4) NGROUP and NSET
numbers to be given as MSTP(53) = 1000×NGROUP + NSET.

Note: to make use of option 2, it is necessary to link Pdflib. Additionally,
on most computers, the three dummy routines PDFSET, STRUCTM and
STRUCTP at the end of the Pythia file should be removed or commented
out.

Warning: For external parton distribution libraries, Pythia does not check
whether MSTP(53) corresponds to a valid code, or if special x and Q2 re-
strictions exist for a given set, such that crazy values could be returned.
This puts an extra responsibility on you.

MSTP(55) : (D=5) choice of the parton-distribution set of the photon; see also MSTP(56)
and MSTP(60).

= 1 : Drees–Grassie.
= 5 : SaS 1D (in DIS scheme, with Q0 = 0.6 GeV).
= 6 : SaS 1M (in ms scheme, with Q0 = 0.6 GeV).
= 7 : SaS 2D (in DIS scheme, with Q0 = 2 GeV).
= 8 : SaS 2M (in ms scheme, with Q0 = 2 GeV).
= 9 : SaS 1D (in DIS scheme, with Q0 = 0.6 GeV).
= 10 : SaS 1M (in ms scheme, with Q0 = 0.6 GeV).
= 11 : SaS 2D (in DIS scheme, with Q0 = 2 GeV).
= 12 : SaS 2M (in ms scheme, with Q0 = 2 GeV).
Note 1: sets 5–8 use the parton distributions of the respective set, and nothing

else. These are appropriate for most applications, e.g. jet production in
γp and γγ collisions. Sets 9–12 instead are appropriate for γ∗γ processes,
i.e. DIS scattering on a photon, as measured in F γ

2 . Here the anomalous
contribution for c and b quarks are handled by the Bethe-Heitler for-
mulae, and the direct term is artificially lumped with the anomalous
one, so that the event simulation more closely agrees with what will
be experimentally observed in these processes. The agreement with the
F γ

2 parameterization is still not perfect, e.g. in the treatment of heavy
flavours close to threshold.

Note 2: Sets 5–12 contain both VMD pieces and anomalous pieces, separately
parameterized. Therefore the respective piece is automatically called,
whatever MSTP(14) value is used to select only a part of the allowed
photon interactions. For other sets (set 1 above or Pdflib sets), usually
there is no corresponding subdivision. Then an option like MSTP(14)=2
(VMD part of photon only) is based on a rescaling of the pion distribu-
tions, while MSTP(14)=3 gives the SaS anomalous parameterization.

Note 3: Formally speaking, the k0 (or p0) cut-off in PARP(15) need not be set in
any relation to the Q0 cut-off scales used by the various parameteriza-
tions. Indeed, due to the familiar scale choice ambiguity problem, there
could well be some offset between the two. However, unless you know
what you are doing, it is recommended that you let the two agree, i.e.
set PARP(15)=0.6 for the SaS 1 sets and =2. for the SaS 2 sets.

MSTP(56) : (D=1) choice of photon parton-distribution-function library.
= 1 : the internal Pythia one, with parton distributions according to the

MSTP(55) above.
= 2 : the Pdflib one [Plo93], with the Pdflib (version 4) NGROUP and NSET

numbers to be given as MSTP(55) = 1000×NGROUP + NSET. When the
VMD and anomalous parts of the photon are split, like for MSTP(14)=10,
it is necessary to specify pion set to be used for the VMD component, in

184

MSTP(53) and MSTP(54), while MSTP(55) here is irrelevant.
= 3 : when the parton distributions of the anomalous photon are requested,

the homogeneous solution is provided, evolved from a starting value
PARP(15) to the requested Q scale. The homogeneous solution is nor-
malized so that the net momentum is unity, i.e. any factors of αem/2π
and charge have been left out. The flavour of the original q is given in
MSTP(55) (1, 2, 3, 4 or 5 for d, u, s, c or b); the value 0 gives a mixture
according to squared charge, with the exception that c and b are only
allowed above the respective mass threshold (Q > mq). The four-flavour
Λ value is assumed given in PARP(1); it is automatically recalculated for
3 or 5 flavours at thresholds. This option is not intended for standard
event generation, but is useful for some theoretical studies.

Note: to make use of option 2, it is necessary to link Pdflib. Additionally,
on most computers, the three dummy routines PDFSET, STRUCTM and
STRUCTP at the end of the Pythia file should be removed or commented
out.

Warning: For external parton-distribution libraries, Pythia does not check
whether MSTP(55) corresponds to a valid code, or if special x and Q2 re-
strictions exist for a given set, such that crazy values could be returned.
This puts an extra responsibility on you.

MSTP(57) : (D=1) choice of Q2 dependence in parton-distribution functions.
= 0 : parton distributions are evaluated at nominal lower cut-off value Q2

0, i.e.
are made Q2-independent.

= 1 : the parameterized Q2 dependence is used.
= 2 : the parameterized parton-distribution behaviour is kept at large Q2 and

x, but modified at small Q2 and/or x, so that parton distributions vanish
in the limit Q2 → 0 and have a theoretically motivated small-x shape
[Sch93a]. This option is only valid for the p and n. It is obsolete within
the current ’gamma/lepton’ framework.

= 3 : as =2, except that also the π± is modified in a corresponding manner. A
VMD photon is not mapped to a pion, but is treated with the same pho-
ton parton distributions as for other MSTP(57) values, but with properly
modified behaviour for small x or Q2. This option is obsolete within the
current ’gamma/lepton’ framework.

MSTP(58) : (D=min(5, 2×MSTP(1))) maximum number of quark flavours used in parton
distributions, and thus also for initial-state space-like showers. If some distri-
butions (notably t) are absent in the parameterization selected in MSTP(51),
these are obviously automatically excluded.

MSTP(59) : (D=1) choice of electron-inside-electron parton distribution.
= 1 : the recommended standard for LEP 1, next-to-leading exponentiated, see

[Kle89], p. 34.
= 2 : the recommended ‘β’ scheme for LEP 2, also next-to-leading exponenti-

ated, see [Bee96], p. 130.
MSTP(60) : (D=7) extension of the SaS real-photon distributions to off-shell photons,

especially for the anomalous component. See [Sch96] for an explanation of
the options. The starting point is the expression in eq. (48), which requires
a numerical integration of the anomalous component, however, and therefore
is not convenient. Approximately, the dipole damping factor can be removed
and compensated by a suitably shifted lower integration limit, whereafter the
integral simplifies. Different ‘goodness’ criteria for the choice of the shifted
lower limit is represented by the options 2–7 below.

= 1 : dipole dampening by integration; very time-consuming.
= 2 : P 2

0 = max(Q2
0, P

2).

185

= 3 : P ′20 = Q2
0 + P 2.

= 4 : Peff that preserves momentum sum.
= 5 : Pint that preserves momentum and average evolution range.
= 6 : Peff , matched to P0 in P 2 → Q2 limit.
= 7 : Pint, matched to P0 in P 2 → Q2 limit.

MSTP(61) : (D=1) (C) master switch for initial-state QCD and QED radiation.
= 0 : off.
= 1 : on.

MSTP(62) - MSTP(69) : (C) further switches for initial-state radiation, see section 10.4.
MSTP(71) : (D=1) (C) master switch for final-state QCD and QED radiation.

= 0 : off.
= 1 : on.
Note: additional switches (e.g. for conventional/coherent showers) are available

in MSTJ(38) - MSTJ(50) and PARJ(80) - PARJ(90), see section 10.4.
MSTP(81) : (D=1) master switch for multiple interactions.

= 0 : off.
= 1 : on.

MSTP(82) - MSTP(86) : further switches for multiple interactions, see section 11.4.
MSTP(91) - MSTP(94) : switches for beam remnant treatment, see section 11.4.
MSTP(101) : (D=3) (C) structure of diffractive system.

= 1 : forward moving diquark + interacting quark.
= 2 : forward moving diquark + quark joined via interacting gluon (‘hairpin’

configuration).
= 3 : a mixture of the two options above, with a fraction PARP(101) of the

former type.
MSTP(102) : (D=1) (C) decay of a ρ0 meson produced by ‘elastic’ scattering of an incom-

ing γ, as in γp→ ρ0p, or the same with the hadron diffractively excited.
= 0 : the ρ0 is allowed to decay isotropically, like any other ρ0.
= 1 : the decay ρ0 → π+π− is done with an angular distribution proportional

to sin2 θ in its rest frame, where the z axis is given by the direction of
motion of the ρ0. The ρ0 decay is then done as part of the hard process,
i.e. also when MSTP(111)=0.

MSTP(110) : (D=0) switch to allow some or all resonance widths to be modified by the
factor PARP(110). This is not intended for serious physics studies. The main
application is rather to generate events with an artificially narrow resonance
width in order to study the detector-related smearing effects on the mass res-
olution.

> 0 : rescale the particular resonance with KF = MSTP(110). If the resonance
has an antiparticle, this one is affected as well.

= -1 : rescale all resonances, except t, t, Z0 and W±.
= -2 : rescale all resonances.
Warning: Only resonances with a width evaluated by PYWIDT are affected, and

preferentially then those with MWID value 1 or 3. For other resonances
the appearance of effects or not depends on how the cross sections have
been implemented. So it is important to check that indeed the mass
distribution is affected as expected. Also beware that, if a sequential
decay chain is involved, the scaling may become more complicated. Fur-
thermore, depending on implementational details, a cross section may or
may not scale with PARP(110) (quite apart from differences related to
the convolution with parton distributions etc.). All in all, it is then an
option to be used only with open eyes, and for very specific applications.

MSTP(111) : (D=1) (C) master switch for fragmentation and decay, as obtained with a
PYEXEC call.

186

= 0 : off.
= 1 : on.
= -1 : only choose kinematical variables for hard scattering, i.e. no jets are de-

fined. This is useful, for instance, to calculate cross sections (by Monte
Carlo integration) without wanting to simulate events; information ob-
tained with PYSTAT(1) will be correct.

MSTP(112) : (D=1) (C) cuts on partonic events; only affects an exceedingly tiny fraction
of events. Normally this concerns what happens in the PYPREP routine, if a
colour singlet subsystem has a very small invariant mass and attempts to
collapse it to a single particle fail, see section 12.4.1.

= 0 : no cuts (can be used only with independent fragmentation, at least in
principle).

= 1 : string cuts (as normally required for fragmentation).
MSTP(113) : (D=1) (C) recalculation of energies of partons from their momenta and

masses, to be done immediately before and after fragmentation, to partly com-
pensate for some numerical problems appearing at high energies.

= 0 : not performed.
= 1 : performed.

MSTP(115) : (D=0) (C) choice of colour rearrangement scenario for process 25, W+W−

pair production, when both W’s decay hadronically. (Also works for process
22, Z0Z0 production, except when the Z’s are allowed to fluctuate to very small
masses.) See section 12.4.2 for details.

= 0 : no reconnection.
= 1 : scenario I, reconnection inspired by a type I superconductor, with the

reconnection probability related to the overlap volume in space and time
between the W+ and W− strings. Related parameters are found in
PARP(115) - PARP(119), with PARP(117) of special interest.

= 2 : scenario II, reconnection inspired by a type II superconductor, with re-
connection possible when two string cores cross. Related parameter in
PARP(115).

= 3 : scenario II’, as model II but with the additional requirement that a re-
connection will only occur if the total string length is reduced by it.

= 5 : the GH scenario, where the reconnection can occur that reduces the total
string length (λ measure) most. PARP(120) gives the fraction of such
event where a reconnection is actually made; since almost all events could
allow a reconnection that would reduce the string length, PARP(120) is
almost the same as the reconnection probability.

= 11 : the intermediate scenario, where a reconnection is made at the ‘origin’ of
events, based on the subdivision of all radiation of a qq system as coming
either from the q or the q. PARP(120) gives the assumed probability that
a reconnection will occur. A somewhat simpleminded model, but not
quite unrealistic.

= 12 : the instantaneous scenario, where a reconnection is allowed to occur be-
fore the parton showers, and showering is performed inside the recon-
nected systems with maximum virtuality set by the mass of the recon-
nected systems. PARP(120) gives the assumed probability that a recon-
nection will occur. Is completely unrealistic, but useful as an extreme
example with very large effects.

MSTP(121) : (D=0) calculation of kinematics selection coefficients and differential cross
section maxima for included (by you or default) subprocesses.

= 0 : not known; to be calculated at initialization.
= 1 : not known; to be calculated at initialization; however, the maximum

value then obtained is to be multiplied by PARP(121) (this may be useful

187

if a violation factor has been observed in a previous run of the same kind).
= 2 : known; kinematics selection coefficients stored by you in COEF(ISUB,J)

(J = 1–20) in common block PYINT2 and maximum of the corresponding
differential cross section times Jacobians in XSEC(ISUB,1) in common
block PYINT5. This is to be done for each included subprocess ISUB
before initialization, with the sum of all XSEC(ISUB,1) values, except for
ISUB = 95, stored in XSEC(0,1).

MSTP(122) : (D=1) initialization and differential cross section maximization print-out.
Also, less importantly, level of information on where in phase space a cross
section maximum has been violated during the run.

= 0 : none.
= 1 : short message at initialization; only when an error (i.e. not a warning) is

generated during the run.
= 2 : detailed message, including full maximization., at initialization; always

during run.
MSTP(123) : (D=2) reaction to violation of maximum differential cross section or to oc-

curence of negative differential cross sections (except when allowed for external
processes, i.e. when IDWTUP < 0).

= 0 : stop generation, print message.
= 1 : continue generation, print message for each subsequently larger violation.
= 2 : as =1, but also increase value of maximum.

MSTP(124) : (D=1) (C) frame for presentation of event.
= 1 : as specified in PYINIT.
= 2 : c.m. frame of incoming particles.
= 3 : hadronic c.m. frame for DIS events, with warnings as given for PYFRAM.

MSTP(125) : (D=1) (C) documentation of partonic process, see section 5.3.2 for de-
tails.

= 0 : only list ultimate string/particle configuration.
= 1 : additionally list short summary of the hard process.
= 2 : list complete documentation of intermediate steps of parton-shower evo-

lution.
MSTP(126) : (D=100) number of lines at the beginning of event record that are reserved

for event-history information; see section 5.3.2. This value should never be
reduced, but may be increased at a later date if more complicated processes
are included.

MSTP(127) : (D=0) possibility to continue run even if none of the requested processes
have non-vanishing cross sections.

= 0 : no, the run will be stopped in the PYINIT call.
= 1 : yes, the PYINIT execution will finish normally, but with the flag

MSTI(53)=1 set to signal the problem. If nevertheless PYEVNT is called
after this, the run will be stopped, since no events can be generated. If
instead a new PYINIT call is made, with changed conditions (e.g. mod-
ified supersymmetry parameters in a SUSY run), it may now become
possible to initialize normally and generate events.

MSTP(128) : (D=0) storing of copy of resonance decay products in the documentation
section of the event record, and mother pointer (K(I,3)) relation of the actual
resonance decay products (stored in the main section of the event record) to
the documentation copy.

= 0 : products are stored also in the documentation section, and each product
stored in the main section points back to the corresponding entry in the
documentation section.

= 1 : products are stored also in the documentation section, but the products
stored in the main section point back to the decaying resonance copy in

188

the main section.
= 2 : products are not stored in the documentation section; the products stored

in the main section point back to the decaying resonance copy in the main
section.

MSTP(129) : (D=10) for the maximization of 2 → 3 processes (ISET(ISUB)=5) each
phase-space point in τ , y and τ ′ is tested MSTP(129) times in the other dimen-
sions (at randomly selected points) to determine the effective maximum in the
(τ , y, τ ′) point.

MSTP(131) : (D=0) master switch for pile-up events, i.e. several independent hadron–
hadron interactions generated in the same bunch–bunch crossing, with the
events following one after the other in the event record. See subsection 11.3
for details.

= 0 : off, i.e. only one event is generated at a time.
= 1 : on, i.e. several events are allowed in the same event record. Information

on the processes generated may be found in MSTI(41) - MSTI(50).
MSTP(132) - MSTP(134) : further switches for pile-up events, see section 11.4.
MSTP(141) : (D=0) calling of PYKCUT in the event-generation chain, for inclusion of

user-specified cuts.
= 0 : not called.
= 1 : called.

MSTP(142) : (D=0) calling of PYEVWT in the event-generation chain, either to give
weighted events or to modify standard cross sections. See PYEVWT description
in section 9.1 for further details.

= 0 : not called.
= 1 : called; the distribution of events among subprocesses and in kinematics

variables is modified by the factor WTXS, set by you in the PYEVWT call,
but events come with a compensating weight PARI(10)=1./WTXS, such
that total cross sections are unchanged.

= 2 : called; the cross section itself is modified by the factor WTXS, set by you
in the PYEVWT call.

MSTP(151) : (D=0) introduce smeared position of primary vertex of events.
= 0 : no, i.e. the primary vertex of each event is at the origin.
= 1 : yes, with Gaussian distributions separately in x, y, z and t. The re-

spective widths of the Gaussians have to be given in PARP(151) -
PARP(154). Also pile-up events obtain separate primary vertices. No
provisions are made for more complicated beam-spot shapes, e.g. with a
spread in z that varies as a function of t. Note that a large beam spot
combined with some of the MSTJ(22) options may lead to many particles
not being allowed to decay at all.

MSTP(171) : (D=0) possibility of variable energies from one event to the next. For
further details see section 9.8.

= 0 : no; i.e. the energy is fixed at the initialization call.
= 1 : yes; i.e. a new energy has to be given for each new event.
Warning: Variable energies cannot be used in conjunction with the internal

generation of a virtual photon flux obtained by a PYINIT call with
’gamma/lepton’ argument. The reason is that a variable-energy ma-
chinery is now used internally for the γ-hadron or γγ subsystem, with
some information saved at initialization for the full energy.

MSTP(172) : (D=2) options for generation of events with variable energies, applicable
when MSTP(171)=1.

= 1 : an event is generated at the requested energy, i.e. internally a loop is
performed over possible event configurations until one is accepted. If the
requested c.m. energy of an event is below PARP(2) the run is aborted.

189

Cross-section information can not be trusted with this option, since it
depends on how you decided to pick the requested energies.

= 2 : only one event configuration is tried. If that is accepted, the event is
generated in full. If not, no event is generated, and the status code
MSTI(61)=1 is returned. You are then expected to give a new energy,
looping until an acceptable event is found. No event is generated if the
requested c.m. energy is below PARP(2), instead MSTI(61)=1 is set to
signal the failure. In principle, cross sections should come out correctly
with this option.

MSTP(173) : (D=0) possibility for you to give in an event weight to compensate for a
biased choice of beam spectrum.

= 0 : no, i.e. event weight is unity.
= 1 : yes; weight to be given for each event in PARP(173), with maximum

weight given at initialization in PARP(174).
MSTP(181) : (R) Pythia version number.
MSTP(182) : (R) Pythia subversion number.
MSTP(183) : (R) last year of change for Pythia.
MSTP(184) : (R) last month of change for Pythia.
MSTP(185) : (R) last day of change for Pythia.

PARP(1) : (D=0.25 GeV) nominal ΛQCD used in running αs for hard scattering (see
MSTP(3)).

PARP(2) : (D=10. GeV) lowest c.m. energy for the event as a whole that the program
will accept to simulate.

PARP(13) : (D=1. GeV2) Q2
max scale, to be set by you for defining maximum scale

allowed for photoproduction when using the option MSTP(13)=2.
PARP(14) : (D=0.01) in the numerical integration of quark and gluon parton distribu-

tions inside an electron, the successive halvings of evaluation-point spacing is
interrupted when two values agree in relative size, |new−old|/(new+old), to
better than PARP(14). There are hardwired lower and upper limits of 2 and 8
halvings, respectively.

PARP(15) : (D=0.5 GeV) lower cut-off p0 used to define minimum transverse momentum
in branchings γ → qq in the anomalous event class of γp interactions, i.e. sets
the dividing line between the VMD and GVMD event classes.

PARP(16) : (D=1.) the anomalous parton-distribution functions of the photon are taken
to have the charm and bottom flavour thresholds at virtuality PARP(16)×m2

q.
PARP(17) : (D=1.) rescaling factor used for the Q argument of the anomalous parton

distributions of the photon, see MSTP(15).
PARP(18) : (D=0.4 GeV) scale kρ, such that the cross sections of a GVMD state of scale

k⊥ is suppressed by a factor k2
ρ/k

2
⊥ relative to those of a VMD state. Should

be of order mρ/2, with some finetuning to fit data.
PARP(31) : (D=1.5) common K factor multiplying the differential cross section for hard

parton–parton processes when MSTP(33)=1 or 2, with the exception of colour
annihilation graphs in the latter case.

PARP(32) : (D=2.0) special K factor multiplying the differential cross section in hard
colour annihilation graphs, including resonance production, when MSTP(33)=2.

PARP(33) : (D=0.075) this factor is used to multiply the ordinary Q2 scale in αs at the
hard interaction for MSTP(33)=3. The effective K factor thus obtained is in
accordance with the results in [Ell86], modulo the danger of doublecounting
because of parton-shower corrections to jet rates.

PARP(34) : (D=1.) the Q2 scale defined by MSTP(32) is multiplied by PARP(34) when
it is used as argument for parton distributions and αs at the hard interaction.
It does not affect αs when MSTP(33)=3, nor does it change the Q2 argument

190

of parton showers.
PARP(35) : (D=0.20) fix αs value that is used in the heavy-flavour threshold factor when

MSTP(35)=1.
PARP(36) : (D=0. GeV) the width ΓQ for the heavy flavour studied in processes ISUB

= 81 or 82; to be used for the threshold factor when MSTP(35)=2.
PARP(37) : (D=2.) for MSTP(37)=1 this regulates the point at which the reference

on-shell quark mass in Higgs and technicolor couplings is assumed defined
in PYMRUN calls; specifically the running quark mass is assumed to coincide
with the fix one at an energy scale PARP(37) times the fix quark mass, i.e.
mrunning(PARP(37)×mfix) = mfix. See discussion at eq. 90 on ambiguity of
PARP(37) choice.

PARP(38) : (D=0.70 GeV3) the squared wave function at the origin, |R(0)|2, of the J/ψ
wave function. Used for processes 86 and 106–108. See ref. [Glo88].

PARP(39) : (D=0.006 GeV3) the squared derivative of the wave function at the origin,
|R′(0)|2/m2, of the χc wave functions. Used for processes 87–89 and 104–105.
See ref. [Glo88].

PARP(41) : (D=0.020 GeV) in the process of generating mass for resonances, and op-
tionally to force that mass to be in a given range, only resonances with a total
width in excess of PARP(41) are generated according to a Breit–Wigner shape
(if allowed by MSTP(42)), while narrower resonances are put on the mass shell.

PARP(42) : (D=2. GeV) minimum mass of resonances assumed to be allowed when
evaluating total width of h0 to Z0Z0 or W+W− for cases when the h0 is so light
that (at least) one Z/W is forced to be off the mass shell. Also generally used
as safety check on minimum mass of resonance. Note that some CKIN values
may provide additional constraints.

PARP(43) : (D=0.10) precision parameter used in numerical integration of width for a
channel with at least one daughter off the mass shell.

PARP(44) : (D=1000.) the ν parameter of the strongly interacting Z/W model of
Dobado, Herrero and Terron [Dob91].

PARP(45) : (D=2054. GeV) the effective techni-ρ mass parameter of the strongly inter-
acting model of Dobado, Herrero and Terron [Dob91]; see MSTP(46)=5. On
physical grounds it should not be chosen smaller than about 1 TeV or larger
than about the default value.

PARP(46) : (D=123. GeV) the Fπ decay constant that appears inversely quadratically
in all techni-η partial decay widths [Eic84, App92].

PARP(47) : (D=246. GeV) vacuum expectation value v used in the DHT scenario
[Dob91] to define the width of the techni-ρ; this width is inversely propor-
tional v2.

PARP(48) : (D=50.) the Breit-Wigner factor in the cross section is set to vanish for
masses that deviate from the nominal one by more than PARP(48) times the
nominal resonance width (i.e. the width evaluated at the nominal mass). Is
used in most processes with a single s-channel resonance, but there are some
exceptions, notably γ∗/Z0 and W±. The reason for this option is that the
conventional Breit-Wigner description is at times not really valid far away
from the resonance position, e.g. because of interference with other graphs
that should then be included. The wings of the Breit-Wigner can therefore be
removed.

PARP(50) : (D=0.054) dimensionless coupling, which enters quadratically in all partial
widths of the excited graviton G∗ resonance, is κmG∗ =

√
2x1k/MPl, where

x1 ≈ 3.83 is the first zero of the J1 Bessel function and MPl is the modified
Planck mass scale [Ran99, Bij01].

PARP(61) - PARP(65) : (C) parameters for initial-state radiation, see section 10.4.
PARP(71) - PARP(72) : (C) parameter for final-state radiation, see section 10.4.

191

PARP(81) - PARP(90) : parameters for multiple interactions, see section 11.4.
PARP(91) - PARP(100) : parameters for beam remnant treatment, see section 11.4.
PARP(101) : (D=0.50) fraction of diffractive systems in which a quark is assumed kicked

out by the pomeron rather than a gluon; applicable for option MSTP(101)=3.
PARP(102) : (D=0.28 GeV) the mass spectrum of diffractive states (in single and double

diffractive scattering) is assumed to start PARP(102) above the mass of the
particle that is diffractively excited. In this connection, an incoming γ is
taken to have the selected VMD meson mass, i.e. mρ, mω, mφ or mJ/ψ.

PARP(103) : (D=1.0 GeV) if the mass of a diffractive state is less than PARP(103) above
the mass of the particle that is diffractively excited, the state is forced to
decay isotropically into a two-body channel. In this connection, an incoming
γ is taken to have the selected VMD meson mass, i.e. mρ, mω, mφ or mJ/ψ.
If the mass is higher than this threshold, the standard string fragmentation
machinery is used. The forced two-body decay is always carried out, also when
MSTP(111)=0.

PARP(104) : (D=0.8 GeV) minimum energy above threshold for which hadron–hadron
total, elastic and diffractive cross sections are defined. Below this energy, an
alternative description in terms of specific few-body channels would have been
required, and this is not modelled in Pythia.

PARP(110) : (D=1.) a rescaling factor for resonance widths, applied when MSTP(110 is
switched on.

PARP(111) : (D=2. GeV) used to define the minimum invariant mass of the remnant
hadronic system (i.e. when interacting partons have been taken away), together
with original hadron masses and extra parton masses. For a hadron or resolved
photon beam, this also implies a further contraint that the x of an interacting
parton be below 1− 2× PARP(111)/Ecm.

PARP(115) : (D=1.5 fm) (C) the average fragmentation time of a string, giving the
exponential suppression that a reconnection cannot occur if strings decayed
before crossing. Is implicitly fixed by the string constant and the fragmentation
function parameters, and so a significant change is not recommended.

PARP(116) : (D=0.5 fm) (C) width of the type I string, giving the radius of the Gaussian
distribution in x and y separately.

PARP(117) : (D=0.6) (C) kI, the main free parameter in the reconnection probability
for scenario I; the probability is given by PARP(117) times the overlap volume,
up to saturation effects.

PARP(118), PARP(119) : (D=2.5,2.0) (C) fr and ft, respectively, used in the Monte
Carlo sampling of the phase space volume in scenario I. There is no real reason
to change these numbers.

PARP(120) : (D=1.0) (D) (C) fraction of events in the GH, intermediate and instanta-
neous scenarios where a reconnection is allowed to occur. For the GH one a
further suppression of the reconnection rate occurs from the requirement of
reduced string length in a reconnection.

PARP(121) : (D=1.) the maxima obtained at initial maximization are multiplied by this
factor if MSTP(121)=1; typically PARP(121) would be given as the product of
the violation factors observed (i.e. the ratio of final maximum value to initial
maximum value) for the given process(es).

PARP(122) : (D=0.4) fraction of total probability that is shared democratically between
the COEF coefficients open for the given variable, with the remaining fraction
distributed according to the optimization results of PYMAXI.

PARP(131) : parameter for pile-up events, see section 11.4.
PARP(137) : (D=200.000 GeV) MV , vector mass parameter for technivector decays to

transverse gauge bosons and technipions.
PARP(138) : (D=200.000 GeV) MA, axial mass parameter for technivector decays to

192

transverse gauge bosons and technipions.
PARP(139) : (D=0.33300) sinχ′, where χ′ is the mixing angle between the π′0tc interaction

and mass eigenstates.
PARP(140) : (D=0.05000) isospin violating ρ0

tc/ω
0
tc mixing amplitude.

PARP(141) : (D= 0.33333) sinχ, where χ is the mixing angle between technipion inter-
action and mass eigenstates.

PARP(142) : (D=82.0000 GeV) FT , the technipion decay constant.
PARP(143) : (D= 1.3333) QU , charge of up-type technifermion; the down-type tech-

nifermion has a charge QD = QU − 1.
PARP(144) : (D= 4.0000) NTC , number of technicolors; fixes the relative values of gem

and getc.
PARP(145) : (D= 1.0000) Cc, coefficient of the technipion decays to charm; appears

squared in the decay rate.
PARP(146) : (D= 1.0000) Cb, coefficient of the technipion decays to bottom; appears

squared in the decay rate.
PARP(147) : (D= 0.0182) Ct, coefficient of the technipion decays to top, estimated to

be mb/mt; appears squared in the decay rate.
PARP(148) : (D= 1.0000) Cτ , coefficient of the technipion decays to τ ; appears squared

in the decay rate.
PARP(149) : (D=0.00000) Cπ, coefficient of technipion decays to gg.
PARP(150) : (D=1.33333) Cπ′ , coefficient of π′0tc decays to gg.
PARP(151) - PARP(154) : (D=4*0.) (C) regulate the assumed beam-spot size. For

MSTP(151)=1 the x, y, z and t coordinates of the primary vertex of each event
are selected according to four independent Gaussians. The widths of these
Gaussians are given by the four parameters, where the first three are in units
of mm and the fourth in mm/c.

PARP(155) : (D=0.3651480) parameter in the scenario with coloured technihadrons de-
scribed in subsection 8.6.7 and switched on with MSTP(5)=5. The sign of
PARP(155) is used to fix one of two models. For PARP(155)> 0, the coupling
of the V8 to light quarks is suppressed by PARP(155)2 whereas the coupling to
heavy (b and t) quarks is enhanced by 1/PARP(155)2. For PARP(155)< 0, the
couplings to quarks is universal, and given by 1/PARP(155)2.

PARP(156) : (D=200 GeV) mass parameter in the scenario with coloured technihadrons
described in subsection 8.6.7 and switched on with MSTP(5)=5. It sets the
scale for the decay of technirhos into technipions, thereby affecting the width
of the resonances.

PARP(161) - PARP(164) : (D=2.20, 23.6, 18.4, 11.5) couplings f 2
V /4π of the photon to

the ρ0, ω, φ and J/ψ vector mesons.
PARP(165) : (D=0.5) a simple multiplicative factor applied to the cross section for the

transverse resolved photons to take into account the effects of longitudinal
resolved photons, see MSTP(17). No preferred value, but typically one could use
PARP(165)=1 as main contrast to the no-effect =0, with the default arbitrarily
chosen in the middle.

PARP(167), PARP(168) : (D=2*0) the longitudinal energy fraction y of an incoming
photon, side 1 or 2, used in the R expression given for MSTP(17) to evalu-
ate fL(y,Q2)/fT (y,Q2). Need not be supplied when a photon spectrum is
generated inside a lepton beam, but only when a photon is directly given as
argument in the PYINIT call.

PARP(171) : to be set, event-by-event, when variable energies are allowed, i.e. when
MSTP(171)=1. If PYINIT is called with FRAME=’CMS’ (=’FIXT’), PARP(171)
multiplies the c.m. energy (beam energy) used at initialization. For the options
’3MOM’, ’4MOM’ and ’5MOM’, PARP(171) is dummy, since there the momenta
are set in the P array. It is also dummy for the ’USER’ option, where the choice

193

of variable energies is beyond the control of Pythia.
PARP(173) : event weight to be given by you when MSTP(173)=1.
PARP(174) : (D=1.) maximum event weight that will be encountered in PARP(173)

during the course of a run with MSTP(173)=1; to be used to optimize the
efficiency of the event generation. It is always allowed to use a larger bound
than the true one, but with a corresponding loss in efficiency.

PARP(181) - PARP(189) : (D = 0.1, 0.01, 0.01, 0.01, 0.1, 0.01, 0.01, 0.01, 0.3) Yukawa
couplings of leptons to H++, assumed same for H++

L and H++
R . Is a symmetric

3× 3 array, where PARP(177+3*i+j) gives the coupling to a lepton pair with
generation indices i and j. Thus the default matrix is dominated by the
diagonal elements and especially by the ττ one.

PARP(190) : (D=0.64) gL = e/ sin θW .
PARP(191) : (D=0.64) gR, assumed same as gL.
PARP(192) : (D=5 GeV) vL vacuum expectation value of the left-triplet. The corre-

sponding vR is assumed given by vR =
√

2MWR
/gR and is not stored explicitly.

9.4 Further Couplings

In this section we collect information on the two routines for running αs and αem, and
on other couplings of standard and non-standard particles found in the PYDAT1 common
block. Although originally begun for applications within the traditional particle sector,
this section has rapidly expanded towards the non-standard aspects, and is thus more of
interest for applications to specific processes. It could therefore equally well have been
put somewhere else in this manual. Several other couplings indeed appear in the PARP
array in the PYPARS common block, see section 9.3, and the choice between the two has
largely been dictated by availability of space.

ALEM = PYALEM(Q2)

Purpose: to calculate the running electromagnetic coupling constant αem. Expressions
used are described in ref. [Kle89]. See MSTU(101), PARU(101), PARU(103) and
PARU(104).

Q2 : the momentum transfer scale Q2 at which to evaluate αem.

ALPS = PYALPS(Q2)

Purpose: to calculate the running strong coupling constant αs, e.g. in matrix elements
and resonance decay widths. (The function is not used in parton showers,
however, where formulae rather are written in terms of the relevant Λ values.)
The first- and second-order expressions are given by eqs. (27) and (32). See
MSTU(111) - MSTU(118) and PARU(111) - PARU(118) for options.

Q2 : the momentum transfer scale Q2 at which to evaluate αs.

PM = PYMRUN(KF,Q2)

Purpose: to give running masses of d, u, s, c, b and t quarks according to eq. 90. For
all other particles, the PYMASS function is called by PYMRUN to give the normal
mass. Such running masses appear e.g. in couplings of fermions to Higgs and
technipion states.

KF : flavour code.
Q2 : the momentum transfer scale Q2 at which to evaluate αs.

194

Note: The nominal values, valid at a reference scale
Q2

ref = max((PARP(37)mnominal)
2, 4Λ2),

are stored in PARF(91)-PARF(96).

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of the program as a whole. Here only those related to couplings
are described; the main description is found in section 14.3.

MSTU(101) : (D=1) procedure for αem evaluation in the PYALEM function.
= 0 : αem is taken fixed at the value PARU(101).
= 1 : αem is running with the Q2 scale, taking into account corrections from

fermion loops (e, µ, τ , d, u, s, c, b).
= 2 : αem is fixed, but with separate values at low and high Q2. For Q2 be-

low (above) PARU(104) the value PARU(101) (PARU(103)) is used. The
former value is then intended for real photon emission, the latter for
electroweak physics, e.g. of the W/Z gauge bosons.

MSTU(111) : (I, D=1) order of αs evaluation in the PYALPS function. Is overwritten in
PYEEVT, PYONIA or PYINIT calls with the value desired for the process under
study.

= 0 : αs is fixed at the value PARU(111). As extra safety, Λ =PARU(117) is set
in PYALPS so that the first-order running αs agrees with the desired fixed
αs for the Q2 value used.

= 1 : first-order running αs is used.
= 2 : second-order running αs is used.

MSTU(112) : (D=5) the nominal number of flavours assumed in the αs expression, with
respect to which Λ is defined.

MSTU(113) : (D=3) minimum number of flavours that may be assumed in αs expression,
see MSTU(112).

MSTU(114) : (D=5) maximum number of flavours that may be assumed in αs expression,
see MSTU(112).

MSTU(115) : (D=0) treatment of αs singularity for Q2 → 0 in PYALPS calls. (Relevant
e.g. for QCD 2→ 2 matrix elements in the p⊥ → 0 limit, but not for showers,
where PYALPS is not called.)

= 0 : allow it to diverge like 1/ ln(Q2/Λ2).
= 1 : soften the divergence to 1/ ln(1 +Q2/Λ2).
= 2 : freeze Q2 evolution below PARU(114), i.e. the effective argument is

max(Q2,PARU(114)).
MSTU(118) : (I) number of flavours nf found and used in latest PYALPS call.

PARU(101) : (D=0.00729735=1/137.04) αem, the electromagnetic fine structure constant
at vanishing momentum transfer.

PARU(102) : (D=0.232) sin2θW , the weak mixing angle of the standard electroweak
model.

PARU(103) : (D=0.007764=1/128.8) typical αem in electroweak processes; used for
Q2 >PARU(104) in the option MSTU(101)=2 of PYALEM. Although it can tech-
nically be used also at rather small Q2, this αem value is mainly intended for
high Q2, primarily Z0 and W± physics.

PARU(104) : (D=1 GeV2) dividing line between ‘low’ and ‘high’ Q2 values in the option
MSTU(101)=2 of PYALEM.

PARU(105) : (D=1.16639E-5 GeV−2) GF, the Fermi constant of weak interactions.
PARU(108) : (I) the αem value obtained in the latest call to the PYALEM function.

195

PARU(111) : (D=0.20) fix αs value assumed in PYALPS when MSTU(111)=0 (and also in
parton showers when αs is assumed fix there).

PARU(112) : (I, D=0.25 GeV) Λ used in running αs expression in PYALPS. Like
MSTU(111), this value is overwritten by the calling physics routines, and is
therefore purely nominal.

PARU(113) : (D=1.) the flavour thresholds, for the effective number of flavours nf to
use in the αs expression, are assumed to sit at Q2 =PARU(113)×m2

q, where mq

is the quark mass. May be overwritten from the calling physics routine.
PARU(114) : (D=4 GeV2) Q2 value below which the αs value is assumed constant for

MSTU(115)=2.
PARU(115) : (D=10.) maximum αs value that PYALPS will ever return; is used as a last

resort to avoid singularities.
PARU(117) : (I) Λ value (associated with MSTU(118) effective flavours) obtained in latest

PYALPS call.
PARU(118) : (I) αs value obtained in latest PYALPS call.
PARU(121) - PARU(130) : couplings of a new Z′0; for fermion default values are given

by the Standard Model Z0 values, assuming sin2θW = 0.23. Since a genera-
tion dependence is now allowed for the Z′0 couplings to fermions, the vari-
ables PARU(121) - PARU(128) only refer to the first generation, with the
second generation in PARJ(180) - PARJ(187) and the third in PARJ(188)
- PARJ(195) following exactly the same pattern. Note that e.g. the Z′0 width
contains squared couplings, and thus depends quadratically on the values be-
low.

PARU(121), PARU(122) : (D=-0.693,-1.) vector and axial couplings of down type
quarks to Z′0.

PARU(123), PARU(124) : (D=0.387,1.) vector and axial couplings of up type
quarks to Z′0.

PARU(125), PARU(126) : (D=-0.08,-1.) vector and axial couplings of leptons to
Z′0.

PARU(127), PARU(128) : (D=1.,1.) vector and axial couplings of neutrinos to Z′0.
PARU(129) : (D=1.) the coupling Z ′0 → W+W− is taken to be PARU(129)×(the

Standard Model Z0 → W+W− coupling)×(mW/mZ′)
2. This gives a

Z′0 → W+W− partial width that increases proportionately to the Z′0

mass.
PARU(130) : (D=0.) in the decay chain Z′0 → W+W− → 4 fermions, the angular

distribution in the W decays is supposed to be a mixture, with fraction
1-PARU(130) corresponding to the same angular distribution between the
four final fermions as in Z0 → W+W− (mixture of transverse and lon-
gitudinal W’s), and fraction PARU(130) corresponding to h0 → W+W−

the same way (longitudinal W’s).
PARU(131) - PARU(136) : couplings of a new W′±; for fermions default values are given

by the Standard Model W± values (i.e. V − A). Note that e.g. the W′±

width contains squared couplings, and thus depends quadratically on the values
below.

PARU(131), PARU(132) : (D=1.,-1.) vector and axial couplings of a quark–
antiquark pair to W′±; is further multiplied by the ordinary CKM factors.

PARU(133), PARU(134) : (D=1.,-1.) vector and axial couplings of a lepton-
neutrino pair to W′±.

PARU(135) : (D=1.) the coupling W′± → Z0W± is taken to be PARU(135)×(the
Standard Model W± → Z0W± coupling)×(mW/mW ′)

2. This gives a
W′± → Z0W± partial width that increases proportionately to the W′

mass.
PARU(136) : (D=0.) in the decay chain W′± → Z0W± → 4 fermions, the angular

196

distribution in the W/Z decays is supposed to be a mixture, with fraction
1-PARU(136) corresponding to the same angular distribution between
the four final fermions as in W± → Z0W± (mixture of transverse and
longitudinal W/Z’s), and fraction PARU(136) corresponding to H± →
Z0W± the same way (longitudinal W/Z’s).

PARU(141) : (D=5.) tan β parameter of a two Higgs doublet scenario, i.e. the ratio
of vacuum expectation values. This affects mass relations and couplings in
the Higgs sector. If the Supersymmetry simulation is switched on, IMSS(5)
nonvanishing, PARU(141) will be overwritten by RMSS(5) at initialization, so
it is the latter varaible that should be set.

PARU(142) : (D=1.) the Z0 → H+H− coupling is taken to be PARU(142)×(the MSSM
Z0 → H+H− coupling).

PARU(143) : (D=1.) the Z′0 → H+H− coupling is taken to be PARU(143)×(the MSSM
Z0 → H+H− coupling).

PARU(145) : (D=1.) quadratically multiplicative factor in the Z′0 → Z0h0 partial width
in left–right-symmetric models, expected to be unity (see [Coc91]).

PARU(146) : (D=1.) sin(2α) parameter, enters quadratically as multiplicative factor in
the W′± →W±h0 partial width in left–right-symmetric models (see [Coc91]).

PARU(151) : (D=1.) multiplicative factor in the LQ → q` squared Yukawa coupling,
and thereby in the LQ partial width and the q`→ LQ and other cross sections.
Specifically, λ2/(4π) =PARU(151)×αem, i.e. it corresponds to the k factor of
[Hew88].

PARU(153) : (D=0.) anomalous magnetic moment of the W± in process 20; η = κ− 1,
where η = 0 (κ = 1) is the Standard Model value.

PARU(155) : (D=1000. GeV) compositeness scale Λ.
PARU(156) : (D=1.) sign of interference term between standard cross section and com-

posite term (η parameter); should be ±1.
PARU(157) - PARU(159) : (D=3*1.) strength of SU(2), U(1) and SU(3) couplings,

respectively, in an excited fermion scenario; cf. f , f ′ and fs of [Bau90].
PARU(161) - PARU(168) : (D=5*1.,3*0.) multiplicative factors that can be used to

modify the default couplings of the h0 particle in Pythia. Note that the fac-
tors enter quadratically in the partial widths. The default values correspond
to the couplings given in the minimal one-Higgs-doublet Standard Model, and
are therefore not realistic in a two-Higgs-doublet scenario. The default val-
ues should be changed appropriately by you. Also the last two default values
should be changed; for these the expressions of the minimal supersymmetric
Standard Model (MSSM) are given to show parameter normalization. Alter-
natively, the Susy machinery can generate all the couplings for IMSS(1), see
MSTP(4).

PARU(161) : h0 coupling to down type quarks.
PARU(162) : h0 coupling to up type quarks.
PARU(163) : h0 coupling to leptons.
PARU(164) : h0 coupling to Z0.
PARU(165) : h0 coupling to W±.
PARU(168) : h0 coupling to H± in γγ → h0 loops, in MSSM sin(β − α) +

cos(2β) sin(β + α)/(2 cos2θW).
PARU(171) - PARU(178) : (D=7*1.,0.) multiplicative factors that can be used to mod-

ify the default couplings of the H0 particle in Pythia. Note that the factors
enter quadratically in partial widths. The default values for PARU(171) -
PARU(175) correspond to the couplings given to h0 in the minimal one-Higgs-
doublet Standard Model, and are therefore not realistic in a two-Higgs-doublet
scenario. The default values should be changed appropriately by you. Also
the last two default values should be changed; for these the expressions of the

197

minimal supersymmetric Standard Model (MSSM) are given to show param-
eter normalization. Alternatively, the Susy machinery can generate all the
couplings for IMSS(1), see MSTP(4).

PARU(171) : H0 coupling to down type quarks.
PARU(172) : H0 coupling to up type quarks.
PARU(173) : H0 coupling to leptons.
PARU(174) : H0 coupling to Z0.
PARU(175) : H0 coupling to W±.
PARU(176) : H0 coupling to h0h0, in MSSM cos(2α) cos(β+α)−2 sin(2α) sin(β+α).
PARU(177) : H0 coupling to A0A0, in MSSM cos(2β) cos(β + α).
PARU(178) : H0 coupling to H± in γγ → H0 loops, in MSSM cos(β − α) −

cos(2β) cos(β + α)/(2 cos2θW).
PARU(181) - PARU(190) : (D=3*1.,2*0.,2*1.,3*0.) multiplicative factors that can be

used to modify the default couplings of the A0 particle in Pythia. Note
that the factors enter quadratically in partial widths. The default values for
PARU(181) - PARU(183) correspond to the couplings given to h0 in the min-
imal one-Higgs-doublet Standard Model, and are therefore not realistic in a
two-Higgs-doublet scenario. The default values should be changed appropri-
ately by you. PARU(184) and PARU(185) should be vanishing at the tree level,
in the absence of CP violating phases in the Higgs sector, and are so set; nor-
malization of these couplings agrees with what is used for h0 and H0. Also
the other default values should be changed; for these the expressions of the
Minimal Supersymmetric Standard Model (MSSM) are given to show param-
eter normalization. Alternatively, the Susy machinery can generate all the
couplings for IMSS(1), see MSTP(4).

PARU(181) : A0 coupling to down type quarks.
PARU(182) : A0 coupling to up type quarks.
PARU(183) : A0 coupling to leptons.
PARU(184) : A0 coupling to Z0.
PARU(185) : A0 coupling to W±.
PARU(186) : A0 coupling to Z0h0 (or Z∗ to A0h0), in MSSM cos(β − α).
PARU(187) : A0 coupling to Z0H0 (or Z∗ to A0H0), in MSSM sin(β − α).
PARU(188) : As PARU(186), but coupling to Z′0 rather than Z0.
PARU(189) : As PARU(187), but coupling to Z′0 rather than Z0.
PARU(190) : A0 coupling to H± in γγ → A0 loops, 0 in MSSM.

PARU(191) - PARU(195) : (D=4*0.,1.) multiplicative factors that can be used to mod-
ify the couplings of the H± particle in Pythia. Currently only PARU(195) is
in use. See above for related comments.

PARU(195) : H± coupling to W±h0 (or W∗± to h±h0), in MSSM cos(β − α).

PARJ(180) - PARJ(187) : couplings of the second generation fermions to the Z ′0, fol-
lowing the same pattern and with the same default values as the first one in
PARU(121) - PARU(128).

PARJ(188) - PARJ(195) : couplings of the third generation fermions to the Z ′0, fol-
lowing the same pattern and with the same default values as the first one in
PARU(121) - PARU(128).

9.5 Supersymmetry Common Blocks and Routines

The parameters available to the Susy user are stored in the common block PYMSSM. In
general, options are set by the IMSS array, while real valued parameters are set by RMSS.
The entries IMSS(0) and RMSS(0) are not used, but are available for compatibility with
the C programming language.

198

COMMON/PYMSSM/IMSS(0:99),RMSS(0:99)

Purpose: to give access to parameters that allow the simulation of the MSSM.
IMSS(1) : (D=0) level of MSSM simulation.

= 0 : No MSSM simulation.
= 1 : A general MSSM simulation. The parameters of the model are set by

the array RMSS.
= 2 : An approximate SUGRA simulation using the analytic formulae of

[Dre95] to reduce the number of free parameters. In this case, only
five input parameters are used. RMSS(1) is the common gaugino mass
m1/2, RMSS(8) is the common scalar mass m0, RMSS(4) fixes the sign of
the higgsino mass µ, RMSS(16) is the common trilinear coupling A, and
RMSS(5) is tan β = v2/v1.

IMSS(2) : (D=0) treatment of U(1), SU(2), and SU(3) gaugino mass parame-
ters.

= 0 : The gaugino parameters M1,M2 and M3 are set by RMSS(1), RMSS(2),
and RMSS(3), i.e. there is no forced relation between them.

= 1 : The gaugino parameters are fixed by the relation (3/5)M1/α1 =
M2/α2 = M3/α3 = X and the parameter RMSS(1). If IMSS(1)=2, then
RMSS(1) is treated as the common gaugino mass m1/2 and RMSS(20) is
the GUT scale coupling constant αGUT , so that X = m1/2/αGUT .

= 2 : M1 is set by RMSS(1), M2 by RMSS(2) and M3 = M2α3/α2. In such a
scenario, the U(1) gaugino mass behaves anomalously.

IMSS(3) : (D=0) treatment of the gluino mass parameter.
= 0 : The gluino mass parameter M3 is used to calculate the gluino pole mass

with the formulae of [Kol96]. The effects of squark loops can significantly
shift the mass.

= 1 : M3 is the gluino pole mass. The effects of squark loops are assumed to
have been included in this value.

IMSS(4) : (D=1) treatment of the Higgs sector.
= 0 : The Higgs sector is determined by the approximate formulae of [Car95]

and the pseudoscalar mass MA set by RMSS(19).
= 1 : The Higgs sector is determined by the exact formulae of [Car95] and the

pseudoscalar mass MA set by RMSS(19). The pole mass for MA is not
the same as the input parameter.

= 2 : The Higgs sector is fixed by the mixing angle α set by RMSS(18) and the
mass values PMAS(I,1), where I=25,35,36, and 37.

IMSS(5) : (D=0) allows you to set the t̃, b̃ and τ̃ masses and mixing by hand.
= 0 : no, the program calculates itself.
= 1 : yes, calculate from given input. The parameters RMSS(26) - RMSS(28)

specify the mixing angle (in radians) for the sbottom, stop, and stau.
The parameters RMSS(10) - RMSS(14) specify the two stop masses, the
one sbottom mass (the other being fixed by the other parameters) and
the two stau masses. Note that the masses RMSS(10), RMSS(11) and
RMSS(13) correspond to the left-left entries of the diagonalized matrices,
while RMSS(12) and RMSS(14) correspond to the right-right entries. Note
that these entries need not be ordered in mass.

IMSS(7) : (D=0) treatment of the scalar masses in an extension of SUGRA models. The
presence of additional U(1) symmetries at high energy scales can modify the
boundary conditions for the scalar masses at the unification scale.

= 0 : No additional D–terms are included. In SUGRA models, all scalars have
the mass m0 at the unification scale.

199

= 1 : RMSS(23) - RMSS(25) are the values of DX , DY and DS at the unifi-
cation scale in the model of [Mar94]. The boundary conditions for the
scalar masses are shifted based on their quantum numbers under the
additional U(1) symmetries.

IMSS(8) : (D=1) treatment of the τ̃ mass eigenstates.
= 0 : The τ̃ mass eigenstates are calculated using the parameters

RMSS(13,14,17).
= 1 : The τ̃ mass eigenstates are identical to the interaction eigenstates, so

they are treated identically to ẽ and µ̃ .
IMSS(9) : (D=0) treatment of the right handed squark mass eigenstates for the first two

generations.
= 0 : The q̃R masses are fixed by RMSS(9). d̃R and ũR are identical except for

Electroweak D–term contributions.
= 1 : The masses of d̃R and ũR are fixed by RMSS(9) and RMSS(22) respectively.

IMSS(10) : (D=0) allowed decays for χ̃2.
= 0 : The second lightest neutralino χ̃2 decays with a branching ratio calcu-

lated from the MSSM parameters.
= 1 : χ̃2 is forced to decay only to χ̃1γ, regardless of the actual branching ratio.

This can be used for detailed studies of this particular final state.
IMSS(11) : (D=0) choice of the lightest superpartner (LSP).

= 0 : χ̃1 is the LSP.
= 1 : χ̃1 is the next to lightest superparter (NLSP) and the gravitino is the

LSP. The χ̃1 decay length is calculated from the gravitino mass set by
RMSS(21) and the χ̃1 mass and mixing.

IMSS(51) : (D=0) Lepton number violation on/off (LLE type couplings).
= 0 : All LLE couplings off. LLE decay channels off.
= 1 : All LLE couplings set to common value given by 10-RMSS(51).
= 2 : LLE couplings set to generation-hierarchical ‘natural’ values with com-

mon normalization RMSS(51) (see section 8.7.2).
= 3 : All LLE couplings set to zero, but LLE decay channels not switched

off. Non-zero couplings should be entered individually into the array
RVLAM(I,J,K).

IMSS(52) : (D=0) Lepton number violation on/off (LQD type couplings).
= 0 : All LQD couplings off. LQD decay channels off.
= 1 : All LQD couplings set to common value given by 10-RMSS(52).
= 2 : LQD couplings set to generation-hierarchical ‘natural’ values with com-

mon normalization RMSS(52) (see section 8.7.2).
= 3 : All LQD couplings set to zero, but LQD decay channels not switched

off. Non-zero couplings should be entered individually into the array
RVLAMP(I,J,K).

IMSS(53) : Reserved for baryon number violation.

RMSS(1) : (D=80. GeV) If IMSS(1)=1 M1, then U(1) gaugino mass. If IMSS(1)=2,
then the common gaugino mass m1/2.

RMSS(2) : (D=160. GeV) M2, the SU(2) gaugino mass.
RMSS(3) : (D=500. GeV) M3, the SU(3) (gluino) mass parameter.
RMSS(4) : (D=800. GeV) µ, the higgsino mass parameter. If IMSS(1)=2, only the sign

of µ is used.
RMSS(5) : (D=2.) tan β, the ratio of Higgs expectation values.
RMSS(6) : (D=250. GeV) Left slepton mass M˜̀

L
. The sneutrino mass is fixed by a sum

rule.
RMSS(7) : (D=200. GeV) Right slepton mass M˜̀

R
.

RMSS(8) : (D=800. GeV) Left squark mass Mq̃L . If IMSS(1)=2, the common scalar

200

mass m0.
RMSS(9) : (D=700. GeV) Right squark mass Mq̃R . Md̃R

when IMSS(9)=1.
RMSS(10) : (D=800. GeV) Left squark mass for the third generation Mq̃L . When

IMSS(5)=1, it is instead the t̃2 mass, and Mq̃L is a derived quantity.
RMSS(11) : (D=700. GeV) Right sbottom mass Mb̃R

. When IMSS(5)=1, it is instead

the b̃1 mass.
RMSS(12) : (D=500. GeV) Right stop mass Mt̃R

If negative, then it is assumed that

M2
t̃R
< 0. When IMSS(5)=1, it is instead the t̃1 mass.

RMSS(13) : (D=250. GeV) Left stau mass Mτ̃L .
RMSS(14) : (D=200. GeV) Right stau mass Mτ̃R .
RMSS(15) : (D=800. GeV) Bottom trilinear coupling Ab. When IMSS(5)=1, it is a

derived quantity.
RMSS(16) : (D=400. GeV) Top trilinear coupling At. If IMSS(1)=2, the common trilin-

ear coupling A. When IMSS(5)=1, it is a derived quantity.
RMSS(17) : (D=0.) Tau trilinear coupling Aτ . When IMSS(5)=1, it is a derived quantity.
RMSS(18) : (D=0.1) Higgs mixing angle α. This is only used when all of the Higgs

parameters are set by you, i.e IMSS(4)=2.
RMSS(19) : (D=850. GeV) Pseudoscalar Higgs mass parameter MA.
RMSS(20) : (D=0.041) GUT scale coupling constant αGUT.
RMSS(21) : (D=1.0 eV) The gravitino mass. Note nonconventional choice of units for

this particular mass.
RMSS(22) : (D=800. GeV) ũR mass when IMSS(9)=1.
RMSS(23) : (D=104 GeV2) DX contribution to scalar masses when IMSS(7)=1.
RMSS(24) : (D=104 GeV2) DY contribution to scalar masses when IMSS(7)=1.
RMSS(25) : (D=104 GeV2) DS contribution to scalar masses when IMSS(7)=1.
RMSS(26) : (D=0.0 radians) when IMSS(5)=1 it is the sbottom mixing angle.
RMSS(27) : (D=0.0 radians) when IMSS(5)=1 it is the stop mixing angle.
RMSS(28) : (D=0.0 radians) when IMSS(5)=1 it is the stau mixing angle.
RMSS(29) : (D=2.4 × 1018 GeV) The Planck mass, used for calculating decays to light

gravitinos.
RMSS(30) - RMSS(33) : (D=0.0,0.0,0.0,0.0) complex phases for the mass parameters

in RMSS(1) - RMSS(4), where the latter represent the moduli of the mass
parameters for the case of nonvanishing phases.

RMSS(40), RMSS(41) : used for temporary storage of the corrections ∆mt and ∆mb,
respectively, in the calculation of Higgs properties.

RMSS(51) : (D=0.0) when IMSS(51)=1 it is the negative logarithm of the common value
for all lepton number violating λ couplings (LLE). When IMSS(51)=2 it is the
constant of proportionality for generation-hierarchical λ couplings. See section
8.7.2.

RMSS(52) : (D=0.0) when IMSS(52)=1 it is the negative logarithm of the common value
for all lepton number violating λ couplings (LQD). When IMSS(52)=2 it is
the constant of proportionality for generation-hierarchical λ′ couplings. See
section 8.7.2.

RMSS(53) : (D=0.0) Reserved for baryon number violation.

COMMON/PYSSMT/ZMIX(4,4),UMIX(2,2),VMIX(2,2),SMZ(4),SMW(2),
&SFMIX(16,4),ZMIXI(4,4),UMIXI(2,2),VMIXI(2,2)

Purpose: to provide information on the neutralino, chargino, and sfermion mixing pa-
rameters. The variables should not be changed by you.

ZMIX(4,4) : the real part of the neutralino mixing matrix in the Bino–neutral Wino–Up

201

higgsino–Down higgsino basis.
UMIX(2,2) : the real part of the chargino mixing matrix in the charged Wino–charged

higgsino basis.
VMIX(2,2) : the real part of the charged conjugate chargino mixing matrix in the wino–

charged higgsino basis.
SMZ(4) : the signed masses of the neutralinos.
SMW(2) : the signed masses of the charginos.
SFMIX(16,4) : the sfermion mixing matrices T in the L–R basis, identified by the corre-

sponding fermion, i.e. SFMIX(6,I) is the stop mixing matrix. The four entries
for each sfermion are T11,T12,T21, and T22.

ZMIXI(4,4) : the imaginary part of the neutralino mixing matrix in the Bino–neutral
Wino–Up higgsino–Down higgsino basis.

UMIXI(2,2) : the imaginary part of the chargino mixing matrix in the charged Wino–
charged higgsino basis.

VMIXI(2,2) : the imaginary part of the charged conjugate chargino mixing matrix in
the wino–charged higgsino basis.

COMMON/PYMSRV/RVLAM(3,3,3), RVLAMP(3,3,3), RVLAMB(3,3,3)

Purpose: to provide information on lepton and baryon number violating couplings.
RVLAM(3,3,3) : the lepton number violating λijk couplings. See IMSS(51), RMSS(51).
RVLAMP(3,3,3) : the lepton number violating λ′ijk couplings. See IMSS(52), RMSS(52).
RVLAMB(3,3,3) : the baryon number violating λ′′ijk couplings. Currently not used.

The following subroutines and functions need not be accessed by the user, but are
described for completeness.

SUBROUTINE PYAPPS : uses approximate analytic formulae to determine the full set of
MSSM parameters from SUGRA inputs.

SUBROUTINE PYGLUI : calculates gluino decay modes.
SUBROUTINE PYGQQB : calculates three body decays of gluinos into neutralinos or

charginos and third generation fermions. These routines are valid for large
values of tan β.

SUBROUTINE PYCJDC : calculates the chargino decay modes.
SUBROUTINE PYHEXT : calculates the non–Standard Model decay modes of the Higgs

bosons.
SUBROUTINE PYHGGM : determines the Higgs boson mass spectrum using several inputs.
SUBROUTINE PYINOM : finds the mass eigenstates and mixing matrices for the charginos

and neutralinos.
SUBROUTINE PYMSIN : initializes the MSSM simulation.
SUBROUTINE PYNJDC : calculates neutralino decay modes.
SUBROUTINE PYPOLE : computes the Higgs boson masses using a renormalization group

improved leading–log approximation and two-loop leading–log corrections.
SUBROUTINE PYRNMT : determines the running mass of the top quark.
SUBROUTINE PYSFDC : calculates sfermion decay modes.
SUBROUTINE PYSUBH : computes the Higgs boson masses using only renormalization

group improved formulae.
SUBROUTINE PYTBDY : samples the phase space for three body decays of neutralinos,

charginos, and the gluino.
SUBROUTINE PYTHRG : computes the masses and mixing matrices of the third generation

sfermions.
SUBROUTINE PYRVSF : R-violating sfermion decay widths.
SUBROUTINE PYRVNE : R-violating neutralino decay widths.
SUBROUTINE PYRVCH : R-violating chargino decay widths.

202

SUBROUTINE PYRVGW : calculates R-violating 3-body widths using PYRVI1, PYRVI2,
PYRVI3, PYRVG1, PYRVG2, PYRVG3, PYRVG4, PYRVR, and PYRVS.

FUNCTION PYRVSB : calculates R-violating 2-body widths.

9.6 General Event Information

When an event is generated with PYEVNT, some information on it is stored in the MSTI
and PARI arrays of the PYPARS common block (often copied directly from the internal
MINT and VINT variables). Further information is stored in the complete event record; see
section 5.2.

Part of the information is only relevant for some subprocesses; by default everything
irrelevant is set to 0. Kindly note that, like the CKIN constraints described in section 9.2,
kinematical variables normally (i.e. where it is not explicitly stated otherwise) refer to the
näıve hard scattering, before initial- and final-state radiation effects have been included.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Purpose: to provide information on latest event generated or, in a few cases, on statistics
accumulated during the run.

MSTI(1) : specifies the general type of subprocess that has occurred, according to the
ISUB code given in section 8.1.

MSTI(2) : whenever MSTI(1) (together with MSTI(15) and MSTI(16)) are not enough
to specify the type of process uniquely, MSTI(2) provides an ordering of the
different possibilities. This is particularly relevant for the different colour-flow
topologies possible in QCD 2→ 2 processes. With i =MSTI(15), j =MSTI(16)
and k =MSTI(2), the QCD possibilities are, in the classification scheme of
[Ben84] (cf. section 8.2.1):

ISUB = 11, i = j, qiqi → qiqi;
k = 1 : colour configuration A.
k = 2 : colour configuration B.

ISUB = 11, i 6= j, qiqj → qiqj;
k = 1 : only possibility.

ISUB = 12, qiqi → qlql;
k = 1 : only possibility.

ISUB = 13, qiqi → gg;
k = 1 : colour configuration A.
k = 2 : colour configuration B.

ISUB = 28, qig→ qig;
k = 1 : colour configuration A.
k = 2 : colour configuration B.

ISUB = 53, gg→ qlql;
k = 1 : colour configuration A.
k = 2 : colour configuration B.

ISUB = 68, gg→ gg;
k = 1 : colour configuration A.
k = 2 : colour configuration B.
k = 3 : colour configuration C.

ISUB = 83, fq → f ′Q (by t-channel W exchange; does not distinguish colour flows
but result of user selection);
k = 1 : heavy flavour Q is produced on side 1.
k = 2 : heavy flavour Q is produced on side 2.

MSTI(3) : the number of partons produced in the hard interactions, i.e. the number n

203

of the 2→ n matrix elements used; it is sometimes 3 or 4 when a basic 2→ 1
or 2 → 2 process has been folded with two 1 → 2 initial branchings (like
qiqj → qkqlh

0).
MSTI(4) : number of documentation lines at the beginning of the common block PYJETS

that are given with K(I,1)=21; 0 for MSTP(125)=0.
MSTI(5) : number of events generated to date in current run. In runs with the variable-

energy option, MSTP(171)=1 and MSTP(172)=2, only those events that survive
(i.e. that do not have MSTI(61)=1) are counted in this number. That is,
MSTI(5) may be less than the total number of PYEVNT calls.

MSTI(6) : current frame of event, cf. MSTP(124).
MSTI(7), MSTI(8) : line number for documentation of outgoing partons/particles from

hard scattering for 2→ 2 or 2→ 1→ 2 processes (else = 0).
MSTI(9) : event class used in current event for γp or γγ events. The code depends on

which process is being studied.
= 0 : for other processes than the ones listed above.
For γp or γ∗p events, generated with the MSTP(14)=10 or MSTP(14)=30 options:
= 1 : VMD.
= 2 : direct.
= 3 : anomalous.
= 4 : DIS (only for γ∗p, i.e. MSTP(14)=30).
For real γγ events, i.e. MSTP(14)=10:
= 1 : VMD×VMD.
= 2 : VMD×direct.
= 3 : VMD×anomalous .
= 4 : direct×direct.
= 5 : direct×anomalous.
= 6 : anomalous×anomalous.
For virtual γ∗γ∗ events, i.e. MSTP(14)=30, where the two incoming photons are not

equivalent and the order therefore matters:
= 1 : direct×direct.
= 2 : direct×VMD.
= 3 : direct×anomalous.
= 4 : VMD×direct.
= 5 : VMD×VMD.
= 6 : VMD×anomalous.
= 7 : anomalous×direct.
= 8 : anomalous×VMD.
= 9 : anomalous×anomalous.
= 10 : DIS×VMD.
= 11 : DIS×anomalous.
= 12 : VMD×DIS.
= 13 : anomalous×DIS.

MSTI(10) : is 1 if cross section maximum was violated in current event, and 0 if not.
MSTI(11) : KF flavour code for beam (side 1) particle.
MSTI(12) : KF flavour code for target (side 2) particle.
MSTI(13), MSTI(14) : KF flavour codes for side 1 and side 2 initial-state shower initia-

tors.
MSTI(15), MSTI(16) : KF flavour codes for side 1 and side 2 incoming partons to the

hard interaction.
MSTI(17), MSTI(18) : flag to signal if particle on side 1 or side 2 has been scattered

diffractively; 0 if no, 1 if yes.
MSTI(21) - MSTI(24) : KF flavour codes for outgoing partons from the hard interaction.

The number of positions actually used is process-dependent, see MSTI(3); trail-

204

ing positions not used are set = 0. For events with many outgoing partons,
e.g. in external processes, also MSTI(25) and MSTI(26) could be used.

MSTI(25), MSTI(26) : KF flavour codes of the products in the decay of a single s-channel
resonance formed in the hard interaction. Are thus only used when MSTI(3)=1
and the resonance is allowed to decay.

MSTI(31) : number of hard or semi-hard scatterings that occurred in the current event
in the multiple-interaction scenario; is = 0 for a low-p⊥ event.

MSTI(32) : information on whether a reconnection occurred in the current event; is 0
normally but 1 in case of reconnection.

MSTI(41) : the number of pile-up events generated in the latest PYEVNT call (including
the first, ‘hard’ event).

MSTI(42) - MSTI(50) : ISUB codes for the events 2–10 generated in the pile-up-events
scenario. The first event ISUB code is stored in MSTI(1). If MSTI(41) is
less than 10, only as many positions are filled as there are pile-up events. If
MSTI(41) is above 10, some ISUB codes will not appear anywhere.

MSTI(51) : normally 0 but set to 1 if a UPEVNT call did not return an event, such that
PYEVNT could not generate an event. For further details, see section 9.9.

MSTI(52) : counter for the number of times the current event configuration failed in the
generation machinery. For accepted events this is always 0, but the counter
can be used inside UPEVNT to check on anomalous occurrences. For further
details, see section 9.9.

MSTI(53) : normally 0, but 1 if no processes with non-vanishing cross sections were
found in a PYINIT call, for the case that MSTP(127)=1.

MSTI(61) : status flag set when events are generated. It is only of interest for runs with
variable energies, MSTP(171)=1, with the option MSTP(172)=2.

= 0 : an event has been generated.
= 1 : no event was generated, either because the c.m. energy was too low or

because the Monte Carlo phase space point selection machinery rejected
the trial point. A new energy is to be picked by you.

MSTI(71), MSTI(72) : KF code for incoming lepton beam or target particles, when a
flux of virtual photons are generated internally for ’gamma/lepton’ beams,
while MSTI(11) and MSTI(12) is then the photon code.

PARI(1) : total integrated cross section for the processes under study, in mb. This
number is obtained as a by-product of the selection of hard-process kinematics,
and is thus known with better accuracy when more events have been generated.
The value stored here is based on all events until the latest one generated.

PARI(2) : for unweighted events, MSTP(142)=0 or =2, it is the ratio PARI(1)/MSTI(5),
i.e. the ratio of total integrated cross section and number of events generated.
Histograms should then be filled with unit event weight and, at the end of the
run, multiplied by PARI(2) and divided by the bin width to convert results
to mb/(dimension of the horizontal axis). For weighted events, MSTP(142)=1,
MSTI(5) is replaced by the sum of PARI(10) values. Histograms should then
be filled with event weight PARI(10) and, as before, be multiplied by PARI(2)
and divided by the bin width at the end of the run. In runs with the variable-
energy option, MSTP(171)=1 and MSTP(172)=2, only those events that survive
(i.e. that do not have MSTI(61)=1) are counted.

PARI(7) : an event weight, normally 1 and thus uninteresting, but for external processes
with IDWTUP=-1, -2 or -3 it can be −1 for events with negative cross section,
with IDWTUP=4 it can be an arbitrary non-negative weight of dimension mb,
and with IDWTUP=-4 it can be an arbitrary weight of dimension mb. (The
difference being that in most cases a rejection step is involved to bring the
accepted events to a common weight normalization, up to a sign, while no

205

rejection need be involved in the last two cases.)
PARI(9) : is weight WTXS returned from PYEVWT call when MSTP(142)≥ 1, otherwise is

1.
PARI(10) : is compensating weight 1./WTXS that should be associated to events when

MSTP(142)=1, else is 1.
PARI(11) : Ecm, i.e. total c.m. energy (except when using the ’gamma/lepton’ machin-

ery, see PARI(101).
PARI(12) : s, i.e. squared total c.m. energy (except when using the ’gamma/lepton’

machinery, see PARI(102).
PARI(13) : m̂ =

√
ŝ, i.e. mass of the hard-scattering subsystem.

PARI(14) : ŝ of the hard subprocess (2→ 2 or 2→ 1).
PARI(15) : t̂ of the hard subprocess (2→ 2 or 2→ 1→ 2).
PARI(16) : û of the hard subprocess (2→ 2 or 2→ 1→ 2).
PARI(17) : p̂⊥ of the hard subprocess (2→ 2 or 2→ 1→ 2), evaluated in the rest frame

of the hard interaction.
PARI(18) : p̂2

⊥ of the hard subprocess; see PARI(17).
PARI(19) : m̂′, the mass of the complete three- or four-body final state in 2 → 3 or

2→ 4 processes (while m̂, given in PARI(13), here corresponds to the one- or
two-body central system). Kinematically m̂ ≤ m̂′ ≤ Ecm.

PARI(20) : ŝ′ = m̂′2; see PARI(19).
PARI(21) : Q of the hard-scattering subprocess. The exact definition is process-

dependent, see MSTP(32).
PARI(22) : Q2 of the hard-scattering subprocess; see PARI(21).
PARI(23) : Q of the outer hard-scattering subprocess. Agrees with PARI(21) for a 2→ 1

or 2 → 2 process. For a 2 → 3 or 2 → 4 W/Z fusion process, it is set by the
W/Z mass scale, and for subprocesses 121 and 122 by the heavy-quark mass.

PARI(24) : Q2 of the outer hard-scattering subprocess; see PARI(23).
PARI(25) : Q scale used as maximum virtuality in parton showers. Is equal to PARI(23),

except for Deeply Inelastic Scattering processes when MSTP(22)≥ 1.
PARI(26) : Q2 scale in parton showers; see PARI(25).
PARI(31), PARI(32) : the momentum fractions x of the initial-state parton-shower ini-

tiators on side 1 and 2, respectively.
PARI(33), PARI(34) : the momentum fractions x taken by the partons at the hard

interaction, as used e.g. in the parton-distribution functions.
PARI(35) : Feynman-x, xF = x1 − x2 =PARI(33)−PARI(34).
PARI(36) : τ = ŝ/s = x1 x2 =PARI(33)×PARI(34).
PARI(37) : y = (1/2) ln(x1/x2), i.e. rapidity of the hard-interaction subsystem in the

c.m. frame of the event as a whole.
PARI(38) : τ ′ = ŝ′/s =PARI(20)/PARI(12).
PARI(39), PARI(40) : the primordial k⊥ values selected in the two beam remnants.
PARI(41) : cos θ̂, where θ̂ is the scattering angle of a 2→ 2 (or 2→ 1→ 2) interaction,

defined in the rest frame of the hard-scattering subsystem.
PARI(42) : x⊥, i.e. scaled transverse momentum of the hard-scattering subprocess, x⊥ =

2p̂⊥/Ecm = 2PARI(17)/PARI(11).
PARI(43), PARI(44) : xL3 and xL4, i.e. longitudinal momentum fractions of the two

scattered partons, in the range −1 < xL < 1, in the c.m. frame of the event as
a whole.

PARI(45), PARI(46) : x3 and x4, i.e. scaled energy fractions of the two scattered par-
tons, in the c.m. frame of the event as a whole.

PARI(47), PARI(48) : y∗3 and y∗4, i.e. rapidities of the two scattered partons in the c.m.
frame of the event as a whole.

PARI(49), PARI(50) : η∗3 and η∗4, i.e. pseudorapidities of the two scattered partons in
the c.m. frame of the event as a whole.

206

PARI(51), PARI(52) : cos θ∗3 and cos θ∗4, i.e. cosines of the polar angles of the two scat-
tered partons in the c.m. frame of the event as a whole.

PARI(53), PARI(54) : θ∗3 and θ∗4, i.e. polar angles of the two scattered partons, defined
in the range 0 < θ∗ < π, in the c.m. frame of the event as a whole.

PARI(55), PARI(56) : azimuthal angles φ∗3 and φ∗4 of the two scattered partons, defined
in the range −π < φ∗ < π, in the c.m. frame of the event as a whole.

PARI(61) : multiple interaction enhancement factor for current event. A large value
corresponds to a central collision and a small value to a peripheral one.

PARI(65) : sum of the transverse momenta of partons generated at the hardest interac-
tion of the event, excluding initial- and final-state radiation, i.e. 2×PARI(17).
Only intended for 2 → 2 or 2 → 1 → 2 processes, i.e. not implemented for
2→ 3 ones.

PARI(66) : sum of the transverse momenta of all partons generated at the hardest inter-
action, including initial- and final-state radiation, resonance decay products,
and primordial k⊥.

PARI(67) : scalar sum of transverse momenta of partons generated at hard interactions,
excluding the hardest one (see PARI(65)), and also excluding all initial- and
final-state radiation. Is non-vanishing only in the multiple-interaction scenario.

PARI(68) : sum of transverse momenta of all partons generated at hard interactions,
excluding the hardest one (see PARI(66)), but including initial- and final-state
radiation associated with those further interactions. Is non-vanishing only in
the multiple-interaction scenario. Since showering has not yet been added to
those additional interactions, it currently coincides with PARI(67).

PARI(69) : sum of transverse momenta of all partons generated in hard interactions
(PARI(66) + PARI(68)) and, additionally, of all beam remnant partons.

PARI(71), PARI(72) : sum of the momentum fractions x taken by initial-state parton-
shower initiators on side 1 and and side 2, excluding those of the hardest
interaction. Is non-vanishing only in the multiple-interaction scenario.

PARI(73), PARI(74) : sum of the momentum fractions x taken by the partons at the
hard interaction on side 1 and side 2, excluding those of the hardest interaction.
Is non-vanishing only in the multiple-interaction scenario.

PARI(75), PARI(76) : the x value of a photon that branches into quarks or gluons,
i.e. x at interface between initial-state QED and QCD cascades, for the old
photoproduction machinery..

PARI(77), PARI(78) : the χ values selected for beam remnants that are split into two
objects, describing how the energy is shared (see MSTP(92) and MSTP(94)); is
vanishing if no splitting is needed.

PARI(81) : size of the threshold factor (enhancement or suppression) in the latest event
with heavy-flavour production; see MSTP(35).

PARI(91) : average multiplicity n of pile-up events, see MSTP(133). Only relevant for
MSTP(133)= 1 or 2.

PARI(92) : average multiplicity 〈n〉 of pile-up events as actually simulated, i.e. with
multiplicity = 0 events removed and the high-end tail truncated. Only relevant
for MSTP(133)= 1 or 2.

PARI(93) : for MSTP(133)=1 it is the probability that a beam crossing will produce a pile-
up event at all, i.e. that there will be at least one hadron–hadron interaction;
for MSTP(133)=2 the probability that a beam crossing will produce a pile-
up event with one hadron–hadron interaction of the desired rare type. See
subsection 11.3.

PARI(101) : c.m. energy for the full collision, while PARI(11) gives the γ-hadron or
γγ subsystem energy; used for virtual photons generated internally with the
’gamma/lepton’ option.

PARI(102) : full squared c.m. energy, while PARI(12) gives the subsystem squared en-

207

ergy; used for virtual photons generated internally with the ’gamma/lepton’
option.

PARI(103), PARI(104) : x values, i.e. respective photon energy fractions of the incom-
ing lepton in the c.m. frame of the event; used for virtual photons generated
internally with the ’gamma/lepton’ option.

PARI(105), PARI(106) : Q2 or P 2, virtuality of the respective photon (thus the square
of VINT(3), VINT(4)); used for virtual photons generated internally with the
’gamma/lepton’ option.

PARI(107), PARI(108) : y values, i.e. respective photon light-cone energy fraction of
the incoming lepton; used for virtual photons generated internally with the
’gamma/lepton’ option.

PARI(109), PARI(110) : θ, scattering angle of the respective lepton in the c.m.
frame of the event; used for virtual photons generated internally with the
’gamma/lepton’ option.

PARI(111), PARI(112) : φ, azimuthal angle of the respective scattered lepton in the
c.m. frame of the event; used for virtual photons generated internally with the
’gamma/lepton’ option.

PARI(113), PARI(114): the R factor defined at MSTP(17), giving a cross section en-
hancement from the contribution of resolved longitudinal photons.

9.7 How to Generate Weighted Events

By default Pythia generates unweighted events, i.e. all events in a run are on an equal
footing. This means that corners of phase space with low cross sections are poorly popu-
lated, as it should be. However, sometimes one is interested in also exploring such corners,
in order to gain a better undestanding of physics. A typical example would be the jet
cross section in hadron collisions, which is dropping rapidly with increasing jet p⊥, and
where it is interesting to trace this drop over several orders of magnitude. Experimen-
tally this may be solved by prescaling events rates already at the trigger level, so that
all high-p⊥ events are saved but only a fraction of the lower-p⊥ ones. In this section we
outline procedures to generate events in a similar manner.

Basically two approaches can be used. One is to piece together results from different
subruns, where each subrun is restricted to some specific region of phase space. Within
each subrun all events then have the same weight, but subruns have to be combined
according to their relative cross sections. The other approach is to let each event come with
an associated weight, that can vary smoothly as a function of p⊥. These two alternatives
correspond to stepwise or smoothly varying prescaling factors in the experimemental
analogue. We describe them one after the other.

The phase space can be sliced in many different ways. However, for the jet rate and
many other processes, the most natural variable would be p⊥ itself. (For production of
a lepton pair by s-channel resonances, the invariant mass would be a better choice.) It
is not possible to specify beforehand the jet p⊥’s an event will contain, since this is a
combination of the p̂⊥ of the hard scattering process with additional showering activity,
with hadronization, with underlying event and with the jet clustering approach actually
used. However, one would expect a strong correlation between the p̂⊥ scale and the jet
p⊥’s. Therefore the full p̂⊥ range can be subdivided into a set of ranges by using the
CKIN(3) and CKIN(4) variables as lower and upper limits. This could be done e.g. for
adjacent non-overlapping bins 10–20,20–40,40–70, etc.

Only if one would like to cover also very small p⊥ is there a problem with this strategy:
since the naive jet cross section is divergent for p̂⊥ → 0, a unitarization procedure is im-
plied by setting CKIN(3)=0 (or some other low value). This unitarization then disregards
the actual CKIN(3) and CKIN(4) values and generates events over the full phase space.
In order not to doublecount, then events above the intended upper limit of the first bin

208

have to be removed by brute force.
A simple but complete example of a code performing this task (with some primitive

histogramming) is the following:

C...All real arithmetic in double precision.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)

C...Three Pythia functions return integers, so need declaring.
INTEGER PYK,PYCHGE,PYCOMP

C...EXTERNAL statement links PYDATA on most platforms.
EXTERNAL PYDATA

C...The event record.
COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

C...Selection of hard scattering subprocesses.
COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

C...Parameters.
COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

C...Bins of pT.
DIMENSION PTBIN(10)
DATA PTBIN/0D0,10D0,20D0,40D0,70D0,110D0,170D0,250D0,350D0,1000D0/

C...Main parameters of run: c.m.\ energy and number of events per bin.
ECM=2000D0
NEV=1000

C...Histograms.
CALL PYBOOK(1,’dn_ev/dpThat’,100,0D0,500D0)
CALL PYBOOK(2,’dsigma/dpThat’,100,0D0,500D0)
CALL PYBOOK(3,’log10(dsigma/dpThat)’,100,0D0,500D0)
CALL PYBOOK(4,’dsigma/dpTjet’,100,0D0,500D0)
CALL PYBOOK(5,’log10(dsigma/dpTjet)’,100,0D0,500D0)
CALL PYBOOK(11,’dn_ev/dpThat, dummy’,100,0D0,500D0)
CALL PYBOOK(12,’dn/dpTjet, dummy’,100,0D0,500D0)

C...Loop over pT bins and initialize.
DO 300 IBIN=1,9

CKIN(3)=PTBIN(IBIN)
CKIN(4)=PTBIN(IBIN+1)
CALL PYINIT(’CMS’,’p’,’pbar’,ECM)

C...Loop over events. Remove unwanted ones in first pT bin.
DO 200 IEV=1,NEV

CALL PYEVNT
PTHAT=PARI(17)
IF(IBIN.EQ.1.AND.PTHAT.GT.PTBIN(IBIN+1)) GOTO 200

C...Store pThat. Cluster jets and store variable number of pTjet.
CALL PYFILL(1,PTHAT,1D0)
CALL PYFILL(11,PTHAT,1D0)
CALL PYCELL(NJET)
DO 100 IJET=1,NJET

CALL PYFILL(12,P(N+IJET,5),1D0)
100 CONTINUE

C...End of event loop.

209

200 CONTINUE

C...Normalize cross section to pb/GeV and add up.
FAC=1D9*PARI(1)/(DBLE(NEV)*5D0)
CALL PYOPER(2,’+’,11,2,1D0,FAC)
CALL PYOPER(4,’+’,12,4,1D0,FAC)

C...End of loop over pT bins.
300 CONTINUE

C...Take logarithm and plot.
CALL PYOPER(2,’L’,2,3,1D0,0D0)
CALL PYOPER(4,’L’,4,5,1D0,0D0)
CALL PYNULL(11)
CALL PYNULL(12)
CALL PYHIST

END

The alternative to slicing the phase space is to used weighted events. This is possible
by making use of the PYEVWT routine:

CALL PYEVWT(WTXS)

Purpose: to allow you to reweight event cross sections, by process type and kinematics
of the hard scattering. There exists two separate modes of usage, described in
the following.
For MSTP(142)=1, it is assumed that the cross section of the process is correctly
given by default in Pythia, but that one wishes to generate events biased to
a specific region of phase space. While the WTXS factor therefore multiplies
the näıve cross section in the choice of subprocess type and kinematics, the
produced event comes with a compensating weight PARI(10)=1./WTXS, which
should be used when filling histograms etc. In the PYSTAT(1) table, the cross
sections are unchanged (up to statistical errors) compared with the standard
cross sections, but the relative composition of events may be changed and need
no longer be in proportion to relative cross sections. A typical example of this
usage is if one wishes to enhance the production of high-p⊥ events; then a
weight like WTXS= (p⊥/p⊥0)2 (with p⊥0 some fixed number) might be appro-
priate. See PARI(2) for a discussion of overall normalization issues.
For MSTP(142)=2, on the other hand, it is assumed that the true cross sec-
tion is really to be modified by the multiplicative factor WTXS. The generated
events therefore come with unit weight, just as usual. This option is really
equivalent to replacing the basic cross sections coded in Pythia, but allows
more flexibility: no need to recompile the whole of Pythia.
The routine will not be called unless MSTP(142)≥ 1, and never if ‘minimum-
bias’-type events (including elastic and diffractive scattering) are to be gen-
erated as well. Further, cross sections for additional multiple interactions or
pile-up events are never affected. A dummy routine PYEVWT is included in the
program file, so as to avoid unresolved external references when the routine is
not used.

WTXS: multiplication factor to ordinary event cross section; to be set (by you) in
PYEVWT call.

Remark : at the time of selection, several variables in the MINT and VINT arrays in

210

the PYINT1 common block contain information that can be used to make the
decision. The routine provided in the program file explicitly reads the variables
that have been defined at the time PYEVWT is called, and also calculates some
derived quantities. The given list of information includes subprocess type ISUB,
Ecm, ŝ, t̂, û, p̂⊥, x1, x2, xF, τ , y, τ ′, cos θ̂, and a few more. Some of these may
not be relevant for the process under study, and are then set to zero.

Warning: the weights only apply to the hard scattering subprocesses. There is no way to
reweight the shape of initial- and final-state showers, fragmentation, or other
aspects of the event.

There are some limitations to the facility. PYEVWT is called at an early stage of the
generation process, when the hard kinematics is selected, well before the full event is
constructed. It then cannot be used for low-p⊥, elastic or diffractive events, for which no
hard kinematics has been defined. If such processes are included, the event weighting is
switched off. Therefore it is no longer an option to run with CKIN(3)=0.

Which weight expression to use may take some trial and error. In the above case, a
reasonable ansatz seems to be a weight behaving like p̂6

⊥, where four powers of p̂⊥ are
motivated by the partonic cross section behaving like 1/p̂4

⊥, and the remaining two by the
fall-off of parton densities. An example for the same task as above one would then be:

C...All real arithmetic in double precision.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)

C...Three Pythia functions return integers, so need declaring.
INTEGER PYK,PYCHGE,PYCOMP

C...EXTERNAL statement links PYDATA on most platforms.
EXTERNAL PYDATA

C...The event record.
COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

C...Selection of hard scattering subprocesses.
COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

C...Parameters.
COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

C...Main parameters of run: c.m.\ energy, pTmin and number of events.
ECM=2000D0
CKIN(3)=5D0
NEV=10000

C...Histograms.
CALL PYBOOK(1,’dn_ev/dpThat’,100,0D0,500D0)
CALL PYBOOK(2,’dsigma/dpThat’,100,0D0,500D0)
CALL PYBOOK(3,’log10(dsigma/dpThat)’,100,0D0,500D0)
CALL PYBOOK(4,’dsigma/dpTjet’,100,0D0,500D0)
CALL PYBOOK(5,’log10(dsigma/dpTjet)’,100,0D0,500D0)

C...Initialize with weighted events.
MSTP(142)=1
CALL PYINIT(’CMS’,’p’,’pbar’,ECM)

C...Loop over events; read out pThat and event weight.
DO 200 IEV=1,NEV

CALL PYEVNT
PTHAT=PARI(17)
WT=PARI(10)

211

C...Store pThat. Cluster jets and store variable number of pTjet.
CALL PYFILL(1,PTHAT,1D0)
CALL PYFILL(2,PTHAT,WT)
CALL PYCELL(NJET)
DO 100 IJET=1,NJET

CALL PYFILL(4,P(N+IJET,5),WT)
100 CONTINUE

C...End of event loop.
200 CONTINUE

C...Normalize cross section to pb/GeV, take logarithm and plot.
FAC=1D9*PARI(2)/5D0
CALL PYFACT(2,FAC)
CALL PYFACT(4,FAC)
CALL PYOPER(2,’L’,2,3,1D0,0D0)
CALL PYOPER(4,’L’,4,5,1D0,0D0)
CALL PYHIST

END

C***

SUBROUTINE PYEVWT(WTXS)

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP

C...Commonblock.
COMMON/PYINT1/MINT(400),VINT(400)

C...Read out pThat^2 and set weight.
PT2=VINT(48)
WTXS=PT2**3

RETURN
END

Note that, in PYEVWT one cannot look for p̂⊥ in PARI(17), since this variable is only set
at the end of the event generation. Instead the internal VINT(48) is used. The dummy
copy of the PYEVWT routine found in the Pythia code shows what is available and how
to access this.

9.8 How to Run with Varying Energies

It is possible to use Pythia in a mode where the energy can be varied from one event to
the next, without the need to re-initialize with a new PYINIT call. This allows a significant
speed-up of execution, although it is not as fast as running at a fixed energy. It can not
be used for everything — we will come to the fine print at the end — but it should be
applicable for most tasks.

The master switch to access this possibility is in MSTP(171). By default it is off,
so you must set MSTP(171)=1 before initialization. There are two submodes of running,

212

with MSTP(172) being 1 or 2. In the former mode, Pythia will generate an event at the
requested energy. This means that you have to know which energy you want beforehand.
In the latter mode, Pythia will often return without having generated an event — with
flag MSTI(61)=1 to signal that — and you are then requested to give a new energy. The
energy spectrum of accepted events will then, in the end, be your naive input spectrum
weighted with the cross-section of the processes you study. We will come back to this.

The energy can be varied, whichever frame is given in the PYINIT call. (Except for
’USER’, where such information is fed in via the HEPEUP common block and thus beyond
the control of Pythia.) When the frame is ’CMS’, PARP(171) should be filled with the
fractional energy of each event, i.e. Ecm =PARP(171)×WIN, where WIN is the nominal
c.m. energy of the PYINIT call. Here PARP(171) should normally be smaller than unity,
i.e. initialization should be done at the maximum energy to be encountered. For the
’FIXT’ frame, PARP(171) should be filled by the fractional beam energy of that one,
i.e. Ebeam =PARP(171)×WIN. For the ’3MOM’, ’4MOM’ and ’5MOM’ options, the two four-
momenta are given in for each event in the same format as used for the PYINIT call. Note
that there is a minimum c.m. energy allowed, PARP(2). If you give in values below this, the
program will stop for MSTP(172)=1, and will return with MSTI(61)=1 for MSTP(172)=1.

To illustrate the use of the MSTP(172)=2 facility, consider the case of beamstrahlung
in e+e− linear colliders. This is just for convenience; what is said here can be translated
easily into other situations. Assume that the beam spectrum is given by D(z), where z
is the fraction retained by the original e after beamstrahlung. Therefore 0 ≤ z ≤ 1 and
the integral of D(z) is unity. This is not perfectly general; one could imagine branchings
e− → e−γ → e−e+e−, which gives a multiplication in the number of beam particles. This
could either be expressed in terms of a D(z) with integral larger than unity or in terms
of an increased luminosity. We will assume the latter, and use D(z) properly normalized.
Given a nominal s = 4E2

beam, the actual s′ after beamstrahlung is given by s′ = z1z2s.
For a process with a cross section σ(s) the total cross section is then

σtot =
∫ 1

0

∫ 1

0
D(z1)D(z2)σ(z1z2s) dz1 dz2 . (142)

The cross section σ may in itself be an integral over a number of additional phase space
variables. If the maximum of the differential cross section is known, a correct procedure
to generate events is

1. pick z1 and z2 according to D(z1) dz1 and D(z2) dz2, respectively;
2. pick a set of phase space variables of the process, for the given s′ of the event;
3. evaluate σ(s′) and compare with σmax;
4. if event is rejected, then return to step 1 to generate new variables;
5. else continue the generation to give a complete event.

You as a user are assumed to take care of step 1, and present the resulting kinematics
with incoming e+ and e− of varying energy. Thereafter Pythia will do steps 2–5, and
either return an event or put MSTI(61)=1 to signal failure in step 4.

The maximization procedure does search in phase space to find σmax, but it does not
vary the s′ energy in this process. Therefore the maximum search in the PYINIT call
should be performed where the cross section is largest. For processes with increasing
cross section as a function of energy this means at the largest energy that will ever be
encountered, i.e. s′ = s in the case above. This is the ‘standard’ case, but often one
encounters other behaviours, where more complicated procedures are needed. One such
case would be the process e+e− → Z∗0 → Z0h0, which is known to have a cross section
that increases near the threshold but is decreasing asymptotically. If one already knows
that the maximum, for a given Higgs mass, appears at 300 GeV, say, then the PYINIT
call should be made with that energy, even if subsequently one will be generating events
for a 500 GeV collider.

213

In general, it may be necessary to modify the selection of z1 and z2 and assign a
compensating event weight. For instance, consider a process with a cross section behaving
roughly like 1/s. Then the σtot expression above may be rewritten as

σtot =
∫ 1

0

∫ 1

0

D(z1)

z1

D(z2)

z2

z1z2σ(z1z2s) dz1 dz2 . (143)

The expression z1z2σ(s′) is now essentially flat in s′, i.e. not only can σmax be found at
a convenient energy such as the maximum one, but additionally the Pythia generation
efficiency (the likelihood of surviving step 4) is greatly enhanced. The price to be paid is
that z has to be selected according to D(z)/z rather than according to D(z). Note that
D(z)/z is not normalized to unity. One therefore needs to define

ID =
∫ 1

0

D(z)

z
dz , (144)

and a properly normalized

D′(z) =
1

ID
D(z)

z
. (145)

Then

σtot =
∫ 1

0

∫ 1

0
D′(z1)D′(z2) I2

D z1z2σ(z1z2s) dz1 dz2 . (146)

Therefore the proper event weight is I2
D z1z2. This weight should be stored by you, for each

event, in PARP(173). The maximum weight that will be encountered should be stored
in PARP(174) before the PYINIT call, and not changed afterwards. It is not necessary
to know the precise maximum; any value larger than the true maximum will do, but
the inefficiency will be larger the cruder the approximation. Additionally you must put
MSTP(173)=1 for the program to make use of weights at all. Often D(z) is not known
analytically; therefore ID is also not known beforehand, but may have to be evaluated (by
you) during the course of the run. Then you should just use the weight z1z2 in PARP(173)
and do the overall normalization yourself in the end. Since PARP(174)=1 by default, in
this case you need not set this variable specially. Only the cross sections are affected by
the procedure selected for overall normalization, the events themselves still are properly
distributed in s′ and internal phase space.

Above it has been assumed tacitly that D(z) → 0 for z → 0. If not, D(z)/z is
divergent, and it is not possible to define a properly normalized D′(z) = D(z)/z. If the
cross section is truly diverging like 1/s, then a D(z) which is nonvanishing for z → 0
does imply an infinite total cross section, whichever way things are considered. In cases
like that, it is necessary to impose a lower cut on z, based on some physics or detector
consideration. Some such cut is anyway needed to keep away from the minimum c.m.
energy required for Pythia events, see above.

The most difficult cases are those with a very narrow and high peak, such as the
Z0. One could initialize at the energy of maximum cross section and use D(z) as is,
but efficiency might turn out to be very low. One might then be tempted to do more
complicated transforms of the kind illustrated above. As a rule it is then convenient to
work in the variables τz = z1z2 and yz = (1/2) ln(z1/z2), cf. section 7.2.

Clearly, the better the behaviour of the cross section can be modelled in the choice
of z1 and z2, the better the overall event generation efficiency. Even under the best of
circumstances, the efficiency will still be lower than for runs with fix energy. There is also a
non-negligible time overhead for using variable energies in the first place, from kinematics
reconstruction and (in part) from the phase space selection. One should therefore not use
variable energies when not needed, and not use a large range of energies

√
s′ if in the end

only a smaller range is of experimental interest.

214

This facility may be combined with most other aspects of the program. For instance,
it is possible to simulate beamstrahlung as above and still include bremsstrahlung with
MSTP(11)=1. Further, one may multiply the overall event weight of PARP(173) with a
kinematics-dependent weight given by PYEVWT, although it is not recommended (since the
chances of making a mistake are also multiplied). However, a few things do not work.
• It is not possible to use pile-up events, i.e. you must have MSTP(131)=0.
• The possibility of giving in your own cross-section optimization coefficients, option
MSTP(121)=2, would require more input than with fixed energies, and this option
should therefore not be used. You can still use MSTP(121)=1, however.
• The multiple interactions scenario with MSTP(82)≥ 2 only works approximately for

energies different from the initialization one. If the c.m. energy spread is smaller than
a factor 2, say, the approximation should be reasonable, but if the spread is larger
one may have to subdivide into subruns of different energy bins. The initialization
should be made at the largest energy to be encountered — whenever multiple inter-
actions are possible (i.e. for incoming hadrons and resolved photons) this is where
the cross sections are largest anyway, and so this is no further constraint. There
is no simple possibility to change PARP(82) during the course of the run, i.e. an
energy-independent p⊥0 must be assumed. The default option MSTP(82)=1 works
fine, i.e. does not suffer from the constraints above. If so desired, p⊥min =PARP(81)
can be set differently for each event, as a function of c.m. energy. Initialization
should then be done with PARP(81) as low as it is ever supposed to become.

9.9 How to Include External Processes

Despite a large repertory of processes in Pythia, the number of interesting missing ones
clearly is even larger, and with time this discrepancy is likely to increase. There are
several reasons why it is not practicable to imagine a Pythia which has ‘everything’.
One is the amount of time it takes to implement a process for the few Pythia authors,
compared with the rate of new cross section results produced by the rather larger matrix-
element calculations community. Another is the length of currently produced matrix-
element expressions, which would make the program very bulky. A third argument is
that, whereas the phase space of 2 → 1 and 2 → 2 processes can be set up once and for
all according to a reasonably flexible machinery, processes with more final-state particles
are less easy to generate. To achieve a reasonable efficiency, it is necessary to tailor the
phase-space selection procedure to the dynamics of the given process, and to the desired
experimental cuts.

At times, simple solutions may be found. Some processes may be seen just as trivial
modifications of already existing ones. For instance, you might want to add some extra
term, corresponding to contact interactions, to the matrix elements of a Pythia 2 → 2
process. In that case it is not necessary to go through the machinery below, but instead
you can use the PYEVWT routine (subsection 9.7) to introduce an additional weight for the
event, defined as the ratio of the modified to the unmodified differential cross sections.
If you use the option MSTP(142)=2, this weight is considered as part of the ‘true’ cross
section of the process, and the generation is changed accordingly.

A Pythia expert could also consider implementing a new process along the lines of
the existing ones, hardwired in the code. Such a modification would have to be ported
anytime the Pythia program is upgraded, however.

The recommended solution, if a desired process is missing, is instead to include it
into Pythia as an ‘external’ process. In this section we will describe how it is possible
to specify the parton-level state of some hard-scattering process in a common block.
(‘Parton-level’ is not intended to imply a restriction to quarks and gluons as interacting
particles, but only that quarks and gluons are given rather than the hadrons they will
produce in the observable final state.) Pythia will read this common block, and add

215

initial- and final-state showers, beam remnants and underlying events, fragmentation and
decays, to build up an event in as much detail as an ordinary Pythia one. Another
common block is to be filled with information relevant for the run as a whole, where
beams and processes are specified.

Such a facility has been available since long, and has been used e.g. together with the
CompHEP package. CompHEP [Puk99] is mainly intended for the automatic compu-
tation of matrix elements, but also allows the sampling of phase space according to these
matrix elements and thereby the generation of weighted or unweighted events. These
events can be saved on disk and thereafter read back in to Pythia for subsequent con-
sideration [Bel00].

At the Les Houches 2001 workshop it was decided to develop a common standard,
that could be used by all matrix-elements-based generators to feed information into any
complete event generator [Boo01]. It is similar to, but in its details different from, the
approach previously implemented in Pythia. Furthermore, it uses the same naming
convention: all names in commonblocks end with UP, short for User(-defined) Process.
This produces some clashes. Therefore the old facility, existing up to and including
Pythia 6.1, has been completely removed and replaced by the new one. The new code
is still under development, and not all particulars have yet been implemented. In the
description below we will emphasize current restrictions to the standard, as well as the
solutions to aspects not specified by the standard.

In particular, even with the common block contents defined, it is not clear where they
are to be filled, i.e. how the external supplier of parton-level events should synchronize
with Pythia. The solution adopted here — recommended in the standard — is to intro-
duce two subroutines, UPINIT and UPEVNT. The first is called by PYINIT at initialization
to obtain information about the run itself, and the other called by PYEVNT each time
a new event configuration is to be fed in. We begin by describing these two steps and
their related common blocks, before proceeding with further details and examples. The
description is cast in a Pythia-oriented language, but for the common block contents it
closely matches the generator-neutral standard in [Boo01]. Restrictions to or extensions
of the standard should be easily recognized, but in case you are vitally dependent on
following the standard exactly, you should of course check [Boo01].

If you want to provide routines based on this standard, free to be used by a larger
community, please inform torbjorn@thep.lu.se. The intention is to create a list of links
to such routines, accessible from the standard Pythia webpage, if there is interest.

9.9.1 Run information

When PYINIT is called in the main program, with ’USER’ as first argument (which makes
the other arguments dummy), it signals that external processes are to be implemented.
Then PYINIT, as part of its initialization tasks, will call the routine UPINIT.

CALL UPINIT

Purpose: routine to be provided by you when you want to implement external processes,
wherein the contents of the HEPRUP common block are set. This information
specifies the character of the run, both beams and processes, see further below.

Note 1: alternatively, the HEPRUP common block could be filled already before PYINIT
is called, in which case UPINIT could be empty. We recommend UPINIT as the
logical place to collect the relevant information, however.

Note 2: a dummy copy of UPINIT is distributed with the program, in order to avoid
potential problems with unresolved external references. This dummy should
not be linked when you supply your own UPINIT routine.

216

INTEGER MAXPUP
PARAMETER (MAXPUP=100)
INTEGER IDBMUP,PDFGUP,PDFSUP,IDWTUP,NPRUP,LPRUP
DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP
COMMON/HEPRUP/IDBMUP(2),EBMUP(2),PDFGUP(2),PDFSUP(2),

&IDWTUP,NPRUP,XSECUP(MAXPUP),XERRUP(MAXPUP),XMAXUP(MAXPUP),
&LPRUP(MAXPUP)

Purpose: to contain the initial information necessary for the subsequent generation of
complete events from externally provided parton configurations. The IDBMUP,
EBMUP, PDFGUP and PDFSUP variables specify the nature of the two incoming
beams. IDWTUP is a master switch, selecting the strategy to be used to mix
different processes. NPRUP gives the number of different external processes
to mix, and XSECUP, XERRUP, XMAXUP and LPRUP information on each of these.
The contents in this common block must remain unchanged by the user during
the course of the run, once set in the initialization stage.
This common block should be filled in the UPINIT routine or, alternatively,
before the PYINIT call. During the run, Pythia may update the XMAXUP
values as required.

MAXPUP : the maximum number of distinguishable processes that can be defined. (Each
process in itself could consist of several subprocesses that have been distin-
guished in the parton-level generator, but where this distinction is not carried
along.)

IDBMUP : the PDG codes of the two incoming beam particles (or, in alternative termi-
nology, the beam and target particles).
In Pythia, this replaces the information normally provided by the BEAM and
TARGET arguments of the PYINIT call. Only particles which are acceptable
BEAM or TARGET arguments may also be used in IDBMUP. The ’gamma/lepton’
options are not available.

EBMUP : the energies, in GeV, of the two incoming beam particles. The first (second)
particle is taken to travel in the +z (−z) direction.
The standard also allows non-collinear and varying-energy beams to be speci-
fied, see ISTUP = -9 below, but this is not yet implemented in Pythia.

PDFGUP, PDFSUP : the author group (PDFGUP) and set (PDFSUP) of the parton distribu-
tions of the two incoming beams, as used in the generation of the parton-level
events. Numbers are based on the Pdflib [Plo93] lists. This enumeration
may not always be up to date, but it provides the only unique integer labels
for parton distributions that we have. Where no codes are yet assigned to
the parton distribution sets used, one should do as best as one can, and be
prepared for more extensive user interventions to interpret the information.
For lepton beams, or when the information is not provided for other reasons,
one should put PDFGUP = PDFSUP = -1.
By knowing which set has been used, it is possible to reweight cross sections
event by event, to correspond to another set.
Note that Pythia does not access the PDFGUP or PDFSUP values in its descrip-
tion of internal processes or initial-state showers. If you want this to happen,
you have to manipulate the MSTP(51) - MSTP(56) switches. For instance,
to access Pdflib for protons, put MSTP(51) = 1000*PDFGUP + PDFSUP and
MSTP(52) = 2 in UPINIT. (And remove the dummy Pdflib routines, as de-
scribed for MSTP(52).) Also note that PDFGUP and PDFSUP allow an inde-
pendent choice of parton distributions on the two sides of the event, whereas
Pythia only allows one single choice for all protons, another for all pions and

217

a third for all photons.
IDWTUP : master switch dictating how event weights and cross sections should be in-

terpreted. Several different models are presented in detail below. There will
be tradeoffs between these, e.g. a larger flexibility to mix and re-mix several
different processes could require a larger administrative machinery. Therefore
the best strategy would vary, depending on the format of the input provided
and the output desired. In some cases, parton-level configurations have al-
ready been generated with one specific model in mind, and then there may be
no choice.
IDWTUP significantly affects the interpretation of XWGTUP, XMAXUP and XSECUP,
as described below, but the basic nomenclature is the following. XWGTUP is the
event weight for the current parton-level event, stored in the HEPEUP common
block. For each allowed external process i, XMAXUP(i) gives the maximum
event weight that could be encountered, while XSECUP(i) is the cross section
of the process. Here i is an integer in the range between 1 and NPRUP; see the
LPRUP description below for comments on alternative process labels.

= 1 : parton-level events come with a weight when input to Pythia, but are
then accepted or rejected, so that fully generated events at output have a
common weight, customarily defined as +1. The event weight XWGTUP is
a non-negative dimensional quantity, in pb (converted to mb in Pythia),
with a mean value converging to the total cross section of the respective
process. For each process i, the XMAXUP(i) value provides an upper esti-
mate of how large XWGTUP numbers can be encountered. There is no need
to supply an XSECUP(i) value; the cross sections printed with PYSTAT(1)
are based entirely on the averages of the XWGTUP numbers (with a small
correction for the fraction of events that PYEVNT fails to generate in full
for some reason).
The strategy is that PYEVNT selects which process i should be generated
next, based on the relative size of the XMAXUP(i) values. The UPEVNT
routine has to fill the HEPEUP common block with a parton-level event
of the requested type, and give its XWGTUP event weight. The event is
accepted by PYEVNT with probability XWGTUP/XMAXUP(i). In case of re-
jection, PYEVNT selects a new process i and asks for a new event. This
ensures that processes are mixed in proportion to their average XWGTUP
values.
This model presumes that UPEVNT is able to return a parton-level event
of the process type requested by PYEVNT. It works well if each process is
associated with an input stream of its own, either a subroutine generat-
ing events ‘on the fly’ or a file of already generated events. It works less
well if parton-level events from different processes already are mixed in
a single file, and therefore cannot easily be returned in the order wanted
by PYEVNT. In the latter case one should either use another model or else
consider reducing the level of ambition: even if you have mixed several
different subprocesses on a file, maybe there is no need for Pythia to
know this finer classification, in which case we may get back to a situation
with one ‘process’ per external file. Thus the subdivision into processes
should be a matter of convenience, not a straight jacket. Specifically, the
shower and hadronization treatment of a parton-level event is indepen-
dent of the process label assigned to it.
If the events of some process are already available unweighted, then a
correct mixing of this process with others is ensured by putting XWGTUP
= XMAXUP(i), where both of these numbers now is the total cross section
of the process.

218

Each XMAXUP(i) value must be known from the very beginning, e.g. from
an earlier exploratory run. If a larger value is encountered during the
course of the run, a warning message will be issued and the XMAXUP(i)
value (and its copy in XSEC(ISUB,1)) increased. Events generated be-
fore this time will have been incorrectly distributed, both in the process
composition and in the phase space of the affected process, so that a
bad estimate of XMAXUP(i) may require a new run with a better starting
value.
The model described here agrees with the one used for internal Pythia
processes, and these can therefore freely be mixed with the external ones.
Internal processes are switched on with MSUB(ISUB) = 1, as usual, either
before the PYINIT call or in the UPINIT routine. One cannot use MSEL to
select a predefined set of processes, for technical reasons, wherefore MSEL
= 0 is hardcoded when external processes are included.
A reweighting of events is feasible, e.g. by including a kinematics-
dependent K factor into XWGTUP, so long as XMAXUP(i) is also properly
modified to take this into account. Optionally it is also possible to pro-
duce events with non-unit weight, making use the PYEVWT facility, see sub-
section 9.7. This works exactly the same way as for internal Pythia pro-
cesses, except that the event information available inside PYEVWT would
be different for external processes. You may therefore wish to access the
HEPEUP common block inside your own copy of PYEVWT, where you cal-
culate the event weight.
In summary, this option provides maximal flexibility, but at the price of
potentially requiring the administration of several separate input streams
of parton-level events.

= -1 : same as = 1 above, except that event weights may be either positive or
negative on input, and therefore can come with an output weight of +1
or −1. This weight is uniquely defined by the sign of XWGTUP. It is also
stored in PARI(7). The need for negative-weight events arises in some
next-to-leading-order calculations, but there are inherent dangers, dis-
cussed in subsection 9.9.4 below.
In order to allow a correct mixing between processes, a process of inde-
terminate cross section sign has to be split up in two, where one always
gives a positive or vanishing XWGTUP, and the other always gives it neg-
ative or vanishing. The XMAXUP(i) value for the latter process should
give the most negative XWGTUP that will be encountered. PYEVNT selects
which process i that should be generated next, based on the relative size
of the |XMAXUP(i)| values. A given event is accepted with probability
|XWGTUP|/|XMAXUP(i)|.

= 2 : parton-level events come with a weight when input to Pythia, but
are then accepted or rejected, so that events at output have a com-
mon weight, customarily defined as +1. The non-negative event
weight XWGTUP and its maximum value XMAXUP(i) may or may not
be dimensional quantities; it does not matter since only the ratio
XWGTUP/XMAXUP(i) will be used. Instead XSECUP(i) contains the process
cross section in pb (converted to mb in Pythia). It is this cross section
that appears in the PYSTAT(1) table, only modified by the small fraction
of events that PYEVNT fails to generate in full for some reason.
The strategy is that PYEVNT selects which process i should be generated
next, based on the relative size of the XSECUP(i) values. The UPEVNT
routine has to fill the HEPEUP common block with a parton-level event
of the requested type, and give its XWGTUP event weight. The event is

219

accepted by PYEVNT with probability XWGTUP/XMAXUP(i). In case of re-
jection, the process number i is retained and PYEVNT asks for a new event
of this kind. This ensures that processes are mixed in proportion to their
XSECUP(i) values.
This model presumes that UPEVNT is able to return a parton-level event
of the process type requested by PYEVNT, with comments exactly as for
the = 1 option.
If the events of some process are already available unweighted, then a
correct mixing of this process with others is ensured by putting XWGTUP
= XMAXUP(i).
Each XMAXUP(i) and XSECUP(i) value must be known from the very
beginning, e.g. from an earlier integration run. If a larger value is en-
countered during the course of the run, a warning message will be issued
and the XMAXUP(i) value increased. This will not affect the process com-
position, but events generated before this time will have been incorrectly
distributed in the phase space of the affected process, so that a bad esti-
mate of XMAXUP(i) may require a new run with a better starting value.
While the generation model is different from the normal internal Pythia
one, it is sufficiently close that internal processes can be freely mixed
with the external ones, exactly as described for the = 1 option. In such
a mix, internal processes are selected according to their equivalents of
XMAXUP(i) and at rejection a new i is selected, whereas external ones
are selected according to XSECUP(i) with i retained when an event is
rejected.
A reweighting of individual events is no longer simple, since this would
change the XSECUP(i) value nontrivially. Thus a new integration run
with the modified event weights would be necessary to obtain new
XSECUP(i) and XMAXUP(i) values. An overall rescaling of each process
separately can be obtained by modifying the XSECUP(i) values accord-
ingly, however, e.g. by a relevant K factor.
In summary, this option is similar to the = 1 one. The input of
XSECUP(i) allows good cross section knowledge also in short test runs,
but at the price of a reduced flexibility to reweight events.

= -2 : same as = 2 above, except that event weights may be either positive or
negative on input, and therefore can come with an output weight of +1
or −1. This weight is uniquely defined by the sign of XWGTUP. It is also
stored in PARI(7). The need for negative-weight events arises in some
next-to-leading-order calculations, but there are inherent dangers, dis-
cussed in subsection 9.9.4 below.
In order to allow a correct mixing between processes, a process of inde-
terminate cross section sign has to be split up in two, where one always
gives a positive or vanishing XWGTUP, and the other always gives it neg-
ative or vanishing. The XMAXUP(i) value for the latter process should
give the most negative XWGTUP that will be encountered, and XSECUP(i)
should give the integrated negative cross section. PYEVNT selects which
process i that should be generated next, based on the relative size of
the |XSECUP(i)| values. A given event is accepted with probability
|XWGTUP|/|XMAXUP(i)|.

= 3 : parton-level events come with unit weight when input to Pythia, XWGTUP
= 1, and are thus always accepted. This makes the XMAXUP(i) superflu-
ous, while XSECUP(i) should give the cross section of each process.
The strategy is that that the next process type i is selected by the user
inside UPEVNT, at the same time as the HEPEUP common block is filled

220

with information about the parton-level event. This event is then un-
conditionally accepted by PYEVNT, except for the small fraction of events
that PYEVNT fails to generate in full for some reason.
This model allows UPEVNT to read events from a file where different pro-
cesses already appear mixed. Alternatively, you are free to devise and
implement your own mixing strategy inside UPEVNT, e.g. to mimic the
ones already outlined for PYEVNT in = 1 and = 2 above.
The XSECUP(i) values should be known from the beginning, in order for
PYSTAT(1) to produce a sensible cross section table. This is the only
place where it matters, however. That is, the processing of events inside
Pythia is independent of this information.
In this model it is not possible to mix with internal Pythia processes,
since not enough information is available to perform such a mixing.
A reweighting of events is completely in the hands of the UPEVNT author.
In the case that all events are stored in a single file, and all are to be
handed on to PYEVNT, only a common K factor applied to all processes
would be possible.
In summary, this option puts more power — and responsibility — in the
hands of the author of the parton-level generator. It is very convenient
for the processing of unweighted parton-level events stored in a single
file. The price to be paid is a reduced flexibility in the reweighting of
events, or in combining processes at will.

= -3 : same as = 3 above, except that event weights may be either +1 or −1.
This weight is uniquely defined by the sign of XWGTUP. It is also stored
in PARI(7). The need for negative-weight events arises in some next-to-
leading-order calculations, but there are inherent dangers, discussed in
subsection 9.9.4 below.
Unlike the = -1 and = -2 options, there is no need to split a process in
two, each with a definite XWGTUP sign, since PYEVNT is not responsible for
the mixing of processes. It may well be that the parton-level-generator
author has enforced such a split, however, to solve a corresponding mixing
problem inside UPEVNT. Information on the relative cross section in the
negative- and positive-weight regions may also be useful to understand
the character and validity of the calculation (large cancellations means
trouble!).

= 4 : parton-level events come with a weight when input to Pythia, and this
weight is to be retained unchanged at output. The event weight XWGTUP is
a non-negative dimensional quantity, in pb (converted to mb in Pythia,
and as such also stored in PARI(7)), with a mean value converging to
the total cross section of the respective process. When histogramming
results, one of these event weights would have to be used.
The strategy is exactly the same as = 3 above, except that the event
weight is carried along from UPEVNT to the PYEVNT output. Thus again
all control is in the hands of the UPEVNT author.
A cross section can be calculated from the average of the XWGTUP values,
as in the = 1 option, and is displayed by PYSTAT(1). Here it is of purely
informative character, however, and does not influence the generation
procedure. Neither XSECUP(i) or XMAXUP(i) needs to be known or sup-
plied.
In this model it is not possible to mix with internal Pythia processes,
since not enough information is available to perform such a mixing.
A reweighting of events is completely in the hands of the UPEVNT author,
and is always simple, also when events appear sequentially stored in a

221

single file.
In summary, this option allows maximum flexibility for the parton-level-
generator author, but potentially at the price of spending a significant
amount of time processing events of very small weight. Then again, in
some cases it may be an advantage to have more events in the tails of a
distribution in order to understand those tails better.

= -4 : same as = 4 above, except that event weights in XWGTUP may be either
positive or negative. In particular, the mean value of XWGTUP is con-
verging to the total cross section of the respective process. The need for
negative-weight events arises in some next-to-leading-order calculations,
but there are inherent dangers, discussed in subsection 9.9.4 below.
Unlike the = -1 and = -2 options, there is no need to split a process in
two, each with a definite XWGTUP sign, since PYEVNT does not have to mix
processes. However, as for option = -3, such a split may offer advantages
in understanding the character and validity of the calculation.

NPRUP : the number of different external processes, with information stored in the first
NPRUP entries of the XSECUP, XERRUP, XMAXUP and LPRUP arrays.

XSECUP : cross section for each external process, in pb. This information is mandatory
for IDWTUP = ±2, helpful for ±3, and not used for the other options.

XERRUP : the statistical error on the cross section for each external process, in pb.
Pythia will never make use of this information, but if it is available anyway
it provides a helpful service to the user of parton-level generators.
Note that, if a small number nacc of events pass the experimental selection
cuts, the statistical error on this cross section is limited by δσ/σ ≈ 1/

√
nacc,

irrespectively of the quality of the original integration. Furthermore, at least
in hadronic physics, systematic errors from parton distributions and higher
orders typically are much larger than the statistical errors.

XMAXUP : the maximum event weight XWGTUP that is likely to be encountered for each
external process. For IDWTUP = ±1 it has dimensions pb, while the dimen-
sionality need not be specified for ±2. For the other IDWTUP options it is not
used.

LPRUP : a unique integer identifier of each external process, free to be picked by you for
your convenience. This code is used in the IDPRUP identifier of which process
occured.
In Pythia, an external process is thus identified by three different integers.
The first is the Pythia process number, ISUB. This number is assigned by
PYINIT at the beginning of each run, by scanning the ISET array for unused
process numbers, and reclaiming such in the order they are found. The sec-
ond is the sequence number i, running from 1 through NPRUP, used to find
information in the cross section arrays. The third is the LPRUP(i) number,
which can be anything that the user wants to have as a unique identifier, e.g.
in a larger database of processes. For Pythia to handle conversions, the two
KFPR numbers of a given process ISUB are overwritten with the second and
third numbers above. Thus the first external process will land in ISUB = 4
(currently), and could have LPRUP(1) = 13579. In a PYSTAT(1) call, it would
be listed as User process 13579.

9.9.2 Event information

Inside the event loop of the main program, PYEVNT will be called to generate the next event,
as usual. When this is to be an external process, the parton-level event configuration and
the event weight is found by a call from PYEVNT to UPEVNT.

222

CALL UPEVNT

Purpose: routine to be provided by you when you want to implement external processes,
wherein the contents of the HEPEUP common block are set. This information
specifies the next parton-level event, and some additional event information,
see further below. How UPEVNT is expected to solve its task depends on the
model selected in IDWTUP, see above. Specifically, note that the process type
IDPRUP has already been selected for some IDWTUP options (and then cannot
be overwritten), while it remains to be chosen for others.

Note : a dummy copy of UPEVNT is distributed with the program, in order to avoid
potential problems with unresolved external references. This dummy should
not be linked when you supply your own UPEVNT routine.

INTEGER MAXNUP
PARAMETER (MAXNUP=500)
INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP
DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP
COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,IDUP(MAXNUP),

&ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),PUP(5,MAXNUP),
&VTIMUP(MAXNUP),SPINUP(MAXNUP)

Purpose : to contain information on the latest external process generated in UPEVNT.
A part is one-of-a-kind numbers, like the event weight, but the bulk of the
information is a listing of incoming and outgoing particles, with history, colour,
momentum, lifetime and spin information.

MAXNUP : the maximum number of particles that can be specified by the external process.
The maximum of 500 is more than Pythia is set up to handle. By default,
MSTP(126) = 100, at most 96 particles could be specified, since 4 additional
entries are needed in Pythia for the two beam particles and the two initiators
of initial-state radiation. If this default is not sufficient, MSTP(126) would have
to be increased at the beginning of the run.

NUP : the number of particle entries in the current parton-level event, stored in the
NUP first entries of the IDUP, ISTUP, MOTHUP, ICOLUP, PUP, VTIMUP and SPINUP
arrays.
The special value NUP = 0 is used to denote the case where UPEVNT is unable
to provide an event, at least of the type requested by PYEVNT, e.g. because all
events available in a file have already been read. For such an event also the
error flag MSTI(51) = 1 instead of the normal = 0.

IDPRUP : the identity of the current process, as given by the LPRUP codes.
When IDWTUP = ±1 or ±2, IDPRUP is selected by PYEVNT and already set when
entering UPEVNT. Then UPEVNT has to provide an event of the specified process
type, but cannot change IDPRUP. When IDWTUP = ±3 or ±4, UPEVNT is free to
select the next process, and then should set IDPRUP accordingly.

XWGTUP : the event weight. The precise definition of XWGTUP depends on the value of the
IDWTUP master switch. For IDWTUP = 1 or = 4 it is a dimensional quantity, in
pb, with a mean value converging to the total cross section of the respective
process. For IDWTUP = 2 the overall normalization is irrelevant. For IDWTUP
= 3 only the value +1 is allowed. For negative IDWTUP also negative weights
are allowed, although positive and negative weights cannot appear mixed in
the same process for IDWTUP = -1 or = -2.

SCALUP : scale Q of the event, as used in the calculation of parton distributions (fac-
torization scale). If the scale has not been defined, this should be denoted by

223

using the value -1.
In Pythia, this is input to PARI(21) - PARI(26) (and internally VINT(51) -
VINT(56)) When SCALUP is non-positive, the invariant mass of the parton-level
event is instead used as scale. Either of these comes to set the maximum vir-
tuality in the initial-state parton showers. The same scale is also used for the
first final-state shower, i.e. the one associated with the hard scattering. As in
internal events, PARP(67) and PARP(71) offer multiplicative factors, whereby
the respective initial- or final-state showering Q2

max scale can be modified rel-
ative to the scale above. Any subsequent final-state showers are assumed to
come from resonance decays, where the resonance mass always sets the scale.

AQEDUP : the QED coupling αem used for this event. If αem has not been defined, this
should be denoted by using the value -1.
In Pythia, this value is stored in VINT(57). It is not used anywhere, however.

AQCDUP : the QCD coupling αs used for this event. If αs has not been defined, this
should be denoted by using the value -1.
In Pythia, this value is stored in VINT(58). It is not used anywhere, however.

IDUP(i) : particle identity code, according to the PDG convention, for particle i. As an
extension to this standard, IDUP(i) = 0 can be used to designate an interme-
diate state of undefined (and possible non-physical) character, e.g. a subsystem
with a mass to be preserved by parton showers.
In the Pythia event record, this corresponds to the KF = K(I,2) code. But
note that, here and in the following, the positions i in HEPEUP and I in PYJETS
are likely to be different, since Pythia normally stores more information in
the beginning of the event record. Since K(I,2) = 0 is forbidden, the IDUP(i)
= 0 code is mapped to K(I,2) = 90.

ISTUP(i) : status code of particle i.
= -1 : an incoming particle of the hard-scattering process.

In Pythia, currently it is presumed that the first two particles, i = 1
and = 2, are of this character, and none of the others. If not, the program
execution will stop. This is a restriction relative to the standard, which
allows more possibilities. It is also presumed that these two particles
are given with vanishing masses and parallel to the respective incoming
beam direction, i.e. E = pz for the first and E = −pz for the second. The
assignment of spacelike virtualities and nonvanishing p⊥’s from initial-
state radiation and primordial k⊥’s is the prerogative of Pythia.

= 1 : an outgoing final-state particle.
Such a particle can, of course, be processed further by Pythia, to add
showers and hadronization, or perform decays of any leftover resonances.

= 2 : an intermediate resonance, whose mass should be preserved by parton
showers. For instance, in a process such as e+e− → Z0h0 → qq bb, the
Z0 and h0 should both be flagged this way, to denote that the qq and bb
systems should have their individual masses preserved. In a more com-
plex example, du →W−Z0g → `−ν` qq g, both the W− and Z0 particles
and the W−Z0 pseudoparticle (with IDUP(i) = 0) could be given with
status 2.
Often mass preservation is correlated with colour singlet subsystems, but
this need not be the case. In e+e− → tt→ bW+ bW−, the b and b would
be in a colour singlet state, but not with a preserved mass. Instead the
t = bW+ and t = bW− masses would be preserved, i.e. when b radiates
b → bg the recoil is taken by the W+. Exact mass preservation also by
the hadronization stage is only guaranteed for colour singlet subsystems,
however, at least for string fragmentation, since it is not possible to de-
fine a subset of hadrons that uniquely belong only with a single coloured

224

particle.
The assignment of intermediate states is not always quantum mechan-
ically well-defined. For instance, e+e− → µ−µ+νµνµ can proceed both
through a W+W− and a Z0Z0 intermediate state, as well as through other
graphs, which can interfere with each other. It is here the responsibility
of the matrix-element-generator author to pick one of the alternatives,
according to some convenient recipe. One option might be to perform
two calculations, one complete to select the event kinematics and calcu-
late the event weight, and a second with all interference terms neglected
to pick the event history according to the relative weight of each graph.
Often one particular graph would dominate, because a certain pairing of
the final-state fermions would give invariant masses on or close to some
resonance peaks.
In Pythia, the identification of an intermediate resonance is not only
a matter of preserving a mass, but also of improving the modelling of
the final-state shower evolution, since matrix-element-correction factors
have been calculated for a variety of possible resonance decays and im-
plemented in the respective parton shower description, see subsection
10.2.6.

= 3 : an intermediate resonance, given for documentation only, without any
demand that the mass should be preserved in subsequent showers.
In Pythia, currently particles defined with this option are not treated
any differently from the ones with = 2.

= -2 : an intermediate space-like propagator, defining an x and a Q2, in the
Deeply Inelastic Scattering terminology, which should be preserved.
In Pythia, currently this option is not defined and should not be used.
If it is, the program execution will stop.

= -9 : an incoming beam particle at time t = −∞. Such beams are not required
in most cases, since the HEPRUP common block normally contains the
information. The exceptions are studies with non-collinear beams and
with varying-energy beams (e.g. from beamstrahlung, subsection 7.1.3),
where HEPRUP does not supply sufficient flexibility. Information given
with = -9 overwrites the one given in HEPRUP.
This is an optional part of the standard, since it may be difficult to
combine with some of the IDWTUP options.
Currently it is not recognized by Pythia. If it is used, the program
execution will stop.

MOTHUP(1,i), MOTHUP(2,i) : position of the first and last mother of particle i. Decay
products will normally have only one mother. Then either MOTHUP(2,i) = 0
or MOTHUP(2,i) = MOTHUP(1,i). Particles in the outgoing state of a 2 → n
process have two mothers. This scheme does not limit the number of mothers,
so long as these appear consecutively in the listing, but in practice there will
likely never be more than two mothers per particle.
As has already been mentioned for ISTUP(i) = 2, the definition of history is
not always unique. Thus, in a case like e+e− → µ+µ−γ, proceeding via an
intermediate γ∗/Z0, the squared matrix element contains an interference term
between initial- and final-state emission of the photon. This ambiguity has to
be resolved by the matrix-elements-based generator.
In Pythia, only information on the first mother survives into K(I,3). This is
adequate for resonance decays, while particles produced in the primary 2→ n
process are given mother code 0, as is customary for internal processes. It
implies that two particles are deemed to have the same mothers if the first one
agrees; it is difficult to conceive of situations where this would not be the case.

225

Furthermore, it is assumed that the MOTHUP(1,i) < i, i.e. that mothers are
stored ahead of their daughters, and that all daughters of a mother are listed
consecutively, i.e. without other particles interspersed.
Pythia has a limit of at most seven particles coming from the same mother,
for the final-state parton shower algorithm to work. In fact, the shower is
optimized for a primary 2 → 2 process followed by some sequence of 1 → 2
resonance decays. Then colour coherence with the initial state, matrix-element
matching to gluon emission in resonance decays, and other sophisticated fea-
tures are automatically included. By contrast, the description of emission in
systems with three or more partons is less sophisticated. Apart from problems
with the algorithm itself, more information would be needed to do a good job
than is provided by the standard. Specifically, there is a significant danger
of doublecounting or gaps between the radiation already covered by matrix
elements and the one added by the shower. The omission from HEPEUP of in-
termediate resonances known to be there, so that e.g. two consecutive 1 → 2
decays are bookkept as a single 1 → 3 branching, is a simple way to reduce
the reliability of your studies!

ICOLUP(1,i), ICOLUP(2,i) : integer tags for the colour flow lines passing through the
colour and anticolour, respectively, of the particle. Any particle with colour
(anticolour), such as a quark (antiquark) or gluon, will have the first (second)
number nonvanishing.
The tags can be viewed as a numbering of different colours in theNC →∞ limit
of QCD. Any nonzero integer can be used to represent a different colour, but
the standard recommends to stay with positive numbers larger than MAXNUP
to avoid confusion between colour tags and the position labels i of particles.
The colour and anticolour of a particle is defined with the respect to the phys-
ical time ordering of the process, so as to allow a unique definition of colour
flow also through intermediate particles. That is, a quark always has a non-
vanishing colour tag ICOLUP(1,i), whether it is in the initial, intermediate
or final state. A simple example would be qq → tt → bW+bW−, where the
same colour label is to be used for the q, the t and the b. Correspondingly,
the q, t and b share another colour label, now stored in the anticolour position
ICOLUP(2,i).
The colour label in itself does not distinguish between the colour or the an-
ticolour of a given kind; that information appears in the usage either of the
ICOLUP(1,i) or of the ICOLUP(2,i) position for the colour or anticolour, re-
spectively. Thus, in a W+ → ud decay, the u and d would share the same
colour label, but stored in ICOLUP(1,i) for the u and in ICOLUP(2,i) for the
d.
In general, several colour flows are possible in a given subprocess. This leads
to ambiguities, of a character similar to the ones for the history above, and as
is discussed in subsection 8.2.1. Again it is up to the author of the matrix-
elements-based generator to find a sensible solution. It is useful to note that
all interference terms between different colour flow topologies vanish in the
NC →∞ limit of QCD. One solution would then be to use a first calculation
in standard QCD to select the momenta and find the weight of the process,
and a second with NC →∞ to pick one specific colour topology according to
the relative probabilities in this limit.
The above colour scheme also allows for baryon number violating processes.
Such a vertex would show up by ‘dangling’ colour lines, when the ICOLUP and
MOTHUP information is correlated. For instance, in ũ → dd the ũ inherits an
existing colour label, while the two d’s are produced with two different new
labels.

226

Several examples of colour assignments, both with and without baryon number
violation, are given in [Boo01].
In Pythia, baryon number violation is not yet implemented. It will require
substantial extra work, and is not imminent.

PUP(1,i), PUP(2,i), PUP(3,i), PUP(4,i), PUP(5,i) : the particle momentum vec-
tor (px, py, pz, E,m), with units of GeV. A spacelike virtuality is denoted by a
negative sign on the mass.
Apart from the index order, this exactly matches the P momentum conventions
in PYJETS.
Pythia is forgiving when it comes to using other masses than its own, e.g.
for quarks. Thus the external process can be given directly with the mb used
in the calculation, without any worry how this matches the Pythia default.
However, remember that the two incoming particles with ISTUP(i) = -1 have
to be massless.

VTIMUP(i) : invariant lifetime cτ in mm, i.e. distance from production to decay. Once
the primary vertex has been selected, the subsequent decay vertex positions
in space and time can be constructed step by step, by also making use of the
momentum information. Propagation in vacuum, without any bending e.g. by
magnetic fields, has to be assumed.
This exactly corresponds to the V(I,5) component in PYJETS. Note that it is
used in Pythia to track colour singlet particles through distances that might
be observable in a detector. It is not used to trace the motion of coloured par-
tons at fm scales, through the hadronization process. Also note that Pythia
will only use this information for intermediate resonances, not for the initial-
and final-state particles. For instance, for an undecayed τ−, the lifetime is
selected as part of the τ− decay process, not based on the VTIMUP(i) value.

SPINUP(i) : cosine of the angle between the spin vector of a particle and its three-
momentum, specified in the lab frame, i.e. the frame where the event as a
whole is defined. This scheme is neither general nor complete, but it is chosen
as a sensible compromise.
The main foreseen application is τ ’s with a specific helicity. Typically a rel-
ativistic τ− (τ+) coming from a W− (W+) decay would have helicity and
SPINUP(i) = −1 (+1). This could be changed by the boost from the W rest
frame to the labe frame, however. The use of a real number, rather than an
integer, allows for an extension to the non-relativistic case.
Particles which are unpolarized or have unknown polarization should be given
SPINUP(i) = 9.
Explicit spin information is not used anywhere in Pythia. It is implicit in
many production and decay matrix elements, which often contain more cor-
relation information than could be conveyed by the simple spin numbers dis-
cussed here. Correspondingly, it is to be expected that the external generator
already performed the decays of the W’s, the Z’s and the other resonances,
so as to include the full spin correlations. If this is not the case, such reso-
nances will normally be decayed isotropically. Some correlations could appear
in decay chains: the Pythia decay t → bW+ is isotropic, but the subequent
W+ → q1q2 decay contains implicit W helicity information from the t decay.
Also τ decays performed by Pythia would be isotropic. An interface routine
PYTAUD (see subsection 14.2) can be used to link to external τ decay generators,
but is based on defining the τ in the rest frame of the decay that produces it,
and so is not directly applicable here. In some future, it will be rewritten to
make use of the SPINUP(i) information. In the meantime, and of course also
afterwards, a valid option is to perform the τ decays yourself before passing
‘parton-level’ events to Pythia.

227

9.9.3 An example

To exemplify the above discussion, consider the explicit case of qq or gg → tt →
bW+bW− → bq1q2 bq3q4. These two processes are already available in Pythia, but
without full spin correlations. One might therefore wish to include them from some ex-
ternal generator. A physics analysis would then most likely involve angular correlations
intended to set limits on (or reveal traces of) anomalous couplings. However, so as to
give a simple self-contained example, instead consider the analysis of the charged mul-
tiplicity distribution. This actually offers a simple first cross-check between the internal
and external implementations of the same process. The main program might then look
something like

IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)

C...User process event common block.
INTEGER MAXNUP
PARAMETER (MAXNUP=500)
INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP
DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP
COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,IDUP(MAXNUP),

&ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),PUP(5,MAXNUP),
&VTIMUP(MAXNUP),SPINUP(MAXNUP)
SAVE /HEPEUP/

C...PYTHIA common block.
COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)
SAVE /PYJETS/

C...Initialize.
CALL PYINIT(’USER’,’ ’,’ ’,0D0)

C...Book histogram. Reset event counter.
CALL PYBOOK(1,’Charged multiplicity’,100,-1D0,199D0)
NACC=0

C...Event loop; check that not at end of run; list first events.
DO 100 IEV=1,1000

CALL PYEVNT
IF(NUP.EQ.0) GOTO 110
NACC=NACC+1
IF(IEV.LE.3) CALL PYLIST(7)
IF(IEV.LE.3) CALL PYLIST(2)

C...Analyze event; end event loop.
CALL PYEDIT(3)
CALL PYFILL(1,DBLE(N),1D0)

100 CONTINUE

C...Statistics and histograms.
110 CALL PYSTAT(1)

CALL PYFACT(1,1D0/DBLE(NACC))
CALL PYHIST

228

END

There PYINIT is called with ’USER’ as first argument, implying that the rest is dummy.
The event loop itself looks fairly familiar, but with two additions. One is that NUP is
checked after each event, since NUP = 0 would signal a premature end of the run, with
the external generator unable to return more events. This would be the case e.g. if events
have been stored on file, and the end of this file is reached. The other is that CALL
PYLIST(7) can be used to list the particle content of the HEPEUP common block (with
some information omitted, on vertices and spin), so that one can easily compare this input
with the output after Pythia processing, CALL PYLIST(2). An example of a PYLIST(7)
listing would be

Event listing of user process at input (simplified)

I IST ID Mothers Colours p_x p_y p_z E m
1 -1 21 0 0 101 109 0.000 0.000 269.223 269.223 0.000
2 -1 21 0 0 109 102 0.000 0.000 -225.566 225.566 0.000
3 2 6 1 2 101 0 72.569 153.924 -10.554 244.347 175.030
4 2 -6 1 2 0 102 -72.569 -153.924 54.211 250.441 175.565
5 1 5 3 0 101 0 56.519 33.343 53.910 85.045 4.500
6 2 24 3 0 0 0 16.050 120.581 -64.464 159.302 80.150
7 1 -5 4 0 0 102 44.127 -60.882 25.507 79.527 4.500
8 2 -24 4 0 0 0 -116.696 -93.042 28.705 170.914 78.184
9 1 2 6 0 103 0 -8.667 11.859 16.063 21.766 0.000

10 1 -1 6 0 0 103 24.717 108.722 -80.527 137.536 0.000
11 1 -2 8 0 0 104 -33.709 -22.471 -26.877 48.617 0.000
12 1 1 8 0 104 0 -82.988 -70.571 55.582 122.297 0.000

Note the reverse listing of ID(UP) and IST(UP) relative to the HEPEUP order, to have
better agreement with the PYJETS one. (The ID column is wider in real life, to allow for
longer codes, but has here been reduced to fit the listing onto the page.)

The corresponding PYLIST(2) listing of course would be considerably longer, contain-
ing a complete event as it does. Also the particles above would there appear boosted
by the effects of initial-state radiation and primordial k⊥; copies of them further down
in the event record would also include the effects of final-state radiation. The full story
is available with MSTP(125)=2, while the default listing omits some of the intermediate
steps.

The PYINIT call will generate a call to the user-supplied routine UPINIT. It is here
that we need to specify the details of the generation model. Assume, for instance that
qq- and gg-initiated events have been generated in two separate runs for Tevatron Run
II, with weighted events stored in two separate files. By the end of each run, cross section
and maximum weight information has also been obtained, and stored on separate files.
Then UPINIT could look like

SUBROUTINE UPINIT

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)

C...User process initialization common block.
INTEGER MAXPUP
PARAMETER (MAXPUP=100)
INTEGER IDBMUP,PDFGUP,PDFSUP,IDWTUP,NPRUP,LPRUP

229

DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP
COMMON/HEPRUP/IDBMUP(2),EBMUP(2),PDFGUP(2),PDFSUP(2),

&IDWTUP,NPRUP,XSECUP(MAXPUP),XERRUP(MAXPUP),XMAXUP(MAXPUP),
&LPRUP(MAXPUP)
SAVE /HEPRUP/

C....Pythia common block - needed for setting PDF’s; see below.
COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)
SAVE /PYPARS/

C...Set incoming beams: Tevatron Run II.
IDBMUP(1)=2212
IDBMUP(2)=-2212
EBMUP(1)=1000D0
EBMUP(2)=1000D0

C...Set PDF’s of incoming beams: CTEQ 5L.
C...Note that Pythia will not look at PDFGUP and PDFSUP.

PDFGUP(1)=4
PDFSUP(1)=46
PDFGUP(2)=PDFGUP(1)
PDFSUP(2)=PDFSUP(1)

C...Set use of CTEQ 5L in internal Pythia code.
MSTP(51)=7

C...If you want Pythia to use PDFLIB, you have to set it by hand.
C...(You also have to ensure that the dummy routines
C...PDFSET, STRUCTM and STRUCTP in Pythia are not linked.)
C MSTP(52)=2
C MSTP(51)=1000*PDFGUP(1)+PDFSUP(1)

C...Decide on weighting strategy: weighted on input, cross section known.
IDWTUP=2

C...Number of external processes.
NPRUP=2

C...Set up q qbar -> t tbar.
OPEN(21,FILE=’qqtt.info’,FORM=’unformatted’,ERR=100)
READ(21,ERR=100) XSECUP(1),XERRUP(1),XMAXUP(1)
LPRUP(1)=661
OPEN(22,FILE=’qqtt.events’,FORM=’unformatted’,ERR=100)

C...Set up g g -> t tbar.
OPEN(23,FILE=’ggtt.info’,FORM=’unformatted’,ERR=100)
READ(23,ERR=100) XSECUP(2),XERRUP(2),XMAXUP(2)
LPRUP(2)=662
OPEN(24,FILE=’ggtt.events’,FORM=’unformatted’,ERR=100)

RETURN
C...Stop run if file operations fail.

100 WRITE(*,*) ’Error! File open or read failed. Program stopped.’

230

STOP

END

Here unformatted read/write is used to reduce the size of the event files, but at the price of
a platform dependence. Formatted files are preferred if they are to be shipped elsewhere.
The rest should be self-explanatory.

Inside the event loop of the main program, PYEVNT will call UPEVNT to obtain the next
parton-level event. In its simplest form, only a single READ statement would be necessary
to read information on the next event, e.g. what is shown in the event listing earlier in
this subsection, with a few additions. Then the routine could look like

SUBROUTINE UPEVNT

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)

C...User process event common block.
INTEGER MAXNUP
PARAMETER (MAXNUP=500)
INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP
DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP
COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,IDUP(MAXNUP),

&ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),PUP(5,MAXNUP),
&VTIMUP(MAXNUP),SPINUP(MAXNUP)
SAVE /HEPEUP/

C...Pick file to read from, based on requested event type.
IUNIT=22
IF(IDPRUP.EQ.662) IUNIT=24

C...Read event from this file. (Except that NUP and IDPRUP are known.)
NUP=12
READ(IUNIT,ERR=100,END=100) XWGTUP,SCALUP,AQEDUP,AQCDUP,

&(IDUP(I),ISTUP(I),MOTHUP(1,I),MOTHUP(2,I),ICOLUP(1,I),
&ICOLUP(2,I),(PUP(J,I),J=1,5),VTIMUP(I),SPINUP(I),I=1,NUP)

C...Return, with NUP=0 if read failed.
RETURN

100 NUP=0
RETURN
END

However, in reality one might wish to save disk space by not storing redundant informa-
tion. The XWGTUP and SCALUP numbers are vital, while AQEDUP and AQCDUP are purely
informational and can be omitted. In a gg → tt → bW+bW− → bq1q2 bq3q4 event,
only the q1, q2, q3 and q4 flavours need be given, assuming that the particles are always
stored in the same order. For a qq initial state, the q flavour should be added to the list.
The ISTUP, MOTHUP and ICOLUP information is the same in all events of a given process,
except for a twofold ambiguity in the colour flow for gg initial states. All VTIMUP vanish
and the SPINUP are uninteresting since spins have already been taken into account by the
kinematics of the final fermions. (It would be different if one of the W’s decayed leptoni-
cally to a τ .) Only the PUP values of the six final fermions need be given, since the other

231

momenta and masses can be reconstructed from this, remembering that the two initial
partons are massless and along the beam pipe. The final fermions are on the mass shell,
so their masses need not be stored event by event, but can be read from a small table.
The energy of a particle can be reconstructed from its momentum and mass. Overall
transverse momentum conservation removes two further numbers. What remains is thus
5 integers and 18 real numbers, where the reals could well be stored in single precision.
Of course, the code needed to unpack information stored this way would be lengthy but
trivial. Even more compact storage strategies could be envisaged, e.g. only to save the
weight and the seed of a dedicated random-number generator, to be used to generate the
next parton-level event. It is up to you to find the optimal balance between disk space
and coding effort.

9.9.4 Further comments

This section contains additional information on a few different topics: cross section in-
terpretation, negative-weight events, relations with other Pythia switches and routines,
and error conditions.

In several IDWTUP options, the XWGTUP variable is supposed to give the differential
cross section of the current event, times the phase-space volume within which events are
generated, expressed in picobarns. (Converted to millibarns inside Pythia.) This means
that, in the limit that many events are generated, the average value of XWGTUP gives
the total cross section of the simulated process. Of course, the tricky part is that the
differential cross section usually is strongly peaked in a few regions of the phase space,
such that the average probability to accept an event, 〈XWGTUP〉/XMAXUP(i) is small. It
may then be necessary to find a suitable set of transformed phase-space coordinates, for
which the correspondingly transformed differential cross section is better behaved.

To avoid unclarities, here is a more formal version of the above paragraph. Call dX
the differential phase space, e.g. for a 2 → 2 process dX = dx1 dx2 dt̂, where x1 and x2

are the momentum fractions carried by the two incoming partons and t̂ the Mandelstam
variable of the scattering (see subsection 7.2). Call dσ/dX the differential cross section
of the process, e.g. for 2 → 2: dσ/dX =

∑
ij fi(x1, Q

2) fj(x2, Q
2) dσ̂ij/dt̂, i.e. the prod-

uct of parton distributions and hard-scattering matrix elements, summed over all allowed
incoming flavours i and j. The physical cross section that one then wants to generate
is σ =

∫
(dσ/dX) dX, where the integral is over the allowed phase-space volume. The

event generation procedure consists of selecting an X uniformly in dX and then evalu-
ating the weight dσ/dX at this point. XWGTUP is now simply XWGTUP= dσ/dX

∫
dX, i.e.

the differential cross section times the considered volume of phase space. Clearly, when
averaged over many events, XWGTUP will correctly estimate the desired cross section. If
XWGTUP fluctuates too much, one may try to transform to new variables X ′, where events
are now picked accordingly to dX ′ and XWGTUP= dσ/dX ′

∫
dX ′.

A warning. It is important that X is indeed uniformly picked within the allowed phase
space, alternatively that any Jacobians are properly taken into account. For instance, in
the case above, one approach would be to pick x1, x2 and t̂ uniformly in the ranges
0 < x1 < 1, 0 < x2 < 1, and −s < t̂ < 0, with full phase space volume

∫
dX = s. The

cross section would only be non-vanishing inside the physical region given by −sx1x2 < t̂
(in the massless case), i.e. Monte Carlo efficiency is likely to be low. However, if one were
to choose t̂ values only in the range −ŝ < t̂ < 0, small ŝ values would be favoured, since
the density of selected t̂ values would be larger there. Without the use of a compensating
Jacobian ŝ/s, an incorrect answer would be obtained. Alternatively, one could start out

with a phase space like dX = dx1 dx2 d(cos θ̂), where the limits decouple. Of course, the

cos θ̂ variable can be translated back into a t̂, which will then always be in the desired
range −ŝ < t̂ < 0. The transformation itself here gives the necessary Jacobian.

232

At times, it is convenient to split a process into a discrete set of subprocesses for the
parton-level generation, without retaining these in the IDPRUP classification. For instance,
the cross section above contains a summation over incoming partons. An alternative
would then have been to let each subprocess correspond to one unique combination of
incoming flavours. When an event of process type i is to be generated, first a specific
subprocess ik is selected with probability f ik, where

∑
k f

ik = 1. For this subprocess an
XWGTUPk is generated as above, except that there is no longer a summation over incoming
flavours. Since only a fraction f ik of all events now contain this part of the cross section,
a compensating factor 1/f ik is introduced, i.e. XWGTUP=XWGTUPk/f ik. Further, one has to
define XMAXUP(i)= maxk XMAXUPik/f ik and XSECUP(i)=

∑
k XSECUPik. The generation

efficiency will be maximized for the f ik coefficients selected proportional to XMAXUPik, but
this is no requirement.

The standard allows external parton-level events to come with negative weights, unlike
the case for internal Pythia processes. In order to avoid indiscriminate use of this option,
some words of caution are in place. In next-to-leading-order calculations, events with
negative weights may occur as part of the virtual corrections. In any physical observable
quantity, the effect of such events should cancel against the effect of real events with
one more parton in the final state. For instance, the next-to-leading order calculation of
gluon scattering contains the real process gg→ ggg, with a positive divergence in the soft
and collinear regions, while the virtual corrections to gg → gg are negatively divergent.
Neglecting the problems of outgoing gluons collinear with the beams, and those of soft
gluons, two nearby outgoing gluons in the gg → ggg process can be combined into one
effective one, such that the divergences can be cancelled.

If rather widely separated gluons can be combined, the remaining negative contribu-
tions are not particularly large. Different separation criteria could be considered; one

example would be ∆R =
√

(∆η)2 + (∆ϕ)2 ≈ 1. The recombination of well separated
partons is at the price of an arbitrariness in the choice of clustering algorithm, when
two gluons of nonvanishing invariant mass are to be combined into one massless one, as
required to be able to compare with the kinematics of the massless gg→ gg process when
performing the divergence cancellations. Alternatively, if a smaller ∆R cut is used, where
the combining procedure is less critical, there will be more events with large positive and
negative weights that are to cancel.

Without proper care, this cancellation could easily be destroyed by the subsequent
showering description, as follows. The standard for external processes does not provide
any way to pass information on the clustering algorithm used, so the showering routine
will have to make its own choice what region of phase space to populate with radiation.
One choice could be to allow a cone defined by the nearest colour-connected parton (see
subsection 10.1.3 for a discussion). There could then arise a significant mismatch in
shower description between events where two gluons are just below or just above the ∆R
cut for being recombined, equivalently between gg → gg and gg → ggg events. Most of
the phase space may be open for the former, while only the region below ∆R may be it
for the latter. Thus the average ‘two-parton’ events may end up containing significantly
more jet activity than the corresponding ‘three-parton’ ones. The smaller the ∆R cut,
the more severe the mismatch, both on an event-by-event basis and in terms of the event
rates involved.

One solution would be to extend the standard also to specify which clustering algo-
rithm has been used in the matrix-element calculation, and with what parameter values.
Any shower emission that would give rise to an extra jet, according to this algorithm,
would be vetoed. If a small ∆R cut is used, this is almost equivalent to allowing no
shower activity at all. (That would still leave us with potential mismatch problems in the
hadronization description. Fortunately the string fragmentation approach is very pow-
erful in this respect, with a smooth transition between two almost parallel gluons and a
single one with the full energy [Sjö84].) But we know that the unassisted matrix-element

233

description cannot do a good job of the internal structure of jets on an event-by-event
basis, since multiple-gluon emission is the norm in this region. Therefore a ∆R ∼ 1 will
be required, to let the matrix elements describe the wide-angle emission and the showers
the small-angle one. This again suggests a picture with only a small contribution from
negative-weight events. In summary, the appearance of a large fraction of negative-weight
events should be a sure warning sign that physics is likely to be incorrectly described.

The above example illustrates that it may, at times, be desirable to sidestep the stan-
dard and provide further information directly in the Pythia common blocks. (Currently
there is no exact match to the clustering task mentioned above, but there are a few sim-
pler ways to intervene in the shower evolution.) Then it is useful to note that, apart from
the hard-process generation machinery itself, the external processes are handled almost
exactly as the internal ones. Thus essentially all switches and parameter values related to
showers, underlying events and hadronization can be modified at will. This even applies
to alternative listing modes of events and history pointers, as set by MSTP(128). Also
some of the information on the hard scattering is available, such as MSTI(3), MSTI(21)
- MSTI(26), and PARI(33) - PARI(38). Before using them, however, it is prudent to
check that your variables of interest do work as intended for the particular process you
study. Several differences do remain between internal and external processes, in particular
related to final-state showers and resonance decays. For internal processes, the PYRESD
routine will perform a shower (if relevant) directly after each decay. A typical example
would be that a t→ bW decay is immediately followed by a shower, which could change
the momentum of the W before it decays in its turn. For an external process, this decay
chain would presumably already have been carried out. When the equivalent shower to
the above is performed, it is therefore now necessary also to boost the decay products of
the W. The special sequence of showers and boosts for external processes is administrated
by the PYADSH routine.

You are free to make use of whatever tools you want in your UPINIT and UPEVNT
routines, and normally there would be little or no contact with the rest of Pythia, except
as described above. However, several Pythia tools can be used, if you so wish. One
attractive possibility is to use PYPDFU for parton-distribution-function evaluation. Other
possible tools could be PYR for random-number generation, PYALPS for αs evaluation,
PYALEM for evaluation of a running αem, and maybe a few more.

We end with a few comments on anomalous situations. As already described, you may
put NUP=0 inside UPEVNT, e.g. to signal the end of the file from which events are read. If
the program encounters this value at a return from UPEVNT, then it will also exit from
PYEVNT, without incrementing the counters for the number of events generated. It is then
up to you to have a check on this condition in your main event-generation loop. This you
do either by looking at NUP or at MSTI(51); the latter is set to 1 if no event was generated.

It may also happen that a parton-level configuration fails elsewhere in the PYEVNT
call. For instance, the beam-remnant treatment occasionally encounters situations it
cannot handle, wherefore the parton-level event is rejected and a new one generated.
This happens also with ordinary (not user-defined) events, and usually comes about as
a consequence of the initial-state radiation description leaving too little energy for the
remnant. If the same hard scattering were to be used as input for a new initial-state
radiation and beam-remnant attempt, it could then work fine. There is a possibility to
give events that chance, as follows. MSTI(52) counts the number of times a hard-scattering
configuration has failed to date. If you come in to UPEVNT with MSTI(52) non-vanishing,
this means that the latest configuration failed. So long as the contents of the HEPEUP
common block are not changed, such an event may be given another try. For instance, a
line

IF(MSTI(52).GE.1.AND.MSTI(52).LE.4) RETURN

at the beginning of UPEVNT will give each event up to five tries; thereafter a new one

234

would be generated as usual. Note that the counter for the number of events is updated
at each new try. The fraction of failed configurations is given in the bottom line of the
PYSTAT(1) table.

The above comment only refers to very rare occurrences (less than one in a hundred),
which are not errors in a strict sense; for instance, they do not produce any error messages
on output. If you get warnings and error messages that the program does not understand
the flavour codes or cannot reconstruct the colour flows, it is due to faults of yours, and
giving such events more tries is not going to help.

9.10 Interfaces to Other Generators

In the previous section an approach to including external processes in Pythia was ex-
plained. While general enough, it may not always be the optimal choice. In particular, for
e+e− annihilation events one may envisage some standard cases where simpler approaches
could be pursued. A few such standard interfaces are described in this section.

In e+e− annihilation events, a convenient classification of electroweak physics is by the
number of fermions in the final state. Two fermions from Z0 decay is LEP1 physics, four
fermions can come e.g. from W+W− or Z0Z0 events at LEP2, and at higher energies six
fermions are produced by three-gauge-boson production or top-antitop. Often interference
terms are non-negligible, requiring much more complex matrix-element expressions than
are normally provided in Pythia. Dedicated electroweak generators often exist, however,
and the task is therefore to interface them to the generic parton showering and hadroniza-
tion machinery available in Pythia. In the LEP2 workshop [Kno96] one possible strategy
was outlined to allow reasonably standardized interfaces between the electroweak and the
QCD generators. The LU4FRM routine was provided for the key four-fermion case. This
routine is now included here, in slightly modified form, together with two new siblings for
two and six fermions. The former is trivial and included mainly for completeness, while
the latter is rather more delicate.

In final states with two or three quark–antiquark pairs, the colour connection is not
unique. For instance, a udud final state could either stem from a W+W− or a Z0Z0

intermediate state, or even from interference terms between the two. In order to shower
and fragment the system, it is then necessary to pick one of the two alternatives, e.g.
according to the relative matrix element weight of each alternative, with the interference
term dropped. Some different such strategies are proposed as options below.

Note that here we discuss purely perturbative ambiguities. One can imagine colour
reconnection at later stages of the process, e.g. if the intermediate state indeed is W+W−,
a soft-gluon exchange could still result in colour singlets uu and dd. We are then no longer
speaking of ambiguities related to the hard process itself but rather to the possibility of
nonperturbative effects. This is an interesting topic in itself, addressed in section 12.4.2
but not here.

The fermion-pair routines are not set up to handle QCD four-jet events, i.e. events of
the types qqgg and qqq′q′ (with q′q′ coming from a gluon branching). Such events are
generated in normal parton showers, but not necessarily at the right rate (a problem that
may be especially interesting for massive quarks like b). Therefore one would like to start
a QCD final-state parton shower from a given four-parton configuration. Already some
time ago, a machinery was developed to handle this kind of occurrences [And98a]. This
approach has now been adapted to Pythia, in a somewhat modified form, see section
10.2.7. The main change is that, in the original work, the colour flow was picked in a
separate first step (not discussed in the publication, since it is part of the standard 4-
parton configuration machinery of PYEEVT), which reduces the number of allowed qqgg
parton-shower histories. In the current implementation, more geared towards completely
external generators, no colour flow assumptions are made, meaning a few more possible
shower histories to pick between. Another change is that mass effects are better respected

235

by the z definition. The code contains one new user routine, PY4JET, two new auxiliary
ones, PY4JTW and PY4JTS, and significant additions to the PYSHOW showering routine.

CALL PY2FRM(IRAD,ITAU,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a two-
fermion starting point. The initial list is supposed to be ordered such that the
fermion precedes the antifermion. In addition, an arbitrary number of photons
may be included, e.g. from initial-state radiation; these will not be affected by
the operation and can be put anywhere. The scale for QCD (and QED) final-
state radiation is automatically set to be the mass of the fermion-antifermion
pair. (It is thus not suited for Bhabha scattering.)

IRAD : final-state QED radiation.
= 0 : no final-state photon radiation, only QCD showers.
= 1 : photon radiation inside each final fermion pair, also leptons, in addition

to the QCD one for quarks.
ITAU : handling of τ lepton decay (where Pythia does not include spin effects, al-

though some generators provide the helicity information that would allow a
more sophisticated modelling).

= 0 : τ ’s are considered stable (and can therefore be decayed afterwards).
= 1 : τ ’s are allowed to decay.

ICOM : place where information about the event (flavours, momenta etc.) is stored at
input and output.

= 0 : in the HEPEVT commonblock (meaning that information is automatically
translated to PYJETS before treatment and back afterwards).

= 1 : in the PYJETS commonblock. All fermions and photons can be given
with status code K(I,1)=1, flavour code in K(I,2) and five-momentum
(momentum, energy, mass) in P(I,J). The V vector and remaining com-
ponents in the K one are best put to zero. Also remember to set the total
number of entries N.

CALL PY4FRM(ATOTSQ,A1SQ,A2SQ,ISTRAT,IRAD,ITAU,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a four-
fermion starting point. The initial list of fermions is supposed to be ordered
in the sequence fermion (1) – antifermion (2) – fermion (3) – antifermion (4).
The flavour pairs should be arranged so that, if possible, the first two could
come from a W+ and the second two from a W−; else each pair should have
flavours consistent with a Z0. In addition, an arbitrary number of photons may
be included, e.g. from initial-state radiation; these will not be affected by the
operation and can be put anywhere. Since the colour flow need not be unique,
three real and one integer numbers are providing further input. Once the colour
pairing is determined, the scale for final-state QCD (and QED) radiation is
automatically set to be the mass of the fermion-antifermion pair. (This is the
relevant choice for normal fermion pair production from resonance decay, but
is not suited e.g. for γγ processes dominated by small-t propagators.) The
pairing is also meaningful for QED radiation, in the sense that a four-lepton
final state is subdivided into two radiating subsystems in the same way. Only
if the event consists of one lepton pair and one quark pair is the information
superfluous.

ATOTSQ : total squared amplitude for the event, irrespective of colour flow.
A1SQ : squared amplitude for the configuration with fermions 1 + 2 and 3 + 4 as the

236

two colour singlets.
A2SQ : squared amplitude for the configuration with fermions 1 + 4 and 3 + 2 as the

two colour singlets.
ISTRAT : the choice of strategy to select either of the two possible colour configurations.

Here 0 is supposed to represent a reasonable compromize, while 1 and 2 are
selected so as to give the largest reasonable spread one could imagine.

= 0 : pick configurations according to relative probabilities A1SQ : A2SQ.
= 1 : assign the interference contribution to maximize the 1 + 2 and 3 + 4

pairing of fermions.
= 2 : assign the interference contribution to maximize the 1 + 4 and 3 + 2

pairing of fermions.
IRAD : final-state QED radiation.

= 0 : no final-state photon radiation, only QCD showers.
= 1 : photon radiation inside each final fermion pair, also leptons, in addition

to the QCD one for quarks.
ITAU : handling of τ lepton decay (where Pythia does not include spin effects, al-

though some generators provide the helicity information that would allow a
more sophisticated modelling).

= 0 : τ ’s are considered stable (and can therefore be decayed afterwards).
= 1 : τ ’s are allowed to decay.

ICOM : place where information about the event (flavours, momenta etc.) is stored at
input and output.

= 0 : in the HEPEVT commonblock (meaning that information is automatically
translated to PYJETS before treatment and back afterwards).

= 1 : in the PYJETS commonblock. All fermions and photons can be given
with status code K(I,1)=1, flavour code in K(I,2) and five-momentum
(momentum, energy, mass) in P(I,J). The V vector and remaining com-
ponents in the K one are best put to zero. Also remember to set the total
number of entries N.

Comment : Also colour reconnection phenomena can be studied with the PY4FRM rou-
tine. MSTP(115) can be used to switch between the scenarios, with default
being no reconnection. Other reconnection parameters also work as normally,
including that MSTI(32) can be used to find out whether a reconnection oc-
cured or not. In order for the reconnection machinery to work, the event record
is automatically compelemented with information on the W+W− or Z0Z0 pair
that produced the four fermions, based on the rules described above.
We remind that the four first parameters of the PY4FRM call are supposed to
parameterize an ambiguity on the perturbative level of the process, which has
to be resolved before parton showers are performed. The colour reconnection
discussed here is (in most scenarios) occuring on the nonperturbative level,
after the parton showers.

CALL PY6FRM(P12,P13,P21,P23,P31,P32,PTOP,IRAD,ITAU,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a six-
fermion starting point. The initial list of fermions is supposed to be ordered
in the sequence fermion (1) – antifermion (2) – fermion (3) – antifermion (4)
– fermion (5) – antifermion (6). The flavour pairs should be arranged so that,
if possible, the first two could come from a Z0, the middle two from a W+

and the last two from a W−; else each pair should have flavours consistent
with a Z0. Specifically, this means that in a tt event, the t decay products
would be found in 1 (b) and 3 and 4 (from the W+ decay) and the t ones in

237

2 (b) and 5 and 6 (from the W− decay). In addition, an arbitrary number of
photons may be included, e.g. from initial-state radiation; these will not be
affected by the operation and can be put anywhere. Since the colour flow need
not be unique, further input is needed to specify this. The number of possible
interference contributions being much larger than for the four-fermion case, we
have not tried to implement different strategies. Instead six probabilities may
be input for the different pairings, that you e.g. could pick as the six possible
squared amplitudes, or according to some more complicated scheme for how
to handle the interference terms. The treatment of final-state cascades must
be quite different for top events and the rest. For a normal three-boson event,
each fermion pair would form one radiating system, with scale set equal to the
fermion-antifermion invariant mass. (This is the relevant choice for normal
fermion pair production from resonance decay, but is not suited e.g. for γγ
processes dominated by small-t propagators.) In the top case, on the other
hand, the b (b) would be radiating with a recoil taken by the W+ (W−) in
such a way that the t (t) mass is preserved, while the W dipoles would radiate
as normal. Therefore you need also supply a probability for the event to be a
top one, again e.g. based on some squared amplitude.

P12, P13, P21, P23, P31, P32 : relative probabilities for the six possible pairings of
fermions with antifermions. The first (second) digit tells which antifermion
the first (second) fermion is paired with, with the third pairing given by elim-
ination. Thus e.g. P23 means the first fermion is paired with the second an-
tifermion, the second fermion with the third antifermion and the third fermion
with the first antifermion. Pairings are only possible between quarks and lep-
tons separately. The sum of probabilities for allowed pairings is automatically
normalized to unity.

PTOP : the probability that the configuration is a top one; a number between 0 and 1.
In this case, it is important that the order described above is respected, with
the b and b coming first. No colour ambiguity exists if the top interpretation
is selected, so then the P12 - P32 numbers are not used.

IRAD : final-state QED radiation.
= 0 : no final-state photon radiation, only QCD showers.
= 1 : photon radiation inside each final fermion pair, also leptons, in addition

to the QCD one for quarks.
ITAU : handling of τ lepton decay (where Pythia does not include spin effects, al-

though some generators provide the helicity information that would allow a
more sophisticated modelling).

= 0 : τ ’s are considered stable (and can therefore be decayed afterwards).
= 1 : τ ’s are allowed to decay.

ICOM : place where information about the event (flavours, momenta etc.) is stored at
input and output.

= 0 : in the HEPEVT commonblock (meaning that information is automatically
translated to PYJETS before treatment and back afterwards).

= 1 : in the PYJETS commonblock. All fermions and photons can be given
with status code K(I,1)=1, flavour code in K(I,2) and five-momentum
(momentum, energy, mass) in P(I,J). The V vector and remaining com-
ponents in the K one are best put to zero. Also remember to set the total
number of entries N.

CALL PY4JET(PMAX,IRAD,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a qqgg

238

or qqq′q′ original configuration. The partons should be ordered exactly as in-
dicated above, with the primary qq pair first and thereafter the two gluons
or the secondary q′q′ pair. (Strictly speaking, the definition of primary and
secondary fermion pair is ambiguous. In practice, however, differences in topo-
logical variables like the pair mass should make it feasible to have some sensible
criterion on an event by event basis.) Within each pair, fermion should precede
antifermion. In addition, an arbitrary number of photons may be included, e.g.
from initial-state radiation; these will not be affected by the operation and can
be put anywhere. The program will select a possible parton shower history
from the given parton configuration, and then continue the shower from there
on. The history selected is displayed in lines NOLD+1 to NOLD+6, where NOLD is
the N value before the routine is called. Here the masses and energies of inter-
mediate partons are clearly displayed. The lines NOLD+7 and NOLD+8 contain
the equivalent on-mass-shell parton pair from which the shower is started.

PMAX : the maximum mass scale (in GeV) from which the shower is started in those
branches that are not already fixed by the matrix-element history. If PMAX
is set zero (actually below PARJ(82), the shower cutoff scale), the shower
starting scale is instead set to be equal to the smallest mass of the virtual
partons in the reconstructed shower history. A fixed PMAX can thus be used to
obtain a reasonably exclusive set of four-jet events (to that PMAX scale), with
little five-jet contamination, while the PMAX=0 option gives a more inclusive
interpretation, with five- or more-jet events possible. Note that the shower
is based on evolution in mass, meaning the cut is really one of mass, not of
p⊥, and that it may therefore be advantageous to set up the matrix elements
cuts accordingly if one wishes to mix different event classes. This is not a
requirement, however.

IRAD : final-state QED radiation.
= 0 : no final-state photon radiation, only QCD showers.
= 1 : photon radiation inside each final fermion pair, also leptons, in addition

to the QCD one for quarks.
ICOM : place where information about the event (flavours, momenta etc.) is stored at

input and output.
= 0 : in the HEPEVT commonblock (meaning that information is automatically

translated to PYJETS before treatment and back afterwards).
= 1 : in the PYJETS commonblock. All fermions and photons can be given

with status code K(I,1)=1, flavour code in K(I,2) and five-momentum
(momentum, energy, mass) in P(I,J). The V vector and remaining com-
ponents in the K one are best put to zero. Also remember to set the total
number of entries N.

9.11 Other Routines and Common Blocks

The subroutines and common blocks that you will come in direct contact with have
already been described. A number of other routines and common blocks exist, and those
not described elsewhere are here briefly listed for the sake of completeness. The PYG***
routines are slightly modified versions of the SAS*** ones of the SaSgam library. The
common block SASCOM is renamed PYINT8. If you want to use the parton distributions
for standalone purposes, you are encouraged to use the original SaSgam routines rather
than going the way via the Pythia adaptations.

SUBROUTINE PYINRE : to initialize the widths and effective widths of resonances.
SUBROUTINE PYINBM(CHFRAM,CHBEAM,CHTARG,WIN) : to read in and identify the beam

(CHBEAM) and target (CHTARG) particles and the frame (CHFRAM) as given in the
PYINIT call; also to save the original energy (WIN).

239

SUBROUTINE PYINKI(MODKI) : to set up the event kinematics, either at initialization
(MODKI=0) or for each separate event, the latter when the program is run with
varying kinematics (MODKI=1).

SUBROUTINE PYINPR : to set up the partonic subprocesses selected with MSEL. For γp
and γγ, also the MSTP(14) value affects the choice of processes. In particular,
options such as MSTP(14)=10 and =30 sets up the several different kinds of
processes that need to be mixed, with separate cuts for each.

SUBROUTINE PYXTOT : to give the parameterized total, double diffractive, single diffrac-
tive and elastic cross sections for different energies and colliding hadrons or
photons.

SUBROUTINE PYMAXI : to find optimal coefficients COEF for the selection of kinematical
variables, and to find the related maxima for the differential cross section times
Jacobian factors, for each of the subprocesses included.

SUBROUTINE PYPILE(MPILE) : to determine the number of pile-up events, i.e. events
appearing in the same beam–beam crossing.

SUBROUTINE PYSAVE(ISAVE,IGA) : saves and restores parameters and cross section val-
ues between the several γp and γγ components of mixing options such as
MSTP(14)=10 and =30. The options for ISAVE are (1) a complete save of all
parameters specific to a given component, (2) a partial save of cross-section
information, (3) a restoration of all parameters specific to a given component,
(4) as 3 but preceded by a random selection of component, and (5) a summa-
tion of component cross sections (for PYSTAT). The subprocess code in IGA is
the one described for MSTI(9); it is input for options 1, 2 and 3 above, output
for 4 and dummy for 5.

SUBROUTINE PYGAGA(IGA) : to generate photons according to the virtual photon flux
around a lepton beam, for the ’gamma/lepton’ option in PYINIT.

IGA = 1 : call at initialization to set up x and Q2 limits etc.
IGA = 2 : call at maximization step to give estimate of maximal photon flux factor.
IGA = 3 : call at the beginning of the event generation to select the kinematics of

the photon emission and to give the flux factor.
IGA = 4 : call at the end of the event generation to set up the full kinematics of

the photon emission.
SUBROUTINE PYRAND : to generate the quantities characterizing a hard scattering on the

parton level, according to the relevant matrix elements.
SUBROUTINE PYSCAT : to find outgoing flavours and to set up the kinematics and colour

flow of the hard scattering.
SUBROUTINE PYRESD(IRES) : to allow resonances to decay, including chains of successive

decays and parton showers. Normally only two-body decays of each resonance,
but a few three-body decays are also implemented.

IRES : The standard call from PYEVNT, for the hard process, has IRES=0, and
then finds resonances to be treated based on the subprocess number ISUB.
In case of a nonzero IRES only the resonance in position IRES of the event
record is considered. This is used by PYEVNT and PYEXEC to decay leftover
resonances. (Example: a b → W + t branching may give a t quark as
beam remnant.)

SUBROUTINE PYMULT(MMUL) : to generate semi-hard interactions according to the multi-
ple interaction formalism.

SUBROUTINE PYREMN(IPU1,IPU2) : to add on target remnants and include primordial
k⊥.

SUBROUTINE PYDIFF : to handle diffractive and elastic scattering events.
SUBROUTINE PYDISG : to set up kinematics, beam remnants and showers in the 2 → 1

DIS process γ∗f → f. Currently initial-state radiation is not yet implemented,
while final-state is.

240

SUBROUTINE PYDOCU : to compute cross sections of processes, based on current Monte
Carlo statistics, and to store event information in the MSTI and PARI arrays.

SUBROUTINE PYWIDT(KFLR,SH,WDTP,WDTE) : to calculate widths and effective widths of
resonances. Everything is given in dimensions of GeV.

SUBROUTINE PYOFSH(MOFSH,KFMO,KFD1,KFD2,PMMO,RET1,RET2) : to calculate partial
widths into channels off the mass shell, and to select correlated masses of
resonance pairs.

SUBROUTINE PYKLIM(ILIM) : to calculate allowed kinematical limits.
SUBROUTINE PYKMAP(IVAR,MVAR,VVAR) : to calculate the value of a kinematical variable

when this is selected according to one of the simple pieces.
SUBROUTINE PYSIGH(NCHN,SIGS) : to give the differential cross section (multiplied by

the relevant Jacobians) for a given subprocess and kinematical setup.
SUBROUTINE PYPDFL(KF,X,Q2,XPQ) : to give parton distributions for p and n in the

option with modified behaviour at small Q2 and x, see MSTP(57).
SUBROUTINE PYPDFU(KF,X,Q2,XPQ) : to give parton-distribution functions (multiplied

by x, i.e. xfi(x,Q
2)) for an arbitrary particle (of those recognized by Pythia).

Generic driver routine for the following, specialized ones.
KF : flavour of probed particle, according to KF code.
X : x value at which to evaluate parton distributions.
Q2 : Q2 scale at which to evaluate parton distributions.
XPQ : array of dimensions XPQ(-25:25), which contains the evaluated parton

distributions xfi(x,Q
2). Components i ordered according to standard

KF code; additionally the gluon is found in position 0 as well as 21 (for
historical reasons).

Note: the above set of calling arguments is enough for a real photon, but has
to be complemented for a virtual one. This is done by VINT(120).

SUBROUTINE PYPDEL(KFA,X,Q2,XPEL) : to give e/µ/τ parton distributions.
SUBROUTINE PYPDGA(X,Q2,XPGA) : to give the photon parton distributions for sets other

than the SaS ones.
SUBROUTINE PYGGAM(ISET,X,Q2,P2,IP2,F2GM,XPDFGM) : to construct the SaS F2 and

parton distributions of the photon by summing homogeneous (VMD) and in-
homogeneous (anomalous) terms. For F2, c and b are included by the Bethe-
Heitler formula; in the ‘ms’ scheme additionally a Cγ term is added. IP2 sets
treatment of virtual photons, with same code as MSTP(60). Calls PYGVMD,
PYGANO, PYGBEH, and PYGDIR.

SUBROUTINE PYGVMD(ISET,KF,X,Q2,P2,ALAM,XPGA,VXPGA) : to evaluate the parton
distributions of a VMD photon, evolved homogeneously from an initial scale
P 2 to Q2.

SUBROUTINE PYGANO(KF,X,Q2,P2,ALAM,XPGA,VXPGA) : to evaluate the parton distribu-
tions of the anomalous photon, inhomogeneously evolved from a scale P 2

(where it vanishes) to Q2.
SUBROUTINE PYGBEH(KF,X,Q2,P2,PM2,XPBH) : to evaluate the Bethe-Heitler cross sec-

tion for heavy flavour production.
SUBROUTINE PYGDIR(X,Q2,P2,AK0,XPGA) : to evaluate the direct contribution, i.e. the

Cγ term, as needed in ‘ms’ parameterizations.
SUBROUTINE PYPDPI(X,Q2,XPPI) : to give pion parton distributions.
SUBROUTINE PYPDPR(X,Q2,XPPR) : to give proton parton distributions. Calls several

auxiliary routines: PYCTEQ, PYGRVL, PYGRVM, PYGRVD, PYGRVV, PYGRVW, PYGRVS,
PYCT5L, PYCT5M and PYPDPO.

FUNCTION PYHFTH(SH,SQM,FRATT) : to give heavy-flavour threshold factor in matrix el-
ements.

SUBROUTINE PYSPLI(KF,KFLIN,KFLCH,KFLSP) : to give hadron remnant or remnants
left behind when the reacting parton is kicked out.

241

FUNCTION PYGAMM(X) : to give the value of the ordinary Γ(x) function (used in some
parton-distribution parameterizations).

SUBROUTINE PYWAUX(IAUX,EPS,WRE,WIM) : to evaluate the two auxiliary functions W1

and W2 appearing in some cross section expressions in PYSIGH.
SUBROUTINE PYI3AU(EPS,RAT,Y3RE,Y3IM) : to evaluate the auxiliary function I3 ap-

pearing in some cross section expressions in PYSIGH.
FUNCTION PYSPEN(XREIN,XIMIN,IREIM) : to calculate the real and imaginary part of

the Spence function [Hoo79].
SUBROUTINE PYQQBH(WTQQBH) : to calculate matrix elements for the two processes gg→

QQh0 and qq→ QQh0.
SUBROUTINE PYRECO(IW1,IW2,NSD1,NAFT1)) : to perform nonperturbative reconnec-

tion among strings in W+W− and Z0Z0 events. The physics of this routine is
described as part of the fragmentation story, section 12.4.2, but for technical
reasons the code is called directly in the event generation sequence.

BLOCK DATA PYDATA : to give sensible default values to all status codes and parameters.

COMMON/PYINT1/MINT(400),VINT(400)

Purpose: to collect a host of integer- and real-valued variables used internally in the pro-
gram during the initialization and/or event generation stage. These variables
must not be changed by you.

MINT(1) : specifies the general type of subprocess that has occurred, according to the
ISUB code given in section 8.1.

MINT(2) : whenever MINT(1) (together with MINT(15) and MINT(16)) are not sufficient
to specify the type of process uniquely, MINT(2) provides an ordering of the
different possibilities, see MSTI(2). Internally and temporarily, in process 53
MINT(2) is increased by 2 or 4 for c or b, respectively.

MINT(3) : number of partons produced in the hard interactions, i.e. the number n of
the 2 → n matrix elements used; is sometimes 3 or 4 when a basic 2 → 1 or
2 → 2 process has been convoluted with two 1 → 2 initial branchings (like
qq′ → q′′q′′′h0).

MINT(4) : number of documentation lines at the beginning of the common block PYJETS
that are given with K(I,1)=21; 0 for MSTP(125)=0.

MINT(5) : number of events generated to date in current run. In runs with the variable-
energy option, MSTP(171)=1 and MSTP(172)=2, only those events that survive
(i.e. that do not have MSTI(61)=1) are counted in this number. That is,
MINT(5) may be less than the total number of PYEVNT calls.

MINT(6) : current frame of event (see MSTP(124) for possible values).
MINT(7), MINT(8) : line number for documentation of outgoing partons/particles from

hard scattering for 2→ 2 or 2→ 1→ 2 processes (else = 0).
MINT(10) : is 1 if cross section maximum was violated in current event, and 0 if not.
MINT(11) : KF flavour code for beam (side 1) particle.
MINT(12) : KF flavour code for target (side 2) particle.
MINT(13), MINT(14) : KF flavour codes for side 1 and side 2 initial-state shower initia-

tors.
MINT(15), MINT(16) : KF flavour codes for side 1 and side 2 incoming partons to the

hard interaction. (For use in PYWIDT calls, occasionally MINT(15)=1 signals the
presence of an as yet unspecified quark, but the original value is then restored
afterwards.)

MINT(17), MINT(18) : flag to signal if particle on side 1 or side 2 has been scattered
diffractively; 0 if no, 1 if yes.

MINT(19), MINT(20) : flag to signal initial-state structure with parton inside photon

242

inside electron on side 1 or side 2; 0 if no, 1 if yes.
MINT(21) - MINT(24) : KF flavour codes for outgoing partons from the hard interaction.

The number of positions actually used is process-dependent, see MINT(3); trail-
ing positions not used are set = 0. For events with many outgoing partons,
e.g. in external processes, also MINT(25) and MINT(26) could be used.

MINT(25), MINT(26) : KF flavour codes of the products in the decay of a single s-channel
resonance formed in the hard interaction. Are thus only used when MINT(3)=1
and the resonance is allowed to decay.

MINT(31) : number of hard or semi-hard scatterings that occurred in the current event
in the multiple-interaction scenario; is = 0 for a low-p⊥ event.

MINT(32) : information on whether a nonperturbative colour reconnection occurred in
the current event; is 0 normally but 1 in case of reconnection.

MINT(41), MINT(42) : type of incoming beam or target particle; 1 for lepton and 2 for
hadron. A photon counts as a lepton if it is not resolved (direct or DIS) and
as a hadron if it is resolved (VMD or GVMD).

MINT(43) : combination of incoming beam and target particles. A photon counts as a
hadron.

= 1 : lepton on lepton.
= 2 : lepton on hadron.
= 3 : hadron on lepton.
= 4 : hadron on hadron.

MINT(44) : as MINT(43), but a photon counts as a lepton.
MINT(45), MINT(46) : structure of incoming beam and target particles.

= 1 : no internal structure, i.e. a lepton or photon carrying the full beam en-
ergy.

= 2 : defined with parton distributions that are not peaked at x = 1, i.e. a
hadron or a resolved (VMD or GVMD) photon.

= 3 : defined with parton distributions that are peaked at x = 1, i.e. a resolved
lepton.

MINT(47) : combination of incoming beam- and target-particle parton-distribution func-
tion types.

= 1 : no parton distribution either for beam or target.
= 2 : parton distributions for target but not for beam.
= 3 : parton distributions for beam but not for target.
= 4 : parton distributions for both beam and target, but not both peaked at

x = 1.
= 5 : parton distributions for both beam and target, with both peaked at x =

1.
= 6 : parton distribution is peaked at x = 1 for target and no distribution at

all for beam.
= 7 : parton distribution is peaked at x = 1 for beam and no distribution at

all for target.
MINT(48) : total number of subprocesses switched on.
MINT(49) : number of subprocesses that are switched on, apart from elastic scattering

and single, double and central diffractive.
MINT(50) : combination of incoming particles from a multiple interactions point of

view.
= 0 : the total cross section is not known; therefore no multiple interactions

are possible.
= 1 : the total cross section is known; therefore multiple interactions are possi-

ble if switched on. Requires beams of hadrons, VMD photons or GVMD
photons.

MINT(51) : internal flag that event failed cuts.

243

= 0 : no problem.
= 1 : event failed; new one to be generated.
= 2 : event failed; no new event is to be generated but instead control is to be

given back to used. Is intended for user-defined processes, when NUP=0.
MINT(52) : internal counter for number of lines used (in /PYJETS/) before multiple in-

teractions are considered.
MINT(53) : internal counter for number of lines used (in /PYJETS/) before beam rem-

nants are considered.
MINT(55) : the heaviest new flavour switched on for QCD processes, specifically the

flavour to be generated for ISUB = 81, 82, 83 or 84.
MINT(56) : the heaviest new flavour switched on for QED processes, specifically for ISUB

= 85. Note that, unlike MINT(55), the heaviest flavour may here be a lepton,
and that heavy means the one with largest KF code.

MINT(57) : number of times the beam remnant treatment has failed, and the same basic
kinematical setup is used to produce a new parton shower evolution and beam
remnant set. Mainly used in leptoproduction, for the option when x and Q2

are to be preserved.
MINT(61) : internal switch for the mode of operation of resonance width calculations in

PYWIDT for γ∗/Z0 or γ∗/Z0/Z′0.
= 0 : without reference to initial-state flavours.
= 1 : with reference to given initial-state flavours.
= 2 : for given final-state flavours.

MINT(62) : internal switch for use at initialization of h0 width.
= 0 : use widths into ZZ∗ or WW∗ calculated before.
= 1 : evaluate widths into ZZ∗ or WW∗ for current Higgs mass.

MINT(63) : internal switch for use at initialization of the width of a resonance defined
with MWID(KC)=3.

= 0 : use existing widths, optionally with simple energy rescaling.
= 1 : evaluate widths at initialization, to be used subsequently.

MINT(65) : internal switch to indicate initialization without specified reaction.
= 0 : normal initialization.
= 1 : initialization with argument ’none’ in PYINIT call.

MINT(71) : switch to tell whether current process is singular for p⊥ → 0 or not.
= 0 : non-singular process, i.e. proceeding via an s-channel resonance or with

both products having a mass above CKIN(6).
= 1 : singular process.

MINT(72) : number of s-channel resonances that may contribute to the cross section.
MINT(73) : KF code of first s-channel resonance; 0 if there is none.
MINT(74) : KF code of second s-channel resonance; 0 if there is none.
MINT(81) : number of selected pile-up events.
MINT(82) : sequence number of currently considered pile-up event.
MINT(83) : number of lines in the event record already filled by previously considered

pile-up events.
MINT(84) : MINT(83) + MSTP(126), i.e. number of lines already filled by previously con-

sidered events plus number of lines to be kept free for event documentation.
MINT(91) : is 1 for a lepton–hadron event and 0 else. Used to determine whether a

PYFRAM(3) call is possible.
MINT(92) : is used to denote region in (x,Q2) plane when MSTP(57)=2, according to

numbering in [Sch93a]. Simply put, 0 means that the modified proton parton
distributions were not used, 1 large x and Q2, 2 small Q2 but large x, 3 small
x but large Q2 and 4 small x and Q2.

MINT(93) : is used to keep track of parton distribution set used in the latest STRUCTM
call to Pdflib. The code for this set is stored in the form MINT(93) =

244

1000000×NPTYPE + 1000×NGROUP + NSET. The stored previous value is com-
pared with the current new value to decide whether a PDFSET call is needed to
switch to another set.

MINT(101), MINT(102) : is normally 1, but is 4 when a resolved photon (appearing on
side 1 or 2) can be represented by either of the four vector mesons ρ0, ω, φ
and J/ψ.

MINT(103), MINT(104) : KF flavour code for the two incoming particles, i.e. the same
as MINT(11) and MINT(12). The exception is when a resolved photon is rep-
resented by a vector meson (a ρ0, ω, φ or J/ψ). Then the code of the vector
meson is given.

MINT(105) : is either MINT(103) or MINT(104), depending on which side of the event
currently is being studied.

MINT(107), MINT(108) : if either or both of the two incoming particles is a photon,
then the respective value gives the nature assumed for that photon. The code
follows the one used for MSTP(14):

= 0 : direct photon.
= 1 : resolved photon.
= 2 : VMD-like photon.
= 3 : anomalous photon.
= 4 : DIS photon.

MINT(109) : is either MINT(107) or MINT(108), depending on which side of the event
currently is being studied.

MINT(111) : the frame given in PYINIT call, 0–5 for ’NONE’, ’CMS’, ’FIXT’, ’3MOM’,
’4MOM’ and ’5MOM’, respectively, and 11 for ’USER’.

MINT(121) : number of separate event classes to initialize and mix.
= 1 : the normal value.
= 2 - 13 : for γp/γ∗p/γγ/γ∗γ/γ∗γ∗ interaction when MSTP(14) is set to mix dif-

ferent photon components.
MINT(122) : event class used in current event for γp or γγ events generated with one

of the MSTP(14) options mixing several event classes; code as described for
MSTI(9).

MINT(123) : event class used in the current event, with the same list of possibilities
as for MSTP(14), except that options 1, 4 or 10 do not appear. = 8 denotes
DIS×VMD/p or vice verse, = 9 DIS*GVMD or vice versa. Apart from a dif-
ferent coding, this is exactly the same information as is available in MINT(122).

MINT(141), MINT(142) : for ’gamma/lepton’ beams, KF code for incoming lepton beam
or target particles, while MINT(11) and MINT(12) is then the photon code.
A nonzero value is the main check whether the photon emission machinery
should be called at all.

MINT(143) : the number of tries before a successful kinematics configuration is found in
PYGAGA, used for ’gamma/lepton’ beams. Used for the cross section updating
in PYRAND.

VINT(1) : Ecm, c.m. energy.
VINT(2) : s (= E2

cm) squared mass of complete system.
VINT(3) : mass of beam particle. Can be negative to denote a spacelike particle, e.g. a

γ∗.
VINT(4) : mass of target particle. Can be negative to denote a spacelike particle, e.g. a

γ∗.
VINT(5) : absolute value of momentum of beam (and target) particle in c.m. frame.
VINT(6) - VINT(10) : θ, ϕ and β for rotation and boost from c.m. frame to user-

specified frame.
VINT(11) : τmin.

245

VINT(12) : ymin.
VINT(13) : cos θ̂min for cos θ̂ ≤ 0.
VINT(14) : cos θ̂min for cos θ̂ ≥ 0.
VINT(15) : x2

⊥min.
VINT(16) : τ ′min.
VINT(21) : τ .
VINT(22) : y.
VINT(23) : cos θ̂.
VINT(24) : ϕ (azimuthal angle).
VINT(25) : x2

⊥.
VINT(26) : τ ′.
VINT(31) : τmax.
VINT(32) : ymax.
VINT(33) : cos θ̂max for cos θ̂ ≤ 0.
VINT(34) : cos θ̂max for cos θ̂ ≥ 0.
VINT(35) : x2

⊥max.
VINT(36) : τ ′max.
VINT(41), VINT(42) : the momentum fractions x taken by the partons at the hard

interaction, as used e.g. in the parton-distribution functions.
VINT(43) : m̂ =

√
ŝ, mass of hard-scattering subsystem.

VINT(44) : ŝ of the hard subprocess (2→ 2 or 2→ 1).
VINT(45) : t̂ of the hard subprocess (2→ 2 or 2→ 1→ 2).
VINT(46) : û of the hard subprocess (2→ 2 or 2→ 1→ 2).
VINT(47) : p̂⊥ of the hard subprocess (2→ 2 or 2→ 1→ 2), i.e. transverse momentum

evaluated in the rest frame of the scattering.
VINT(48) : p̂2

⊥ of the hard subprocess; see VINT(47).
VINT(49) : m̂′, the mass of the complete three- or four-body final state in 2 → 3 or

2→ 4 processes.
VINT(50) : ŝ′ = m̂′2; see VINT(49).
VINT(51) : Q of the hard subprocess. The exact definition is process-dependent, see

MSTP(32).
VINT(52) : Q2 of the hard subprocess; see VINT(51).
VINT(53) : Q of the outer hard-scattering subprocess, used as scale for parton distribu-

tion function evaluation. Agrees with VINT(51) for a 2→ 1 or 2→ 2 process.
For a 2 → 3 or 2 → 4 W/Z fusion process, it is set by the W/Z mass scale,
and for subprocesses 121 and 122 by the heavy-quark mass.

VINT(54) : Q2 of the outer hard-scattering subprocess; see VINT(53).
VINT(55) : Q scale used as maximum virtuality in parton showers. Is equal to VINT(53),

except for DIS processes when MSTP(22)> 0.
VINT(56) : Q2 scale in parton showers; see VINT(55).
VINT(57) : αem value of hard process.
VINT(58) : αs value of hard process.
VINT(59) : sin θ̂ (cf. VINT(23)); used for improved numerical precision in elastic and

diffractive scattering.
VINT(63), VINT(64) : nominal m2 values, i.e. without final-state radiation effects, for

the two (or one) partons/particles leaving the hard interaction. For elastic
VMD and GVMD events, this equals VINT(69)2 or VINT(70)2, and for diffrac-
tive events it is above that.

VINT(65) : p̂init, i.e. common nominal absolute momentum of the two partons entering
the hard interaction, in their rest frame.

VINT(66) : p̂fin, i.e. common nominal absolute momentum of the two partons leaving
the hard interaction, in their rest frame.

246

VINT(67), VINT(68) : mass of beam and target particle, as VINT(3) and VINT(4),
except that an incoming γ is assigned the ρ0, ω or φ mass. (This also applies
for a GVMD photon, where the mass of the VMD state with the equivalent
flavour content is chosen.) Used for elastic scattering γp → ρ0p and other
similar processes.

VINT(69), VINT(70) : the actual mass of a VMD or GVMD state; agrees with the above
for VMD but is selected as a larger number for GVMD, using the approximate
association m = 2k⊥. Thus the mass selection for a GVMD state is according
to dm2/(m2 + Q2)2 between limits 2k0 < m < 2k1 = 2p⊥min(W 2). Required
for elastic and diffractive events.

VINT(71) : p⊥min of process, i.e. CKIN(3) or CKIN(5), depending on which is larger, and
whether the process is singular in p⊥ → 0 or not.

VINT(73) : τ = m2/s value of first resonance, if any; see MINT(73).
VINT(74) : mΓ/s value of first resonance, if any; see MINT(73).
VINT(75) : τ = m2/s value of second resonance, if any; see MINT(74).
VINT(76) : mΓ/s value of second resonance, if any; see MINT(74).
VINT(80) : correction factor (evaluated in PYOFSH) for the cross section of resonances

produced in 2→ 2 processes, if only some mass range of the full Breit–Wigner
shape is allowed by user-set mass cuts (CKIN(2), CKIN(45) - CKIN(48)).

VINT(95) : the value of the Coulomb factor in the current event, see MSTP(40). For
MSTP(40)=0 it is = 1, else it is > 1.

VINT(97) : an event weight, normally 1 and thus uninteresting, but for external processes
with IDWTUP=-1, -2 or -3 it can be −1 for events with negative cross section,
with IDWTUP=4 it can be an arbitrary non-negative weight of dimension mb,
and with IDWTUP=-4 it can be an arbitrary weight of dimension mb. (The
difference being that in most cases a rejection step is involved to bring the
accepted events to a common weight normalization, up to a sign, while no
rejection need be involved in the last two cases.)

VINT(98) : is sum of VINT(100) values for current run.
VINT(99) : is weight WTXS returned from PYEVWT call when MSTP(142)≥ 1, otherwise is

1.
VINT(100) : is compensating weight 1./WTXS that should be associated with events when

MSTP(142)=1, otherwise is 1.
VINT(108) : ratio of maximum differential cross section observed to maximum differen-

tial cross section assumed for the generation; cf. MSTP(123).
VINT(109) : ratio of minimal (negative!) cross section observed to maximum differential

cross section assumed for the generation; could only become negative if cross
sections are incorrectly included.

VINT(111) - VINT(116) : for MINT(61)=1 gives kinematical factors for the different
pieces contributing to γ∗/Z0 or γ∗/Z0/Z′0 production, for MINT(61)=2 gives
sum of final-state weights for the same; coefficients are given in the order pure
γ∗, γ∗–Z0 interference, γ∗–Z′0 interference, pure Z0, Z0–Z′0 interference and
pure Z′0.

VINT(117) : width of Z0; needed in γ∗/Z0/Z′0 production.
VINT(120) : mass of beam or target particle, i.e. coincides with VINT(3) or VINT(4),

depending on which side of the event is considered. Is used to bring information
on the user-defined virtuality of a photon beam to the parton distributions of
the photon.

VINT(131) : total cross section (in mb) for subprocesses allowed in the pile-up events
scenario according to the MSTP(132) value.

VINT(132) : n =VINT(131)×PARP(131) of pile-up events, cf. PARI(91).
VINT(133) : 〈n〉 =

∑
i iPi/

∑
i Pi of pile-up events as actually simulated, i.e. 1 ≤ i ≤ 200

(or smaller), see PARI(92).

247

VINT(134) : number related to probability to have an event in a beam–beam crossing; is
exp(−n)

∑
i n

i/i! for MSTP(133)=1 and exp(−n)
∑
i n

i/(i−1)! for MSTP(133)=2,
cf. PARI(93).

VINT(138) : size of the threshold factor (enhancement or suppression) in the latest event
with heavy-flavour production; see MSTP(35).

VINT(141), VINT(142) : x values for the parton-shower initiators of the hardest inter-
action; used to find what is left for multiple interactions.

VINT(143), VINT(144) : 1−∑i xi for all scatterings; used for rescaling each new x-value
in the multiple-interaction parton-distribution-function evaluation.

VINT(145) : estimate of total parton–parton cross section for multiple interactions; used
for MSTP(82)≥ 2.

VINT(146) : common correction factor fc in the multiple-interaction probability; used
for MSTP(82)≥ 2 (part of e(b), see eq. (202)).

VINT(147) : average hadronic matter overlap; used for MSTP(82)≥ 2 (needed in evalua-
tion of e(b), see eq. (202)).

VINT(148) : enhancement factor for current event in the multiple-interaction probability,
defined as the actual overlap divided by the average one; used for MSTP(82)≥ 2
(is e(b) of eq. (202)).

VINT(149) : x2
⊥ cut-off or turn-off for multiple interactions. For MSTP(82)≤ 1 it is

4p2
⊥min/W

2, for MSTP(82)≥ 2 it is 4p2
⊥0/W

2. For hadronic collisions, W 2 = s,
but in photoproduction or γγ physics the W 2 scale refers to the hadronic
subsystem squared energy. This may vary from event to event, so VINT(149)
needs to be recalculated.

VINT(150) : probability to keep the given event in the multiple-interaction scenario with
varying impact parameter, as given by the exponential factor in eq. (204).

VINT(151), VINT(152) : sum of x values for all the multiple-interaction partons.
VINT(153) : current differential cross section value obtained from PYSIGH; used in mul-

tiple interactions only.
VINT(154) : current p⊥min(s) or p⊥min(W 2), used for multiple interactions and also as

upper cut-off k1 if the GVMD k⊥ spectrum. See comments at VINT(149).
VINT(155), VINT(156) : the x value of a photon that branches into quarks or gluons,

i.e. x at interface between initial-state QED and QCD cascades, in the old
photoproduction machinery.

VINT(157), VINT(158) : the primordial k⊥ values selected in the two beam remnants.
VINT(159), VINT(160) : the χ values selected for beam remnants that are split into two

objects, describing how the energy is shared (see MSTP(92) and MSTP(94)); is
0 if no splitting is needed.

VINT(161) - VINT(200) : sum of Cabibbo–Kobayashi–Maskawa squared matrix ele-
ments that a given flavour is allowed to couple to. Results are stored in format
VINT(180+KF) for quark and lepton flavours and antiflavours (which need not
be the same; see MDME(IDC,2)). For leptons, these factors are normally unity.

VINT(201) - VINT(220) : additional variables needed in phase-space selection for 2→
3 processes with ISET(ISUB)=5. Below indices 1, 2 and 3 refer to scattered
partons 1, 2 and 3, except that the q four-momentum variables are q1 + q2 →
q′1 + q′2 + q′3. All kinematical variables refer to the internal kinematics of the
3-body final state — the kinematics of the system as a whole is described by
τ ′ and y, and the mass distribution of particle 3 (a resonance) by τ .

VINT(201) : m1.
VINT(202) : p2

⊥1.
VINT(203) : ϕ1.
VINT(204) : M1 (mass of propagator particle).
VINT(205) : weight for the p2

⊥1 choice.
VINT(206) : m2.

248

VINT(207) : p2
⊥2.

VINT(208) : ϕ2.
VINT(209) : M2 (mass of propagator particle).
VINT(210) : weight for the p2

⊥2 choice.
VINT(211) : y3.
VINT(212) : y3max.
VINT(213) : ε = ±1; choice between two mirror solutions 1↔ 2.
VINT(214) : weight associated to ε-choice.
VINT(215) : t1 = (q1 − q′1)2.
VINT(216) : t2 = (q2 − q′2)2.
VINT(217) : q1q

′
2 four-product.

VINT(218) : q2q
′
1 four-product.

VINT(219) : q′1q
′
2 four-product.

VINT(220) :
√

(m2
⊥12 −m2

⊥1 −m2
⊥2)2 − 4m2

⊥1m
2
⊥2, where m⊥12 is the transverse

mass of the q′1q
′
2 system.

VINT(221) - VINT(225) : θ, ϕ and β for rotation and boost from c.m. frame to hadronic
c.m. frame of a lepton–hadron event.

VINT(231) : Q2
min scale for current parton-distribution function set.

VINT(232) : valence quark distribution of a VMD photon; set in PYPDFU and used in
PYPDFL.

VINT(281) : for resolved photon events, it gives the ratio between the total γX cross
section and the total π0X cross section, where X represents the target particle.

VINT(283), VINT(284) : virtuality scale at which a GVMD/anomalous photon on the
beam or target side of the event is being resolved. More precisely, it gives
the k2

⊥ of the γ → qq vertex. For elastic and diffractive scatterings, m2/4 is
stored, where m is the mass of the state being diffracted. For clarity, we point
out that elastic and diffractive events are characterized by the mass of the
diffractive states but without any primordial k⊥, while jet production involves
a primordial k⊥ but no mass selection. Both are thus not used at the same
time, but for GVMD/anomalous photons, the standard (though approximate)
identification k2

⊥ = m2/4 ensures agreement between the two applications.
VINT(285) : the CKIN(3) value provided by you at initialization; subsequently CKIN(3)

may be overwritten (for MSTP(14)=10) but VINT(285) stays.
VINT(289) : squared c.m. energy found in PYINIT call.
VINT(290) : the WIN argument of a PYINIT call.
VINT(291) - VINT(300) : the two five-vectors of the two incoming particles, as recon-

structed in PYINKI. These may vary from one event to the next.
VINT(301) - VINT(320) : used when a flux of virtual photons is being generated by

the PYGAGA routine, for ’gamma/lepton’ beams.
VINT(301) : c.m. energy for the full collision, while VINT(1) gives the γ-hadron or

γγ subsystem energy.
VINT(302) : full squared c.m. energy, while VINT(2) gives the subsystem squared

energy.
VINT(303), VINT(304) : mass of the beam or target lepton, while VINT(3) or

VINT(4) give the mass of a photon emitted off it.
VINT(305), VINT(306) : x values, i.e. respective photon energy fractions of the

incoming lepton in the c.m. frame of the event.
VINT(307), VINT(308) : Q2 or P 2, virtuality of the respective photon (thus the

square of VINT(3), VINT(4)).
VINT(309), VINT(310) : y values, i.e. respective photon light-cone energy fraction

of the lepton.
VINT(311), VINT(312) : θ, scattering angle of the respective lepton in the c.m.

frame of the event.

249

VINT(315), VINT(316): the R factor defined at MSTP(17), giving a cross section
enhancement from the contribution of resolved longitudinal photons.

VINT(317) : dipole suppression factor in PYXTOT for current event.
VINT(318) : dipole suppression factor in PYXTOT at initialization.
VINT(313), VINT(314) : φ, azimuthal angle of the respective scattered lepton in

the c.m. frame of the event.
VINT(319) : photon flux factor in PYGAGA for current event.
VINT(320) : photon flux factor in PYGAGA at initialization.

COMMON/PYINT2/ISET(500),KFPR(500,2),COEF(500,20),ICOL(40,4,2)

Purpose: to store information necessary for efficient generation of the different subpro-
cesses, specifically type of generation scheme and coefficients of the Jacobian.
Also to store allowed colour-flow configurations. These variables must not be
changed by you.

ISET(ISUB) : gives the type of kinematical-variable selection scheme used for subprocess
ISUB.

= 0 : elastic, diffractive and low-p⊥ processes.
= 1 : 2→ 1 processes (irrespective of subsequent decays).
= 2 : 2→ 2 processes (i.e. the bulk of processes).
= 3 : 2→ 3 processes (like qq′ → q′′q′′′h0).
= 4 : 2→ 4 processes (like qq′ → q′′q′′′W+W−).
= 5 : ‘true’ 2→ 3 processes, one method.
= 8 : 2→ 1 process γ∗fi → fi where, unlike the 2→ 1 processes above, ŝ = 0.
= 9 : 2→ 2 in multiple interactions (p⊥ as kinematics variable).
= 11 : a user-defined process.
= -1 : legitimate process which has not yet been implemented.
= -2 : ISUB is an undefined process code.

KFPR(ISUB,J) : give the KF flavour codes for the products produced in subprocess ISUB.
If there is only one product, the J=2 position is left blank. Also, quarks and
leptons assumed massless in the matrix elements are denoted by 0. The main
application is thus to identify resonances produced (Z0, W±, h0, etc.). For
external processes, KFPR instead stores information on process numbers in the
two external classifications, see subsection 9.9.

COEF(ISUB,J) : factors used in the Jacobians in order to speed up the selection of kine-
matical variables. More precisely, the shape of the cross section is given as
the sum of terms with different behaviour, where the integral over the allowed
phase space is unity for each term. COEF gives the relative strength of these
terms, normalized so that the sum of coefficients for each variable used is unity.
Note that which coefficients are indeed used is process-dependent.

ISUB : standard subprocess code.
J = 1 : τ selected according 1/τ .
J = 2 : τ selected according to 1/τ 2.
J = 3 : τ selected according to 1/(τ(τ + τR)), where τR = m2

R/s is τ value of
resonance; only used for resonance production.

J = 4 : τ selected according to Breit–Wigner of form 1/((τ − τR)2 + γ2
R), where

τR = m2
R/s is τ value of resonance and γR = mRΓR/s is its scaled mass

times width; only used for resonance production.
J = 5 : τ selected according to 1/(τ(τ + τR′)), where τR′ = m2

R′/s is τ value
of second resonance; only used for simultaneous production of two reso-
nances.

J = 6 : τ selected according to second Breit–Wigner of form 1/((τ − τR′)2 +γ2
R′),

250

where τR′ = m2
R′/s is τ value of second resonance and γR′ = mR′ΓR′/s is

its scaled mass times width; is used only for simultaneous production of
two resonances, like γ∗/Z0/Z′0.

J = 7 : τ selected according to 1/(1− τ); only used when both parton distribu-
tions are peaked at x = 1.

J = 8 : y selected according to y − ymin.
J = 9 : y selected according to ymax − y.
J = 10 : y selected according to 1/ cosh(y).
J = 11 : y selected according to 1/(1−exp(y−ymax)); only used when beam parton

distribution is peaked close to x = 1.
J = 12 : y selected according to 1/(1 − exp(ymin − y)); only used when target

parton distribution is peaked close to x = 1.
J = 13 : z = cos θ̂ selected evenly between limits.
J = 14 : z = cos θ̂ selected according to 1/(a − z), where a = 1 + 2m2

3m
2
4/ŝ

2, m3

and m4 being the masses of the two final-state particles.
J = 15 : z = cos θ̂ selected according to 1/(a+ z), with a as above.

J = 16 : z = cos θ̂ selected according to 1/(a− z)2, with a as above.

J = 17 : z = cos θ̂ selected according to 1/(a+ z)2, with a as above.
J = 18 : τ ′ selected according to 1/τ ′.
J = 19 : τ ′ selected according to (1− τ/τ ′)3/τ ′2.
J = 20 : τ ′ selected according to 1/(1− τ ′); only used when both parton distribu-

tions are peaked close to x = 1.
ICOL : contains information on different colour-flow topologies in hard 2 → 2 pro-

cesses.

COMMON/PYINT3/XSFX(2,-40:40),ISIG(1000,3),SIGH(1000)

Purpose: to store information on parton distributions, subprocess cross sections and
different final-state relative weights. These variables must not be changed by
you.

XSFX : current values of parton-distribution functions xf(x) on beam and target side.
ISIG(ICHN,1) : incoming parton/particle on the beam side to the hard interaction for

allowed channel number ICHN. The number of channels filled with relevant
information is given by NCHN, one of the arguments returned in a PYSIGH call.
Thus only 1 ≤ICHN≤NCHN is filled with relevant information.

ISIG(ICHN,2) : incoming parton/particle on the target side to the hard interaction for
allowed channel number ICHN. See also comment above.

ISIG(ICHN,3) : colour-flow type for allowed channel number ICHN; see MSTI(2) list. See
also above comment. For ‘subprocess’ 96 uniquely, ISIG(ICHN,3) is also used
to translate information on what is the correct subprocess number (11, 12, 13,
28, 53 or 68); this is used for reassigning subprocess 96 to either of these.

SIGH(ICHN) : evaluated differential cross section for allowed channel number ICHN, i.e.
matrix-element value times parton distributions, for current kinematical setup
(in addition, Jacobian factors are included in the numbers, as used to speed
up generation). See also comment for ISIG(ICHN,1).

COMMON/PYINT4/MWID(500),WIDS(500,5)

Purpose: to store character of resonance width treatment and partial and effective decay
widths for the different resonances. These variables must not be changed by
you.

251

MWID(KC) : gives the character of particle with compressed code KC, mainly as used
in PYWIDT to calculate widths of resonances (not necessarily at the nominal
mass).

= 0 : an ordinary particle; not to be treated as resonance.
= 1 : a resonance for which the partial and total widths (and hence branching

ratios) are dynamically calculated in PYWIDT calls; i.e. special code has to
exist for each such particle. The effects of allowed/unallowed secondary
decays are included, both in the relative composition of decays and in
the process cross section.

= 2 : The total width is taken to be the one stored in PMAS(KC,2) and the
relative branching ratios the ones in BRAT(IDC) for decay channels IDC.
There is then no need for any special code in PYWIDT to handle a res-
onance. During the run, the stored PMAS(KC,2) and BRAT(IDC) values
are used to calculate the total and partial widths of the decay channels.
Some extra information and assumptions are then used. Firstly, the
stored BRAT values are assumed to be the full branching ratios, includ-
ing all possible channels and all secondary decays. The actual relative
branching fractions are modified to take into account that the simula-
tion of some channels may be switched off (even selectively for a particle
and an antiparticle), as given by MDME(IDC,1), and that some secondary
channels may not be allowed, as expressed by the WIDS factors. This also
goes into process cross sections. Secondly, it is assumed that all widths
scale like

√
ŝ/m, the ratio of the actual to the nominal mass. A further

nontrivial change as a function of the actual mass can be set for each
channel by the MDME(IDC,2) value, see section 14.4.

= 3 : a hybrid version of options 1 and 2 above. At initialization the PYWIDT
code is used to calculate PMAS(KC,2) and BRAT(IDC) at the nominal
mass of the resonance. Special code must then exist in PYWIDT for the
particle. The PMAS(KC,2) and BRAT(IDC) values overwrite the default
ones. In the subsequent generation of events, the simpler scheme of
option 2 is used, thus saving some execution time.

Note: the Z and Z′ cannot be used with options 2 and 3, since the more com-
plicated interference structure implemented for those particles is only
handled correctly for option 1.

WIDS(KC,J) : gives the dimensionless suppression factor to cross sections caused by the
closing of some secondary decays, as calculated in PYWIDT. It is defined as the
ratio of the total width of channels switched on to the total width of all pos-
sible channels (replace width by squared width for a pair of resonances). The
on/off status of channels is set by the MDME switches; see section 14.4. The
information in WIDS is used e.g. in cross-section calculations. Values are built
up recursively from the lightest particle to the heaviest one at initialization,
with the exception that W and Z are done already from the beginning (since
these often are forced off the mass shell). WIDS can go wrong in case you
have perverse situations where the branching ratios vary rapidly as a func-
tion of energy, across the resonance shape. This then influences process cross
sections.

KC : standard KC code for resonance considered.
J = 1 : suppression when a pair of resonances of type KC are produced to-

gether. When an antiparticle exists, the particle–antiparticle pair (such
as W+W−) is the relevant combination, else the particle–particle one
(such as Z0Z0).

J = 2 : suppression for a particle of type KF when produced on its own, or to-
gether with a particle of another type.

252

J = 3 : suppression for an antiparticle of type KF when produced on its own, or
together with a particle of another type.

J = 4 : suppression when a pair of two identical particles are produced, for a
particle which has a nonidentical antiparticle (e.g. W+W+).

J = 5 : suppression when a pair of two identical antiparticles are produced, for
a particle which has a nonidentical antiparticle (e.g. W−W−).

COMMON/PYINT5/NGENPD,NGEN(0:500,3),XSEC(0:500,3)

Purpose: to store information necessary for cross-section calculation and differential
cross-section maximum violation. These variables must not be changed by
you.

NGEN(ISUB,1) : gives the number of times that the differential cross section (times Ja-
cobian factors) has been evaluated for subprocess ISUB, with NGEN(0,1) the
sum of these.

NGEN(ISUB,2) : gives the number of times that a kinematical setup for subprocess ISUB
is accepted in the generation procedure, with NGEN(0,2) the sum of these.

NGEN(ISUB,3) : gives the number of times an event of subprocess type ISUB is generated,
with NGEN(0,3) the sum of these. Usually NGEN(ISUB,3) = NGEN(ISUB,2),
i.e. an accepted kinematical configuration can normally be used to produce an
event.

XSEC(ISUB,1) : estimated maximum differential cross section (times the Jacobian fac-
tors used to speed up the generation process) for the different subprocesses in
use, with XSEC(0,1) the sum of these (except low-p⊥, i.e. ISUB = 95). For ex-
ternal processes special rules may apply, see subsection 9.9. In particular, neg-
ative cross sections and maxima may be allowed. In this case, XSEC(ISUB,1)
stores the absolute value of the maximum, since this is the number that allows
the appropriate mixing of subprocesses.

XSEC(ISUB,2) : gives the sum of differential cross sections (times Jacobian factors) for
the NGEN(ISUB,1) phase-space points evaluated so far.

XSEC(ISUB,3) : gives the estimated integrated cross section for subprocess ISUB, based
on the statistics accumulated so far, with XSEC(0,3) the estimated total cross
section for all subprocesses included (all in mb). This is exactly the information
obtainable by a PYSTAT(1) call.

Warning : For γp and γγ events, when several photon components are mixed (see
MSTP(14)), a master copy of these numbers for each component is stored in the
PYSAVE routine. What is then visible after each event is only the numbers for
the last component considered, not the full statistics. A special PYSAVE call,
perfomed e.g. in PYSTAT, is required to obtain the sum of all the components.

COMMON/PYINT6/PROC(0:500)
CHARACTER PROC*28

Purpose: to store character strings for the different possible subprocesses; used when
printing tables.

PROC(ISUB) : name for the different subprocesses, according to ISUB code. PROC(0)
denotes all processes.

COMMON/PYINT7/SIGT(0:6,0:6,0:5)

Purpose: to store information on total, elastic and diffractive cross sections. These

253

variables should only be set by you for the option MSTP(31)=0; else they should
not be touched. All numbers are given in mb.

SIGT(I1,I2,J) : the cross section, both total and subdivided by class (elastic, diffractive
etc.). For a photon to be considered as a VMD meson the cross sections are
additionally split into the contributions from the various meson states.

I1, I2 : allowed states for the incoming particle on side 1 and 2, respectively.
= 0 : sum of all allowed states. Except for a photon to be considered as

a VMD meson this is the only nonvanishing entry.
= 1 : the contribution from the ρ0 VMD state.
= 2 : the contribution from the ω VMD state.
= 3 : the contribution from the φ VMD state.
= 4 : the contribution from the J/ψ VMD state.
= 5, 6 : reserved for future use.

J : the total and partial cross sections.
= 0 : the total cross section.
= 1 : the elastic cross section.
= 2 : the single diffractive cross section AB → XB.
= 3 : the single diffractive cross section AB → AX.
= 4 : the double diffractive cross section.
= 5 : the inelastic, non-diffractive cross section.

Warning: If you set these values yourself, it is important that they are internally
consistent, since this is not explicitly checked by the program. Thus the
contributions J=1–5 should add up to the J=0 one and, for VMD photons,
the contributions I=1–4 should add up to the I=0 one.

COMMON/PYINT8/XPVMD(-6:6),XPANL(-6:6),XPANH(-6:6),XPBEH(-6:6),
&XPDIR(-6:6)

Purpose: to store the various components of the photon parton distributions when the
PYGGAM routine is called.

XPVMD(KFL) : gives distributions of the VMD part (ρ0, ω and φ).
XPANL(KFL) : gives distributions of the anomalous part of light quarks (d, u and s).
XPANH(KFL) : gives distributions of the anomalous part of heavy quarks (c and b).
XPBEH(KFL) : gives Bethe-Heitler distributions of heavy quarks (c and b). This provides

an alternative to XPANH, i.e. both should not be used at the same time.
XPDIR(KFL) : gives direct correction to the production of light quarks (d, u and s). This

term is nonvanishing only in the ms scheme, and is applicable for F γ
2 rather

than for the parton distributions themselves.

COMMON/PYINT9/VXPVMD(-6:6),VXPANL(-6:6),VXPANH(-6:6),VXPDGM(-6:6)

Purpose: to give the valence parts of the photon parton distributions (x-weighted, as
usual) when the PYGGAM routine is called. Companion to /PYINT8/, which
gives the total parton distributions.

VXPVMD(KFL) : valence distributions of the VMD part; matches XPVMD in /PYINT8/.
VXPANL(KFL) : valence distributions of the anomalous part of light quarks; matches

XPANL in /PYINT8/.
VXPANH(KFL) : valence distributions of the anomalous part of heavy quarks; matches

XPANH in /PYINT8/.
VXPDGM(KFL) : gives the sum of valence distributions parts; matches XPDFGM in the

PYGGAM call.

254

Note 1: the Bethe-Heitler and direct contributions in XPBEH(KFL) and XPDIR(KFL) in
/PYINT8/ are pure valence-like, and therefore are not duplicated here.

Note 2: the sea parts of the distributions can be obtained by taking the appropriate
differences between the total distributions and the valence distributions.

255

10 Initial- and Final-State Radiation

Starting from the hard interaction, initial- and final-state radiation corrections may be
added. This is normally done by making use of the parton-shower language — only for the
e+e− → qq process does Pythia offer a matrix-element option (described in section 6.1).
The algorithms used to generate initial- and final-state showers are rather different, and
are therefore described separately below, starting with the conceptually easier final-state
one. Before that, some common elements are introduced.

The main references for final-state showers is [Ben87a, Nor01] and for initial-state ones
[Sjö85, Miu99].

10.1 Shower Evolution

In the leading-logarithmic picture, a shower may be viewed as a sequence of 1 → 2
branchings a → bc. Here a is called the mother and b and c the two daughters. Each
daughter is free to branch in its turn, so that a tree-like structure can evolve. We will use
the word ‘parton’ for all the objects a, b and c involved in the branching process, i.e. not
only for quarks and gluons but also for leptons and photons. The branchings included in
the program are q → qg, g → gg, g → qq, q → qγ and ` → `γ. Photon branchings, i.e.
γ → qq and γ → ``, have not been included so far, since they are reasonably rare and
since no urgent need for them has been perceived.

A word on terminology may be in place. The algorithms described here are customarily
referred to as leading-log showers. This is correct insofar as no explicit corrections from
higher orders are included, i.e. there are no O(α2

s) terms in the splitting kernels, neither
by new 1 → 3 processes nor by corrections to the 1 → 2 ones. However, it is grossly
misleading if leading-log showers are equated with leading-log analytical calculations. In
particular, the latter contain no constraints from energy–momentum conservation: the
radiation off a quark is described in the approximation that the quark does not lose
any energy when a gluon is radiated, so that the effects of multiple emissions factorize.
Therefore energy–momentum conservation is classified as a next-to-leading-log correction.
In a Monte Carlo shower, on the other hand, energy–momentum conservation is explicit
branching by branching. By including coherence phenomena and optimized choices of αs

scales, further information on higher orders is inserted. While the final product is still
not certified fully to comply with a NLO/NLL standard, it is well above the level of an
unsophisticated LO/LL analytic calculation.

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Slightly different interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market differ. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1− z. To specify the
kinematics, an azimuthal angle ϕ of the b around the a direction is needed in addition;
in the simple discussions ϕ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/Λ2) ⇒ dt = d ln(Q2) =
dQ2

Q2
, (147)

256

where Λ is the QCD Λ scale in αs. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the differential probability dP for parton a to branch is now

dPa =
∑

b,c

αabc
2π

Pa→bc(z) dt dz . (148)

Here the sum is supposed to run over all allowed branchings, for a quark q → qg and
q→ qγ, and so on. The αabc factor is αem for QED branchings and αs for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa→bc(z) are

Pq→qg(z) = CF
1 + z2

1− z ,

Pg→gg(z) = NC
(1− z(1− z))2

z(1− z)
,

Pg→qq(z) = TR (z2 + (1− z)2) ,

Pq→qγ(z) = e2
q

1 + z2

1− z ,

P`→`γ(z) = e2
`

1 + z2

1− z , (149)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
` the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and δ(1− z) terms of the splitting kernels in eq. (149) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-off on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg→gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa→bc(z) is interpreted as the branching probability
for the original parton a. On the other hand, one could also write down the probability
that a parton b is produced with a fractional energy z. Almost all the above kernels can be
used unchanged also for this purpose, with the obvious symmetry Pa→bc(z) = Pa→cb(1−z).
For g → gg, however, the total probability to find a gluon with energy fraction z is the
sum of the probability to find either the first or the second daughter there, and that gives
the factor of 2 enhancement.

10.1.2 The Sudakov form factor

The t variable fills the function of a kind of time for the shower evolution. In final-state
showers, t is constrained to be gradually decreasing away from the hard scattering, in
initial-state ones to be gradually increasing towards the hard scattering. This does not
mean that an individual parton runs through a range of t values: in the end, each parton
is associated with a fixed t value, and the evolution procedure is just a way of picking
that value. It is only the ensemble of partons in many events that evolves continuously
with t, cf. the concept of parton distributions.

257

For a given t value we define the integral of the branching probability over all allowed
z values,

Ia→bc(t) =
∫ z+(t)

z−(t)
dz

αabc
2π

Pa→bc(z) . (150)

The näıve probability that a branching occurs during a small range of t values, δt, is given
by

∑
b,c Ia→bc(t) δt, and thus the probability for no emission by 1−∑b,c Ia→bc(t) δt.

If the evolution of parton a starts at a ‘time’ t0, the probability that the parton has
not yet branched at a ‘later time’ t > t0 is given by the product of the probabilities that
it did not branch in any of the small intervals δt between t0 and t. In other words, letting
δt→ 0, the no-branching probability exponentiates:

Pno−branching(t0, t) = exp



−

∫ t

t0
dt′

∑

b,c

Ia→bc(t′)


 = Sa(t) . (151)

Thus the actual probability that a branching of a occurs at t is given by

dPa
dt

= −dPno−branching(t0, t)

dt
=


∑

b,c

Ia→bc(t)

 exp



−

∫ t

t0
dt′

∑

b,c

Ia→bc(t′)


 . (152)

The first factor is the näıve branching probability, the second the suppression due
to the conservation of total probability: if a parton has already branched at a ‘time’
t′ < t, it can no longer branch at t. This is nothing but the exponential factor that
is familiar from radioactive decay. In parton-shower language the exponential factor
Sa(t) = Pno−branching(t0, t) is referred to as the Sudakov form factor [Sud56].

The ordering in terms of increasing t above is the appropriate one for initial-state
showers. In final-state showers the evolution is from an initial tmax (set by the hard
scattering) and towards smaller t. In that case the integral from t0 to t in eqs. (151) and
(152) is replaced by an integral from t to tmax. Since, by convention, the Sudakov factor
is still defined from the lower cut-off t0, i.e. gives the probability that a parton starting
at scale t will not have branched by the lower cut-off scale t0, the no-branching factor is
actually Pno−branching(tmax, t) = Sa(tmax)/Sa(t).

We note that the above structure is exactly of the kind discussed in section 4.2. The
veto algorithm is therefore extensively used in the Monte Carlo simulation of parton
showers.

10.1.3 Matching to the hard scattering

The evolution in Q2 is begun from some maximum scale Q2
max for final-state parton

showers, and is terminated at (a possibly different) Q2
max for initial-state showers. In

general Q2
max is not known. Indeed, since the parton-shower language does not guarantee

agreement with higher-order matrix-element results, neither in absolute shape nor nor-
malization, there is no unique prescription for a ‘best’ choice. Generically Qmax should
be of the order of the hard-scattering scale, i.e. the largest virtuality should be associated
with the hard scattering, and initial- and final-state parton showers should only involve
virtualities smaller than that. This may be viewed just as a matter of sound book-keeping:
in a 2 → n graph, a 2 → 2 hard-scattering subgraph could be chosen several different
ways, but if all the possibilities were to be generated then the cross section would be
double-counted. Therefore one should define the 2→ 2 ‘hard’ piece of a 2→ n graph as
the one that involves the largest virtuality.

Of course, the issue of double-counting depends a bit on what processes are actually
generated in the program. If one considers a qqg final state in hadron colliders, this could
come either as final-state radiation off a qq pair, or by a gluon splitting in a qq pair, or

258

many other ways, so that the danger of double-counting is very real. On the other hand,
consider the production of a low-p⊥, low-mass Drell–Yan pair of leptons, together with two
quark jets. Such a process in principle could proceed by having a γ∗ emitted off a quark
leg, with a quark–quark scattering as hard interaction. However, since this process is not
included in the program, there is no actual danger of (this particular) double-counting,
and so the scale of evolution could be picked larger than the mass of the Drell–Yan pair,
as we shall see.

For most 2 → 2 scattering processes in Pythia, the Q2 scale of the hard scattering
is chosen to be Q2

hard = p2
⊥ (when the final-state particles are massless, otherwise masses

are added). In final-state showers, where Q is associated with the mass of the branching
parton, transverse momenta generated in the shower are constrained by p⊥ < Q/2. An
ordering that the shower p⊥ should be smaller than the hard-scattering p⊥ therefore
corresponds roughly to Q2

max = 4Q2
hard, which is the default assumption. The constraints

are slightly different for initial-state showers, where the spacelike virtuality Q2 attaches
better to p2

⊥, and therefore Q2
max = Q2

hard is a sensible default. We iterate that these
limits, set by PARP(71) and PARP(67), respectively, are imagined sensible when there is
a danger of doublecounting; if not, large values could well be relevant to cover a wider
range of topologies, but always with some caution. (See also MSTP(68).)

The situation is rather better for the final-state showers in the decay of any colour-
singlet particles, or coloured but reasonably long-lived ones, such as the Z0 or the h0,
either as part of a hard 2→ 1→ 2 process, or anywhere else in the final state. Then we
know that Qmax has to be put equal to the particle mass. It is also possible to match the
parton-shower evolution to the first-order matrix-element results.

QCD processes such as qg → qg pose a special problem when the scattering angle is
small. Coherence effects (see below) may then restrict the emission further than what
is just given by the Qmax scale introduced above. This is most easily viewed in the rest
frame of the 2 → 2 hard scattering subprocess. Some colours flow from the initial to
the final state. The radiation associated with such a colour flow should be restricted
to a cone with opening angle given by the difference between the original and the final
colour directions; there is one such cone around the incoming parton for initial state
radiation and one around the outgoing parton for final state radiation. Colours that are
annihilated or created in the process effectively correspond to an opening angle of 180◦

and therefore the emission is not constrained for these. For a gluon, which have two
colours and therefore two different cones, a random choice is made between the two for
the first branching. Further, coherence effects also imply azimuthal anisotropies of the
emission inside the allowed cones.

Finally, we note that there can be some overlap between descriptions of the same pro-
cess. Section 8.4.2 gives two examples. One is the correspondence between the description
of a single W or Z with additional jet production by showering, or the same picture ob-
tained by using explicit matrix elements to generate at least one jet in association with
the W/Z. The other is the generation of Z0bb final states either starting from bb → Z0,
or from bg → Z0b or from gg → bbZ0. As a rule of thumb, to be used with common
sense, one would start from as low an order as possible for an inclusive description, where
the low-p⊥ region is likely to generate most of the cross section, whereas higher-order
topologies are more relevant for studies of exclusive event samples at high p⊥.

10.2 Final-State Showers

Final-state showers are time-like, i.e. all virtualities m2 = E2 − p2 ≥ 0. The maxi-
mum allowed virtuality scale Q2

max is set by the hard-scattering process, and thereafter
the virtuality is decreased in each subsequent branching, down to the cut-off scale Q2

0.
This cut-off scale is used to regulate both soft and collinear divergences in the emission
probabilities.

259

The main points of the Pythia showering algorithm are as follows.
• It is a leading-log algorithm, of the improved, coherent kind, i.e. with angular or-

dering.
• It can be used for an arbitrary initial pair of partons or, in fact, for any number

between one and seven given entities (including hadrons and gauge bosons) although
only quarks, gluons, leptons, squarks and gluinos can initiate a shower.
• The pair of showering partons may be given in any frame, but the evolution is

carried out in the c.m. frame of the showering partons.
• Energy and momentum are conserved exactly at each step of the showering process.
• If the initial pair comes from the decay of a known resonance, an additional rejection

technique is used in the gluon emission off a parton of the pair, so as to reproduce
the lowest-order differential 3-jet cross section.
• In subsequent branchings, angular ordering (coherence effects) is imposed.
• Gluon helicity effects, i.e. correlations between the production plane and the decay

plane of a gluon, can be included.
• The first-order αs expression is used, with the Q2 scale given by (an approximation

to) the squared transverse momentum of a branching. The default ΛQCD, which
should not be regarded as a proper ΛMS, is 0.29 GeV.
• The parton shower is by default cut off at a mass scale of 1 GeV.

Let us now proceed with a more detailed description.

10.2.1 The choice of evolution variable

In the Pythia shower algorithm, the evolution variable Q2 is associated with the squared
mass of the branching parton, Q2 = m2

a for a branching a → bc. As a consequence,
t = ln(Q2/Λ2) = ln(m2

a/Λ
2). This Q2 choice is not unique, and indeed other programs

have other definitions: Herwig uses Q2 ≈ m2/(2z(1 − z)) [Mar88] and Ariadne Q2 =
p2
⊥ ≈ z(1−z)m2 [Pet88]. Below we will also modify the Q2 choice to give a better account

of mass effects, e.g. for b quarks.
With Q a mass scale, the lower cut-off Q0 is one in mass. To be more precise, in a

QCD shower, the Q0 parameter is used to derive effective masses

meff,g =
1

2
Q0 ,

meff,q =

√
m2

q +
1

4
Q2

0 , (153)

where the mq have been chosen as typical kinematical quark masses, see section 13.2.1.
A parton cannot branch unless its mass is at least the sum of the lightest pair of allowed
decay products, i.e. the minimum mass scale at which a branching is possible is

mmin,g = 2meff,g = Q0 ,

mmin,q = meff,q +meff,g ≥ Q0 . (154)

The above masses are used to constrain the allowed range of Q2 and z values. However,
once it has been decided that a parton cannot branch any further, that parton is put on
the mass shell, i.e. ‘final-state’ gluons are massless.

When also photon emission is included, a separate Q0 scale is introduced for the QED
part of the shower, and used to calculate cut-off masses by analogy with eqs. (153) and
(154) above [Sjö92c]. By default the two Q0 scales are chosen equal, and have the value
1 GeV. If anything, one would be inclined to allow a cut-off lower for photon emission
than for gluon one. In that case the allowed z range of photon emission would be larger

260

than that of gluon emission, and at the end of the shower evolution only photon emission
would be allowed.

Photon and gluon emission differ fundamentally in that photons appear as physical
particles in the final state, while gluons are confined. For photon emission off quarks,
however, the confinement forces acting on the quark may provide an effective photon
emission cut-off at larger scales than the bare quark mass. Soft and collinear photons
could also be emitted by the final-state charged hadrons [Bar94a]; the matching between
emission off quarks and off hadrons is a delicate issue, and we therefore do not attempt
to address the soft-photon region.

For photon emission off leptons, there is no need to introduce any collinear emission
cut-off beyond what is given by the lepton mass, but we keep the same cut-off approach
as for quarks, although at a smaller scale. However, note that, firstly, the program is
not aimed at high-precision studies of lepton pairs (where interference terms between
initial- and final-state radiation also would have to be included), and, secondly, most
experimental procedures would include the energy of collinear photons into the effective
energy of a final-state lepton.

10.2.2 The choice of energy splitting variable

The final-state radiation machinery is always applied in the c.m. frame of the hard scat-
tering, from which normally emerges a pair of evolving partons. Occasionally there may
be one evolving parton recoiling against a non-evolving one, as in qq → gγ, where only
the gluon evolves in the final state, but where the energy of the photon is modified by the
branching activity of the gluon. (With only one evolving parton and nothing else, it would
not be possible to conserve energy and momentum when the parton is assigned a mass.)
Thus, before the evolution is performed, the parton pair is boosted to their common c.m.
frame, and rotated to sit along the z axis. After the evolution, the full parton shower is
rotated and boosted back to the original frame of the parton pair.

The interpretation of the energy and momentum splitting variable z is not unique,
and in fact the program allows the possibility to switch between four different alternatives
[Ben87a], ‘local’ and ‘global’ z definition combined with ‘constrained’ or ‘unconstrained’
evolution. In all four of them, the z variable is interpreted as an energy fraction, i.e.
Eb = zEa and Ec = (1 − z)Ea. In the ‘local’ choice of z definition, energy fractions are
defined in the rest frame of the grandmother, i.e. the mother of parton a. The preferred
choice is the ‘global’ one, in which energies are always evaluated in the c.m. frame of
the hard scattering. The two definitions agree for the branchings of the partons that
emerge directly from the hard scattering, since the hard scattering itself is considered to
be the ‘mother’ of the first generation of partons. For instance, in Z0 → qq the Z0 is
considered the mother of the q and q, even though the branching is not handled by the
parton-showering machinery. The ‘local’ and ‘global’ definitions diverge for subsequent
branchings, where the ‘global’ tends to allow more shower evolution.

In a branching a→ bc the kinematically allowed range of z = za values, z− < z < z+,
is given by

z± =
1

2



1 +

m2
b −m2

c

m2
a

± |pa|
Ea

√
(m2

a −m2
b −m2

c)
2 − 4m2

bm
2
c

m2
a



 . (155)

With ‘constrained’ evolution, these bounds are respected in the evolution. The cut-off
masses meff,b and meff,c are used to define the maximum allowed z range, within which
za is chosen, together with the ma value. In the subsequent evolution of b and c, only
pairs of mb and mc are allowed for which the already selected za fulfils the constraints in
eq. (155).

261

For ‘unconstrained’ evolution, which is the preferred alternative, one may start off by
assuming the daughters to be massless, so that the allowed z range is

z± =
1

2

{
1± |pa|

Ea
θ(ma −mmin,a)

}
, (156)

where θ(x) is the step function, θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0. The decay

kinematics into two massless four-vectors p
(0)
b and p(0)

c is now straightforward. Once mb

and mc have been found from the subsequent evolution, subject only to the constraints
mb < zaEa, mc < (1− za)Ea and mb +mc < ma, the actual massive four-vectors may be
defined as

pb,c = p
(0)
b,c ± (rcp

(0)
c − rbp(0)

b) , (157)

where

rb,c =
m2
a ± (m2

c −m2
b)−

√
(m2

a −m2
b −m2

c)
2 − 4m2

bm
2
c

2m2
a

. (158)

In other words, the meaning of za is somewhat reinterpreted post facto. Needless to say,
the ‘unconstrained’ option allows more branchings to take place than the ‘constrained’
one. In the following discussion we will only refer to the ‘global, unconstrained’ z choice.

10.2.3 First branchings and matrix-element matching

The final-state evolution is normally started from some initial parton pair 1 + 2, at a
Q2

max scale determined by deliberations already discussed. When the evolution of parton
1 is considered, it is assumed that parton 2 is massless, so that the parton 1 energy and
momentum are simple functions of its mass (and of the c.m. energy of the pair, which
is fixed), and hence also the allowed z1 range for splittings is a function of this mass,
eq. (156). Correspondingly, parton 2 is evolved under the assumption that parton 1 is
massless. After both partons have been assigned masses, their correct energies may be
found, which are smaller than originally assumed. Therefore the allowed z ranges have
shrunk, and it may happen that a branching has been assigned a z value outside this
range. If so, the parton is evolved downwards in mass from the rejected mass value; if
both z values are rejected, the parton with largest mass is evolved further. It may also
happen that the sum of m1 and m2 is larger than the c.m. energy, in which case the one
with the larger mass is evolved downwards. The checking and evolution steps are iterated
until an acceptable set of m1, m2, z1 and z2 has been found.

The procedure is an extension of the veto algorithm, where an initial overestimation
of the allowed z range is compensated by rejection of some branchings. One should note,
however, that the veto algorithm is not strictly applicable for the coupled evolution in two
variables (m1 and m2), and that therefore some arbitrariness is involved. This is manifest
in the choice of which parton will be evolved further if both z values are unacceptable, or
if the mass sum is too large.

For quark and lepton pairs which come from the decay of a colour-singlet particle, the
first branchings are matched to the explicit first-order matrix elements for gauge boson
decays.

The matching is based on a mapping of the parton-shower variables on to the 3-jet
phase space. To produce a 3-jet event, γ∗/Z0 → q(p1)q(p2)g(p3), in the shower language,
one will pass through an intermediate state, where either the q or the q is off the mass
shell. If the former is the case then

m2 = (p1 + p3)2 = E2
cm(1− x2) ,

z =
E1

E1 + E3

=
x1

x1 + x3

=
x1

2− x2

, (159)

262

where xi = 2Ei/Ecm. The q emission case is obtained with 1 ↔ 2. The parton-shower
splitting expression in terms of m2 and z, eq. (148), can therefore be translated into the
following differential 3-jet rate:

1

σ

dσPS

dx1 dx2

=
αs

2π
CF

1

(1− x1)(1− x2)
×

×
{

1− x1

x3

(
1 +

(
x1

2− x2

)2
)

+
1− x2

x3

(
1 +

(
x2

2− x1

)2
)}

, (160)

where the first term inside the curly bracket comes from emission off the quark and the
second term from emission off the antiquark. The corresponding expression in matrix-
element language is

1

σ

dσME

dx1 dx2

=
αs

2π
CF

1

(1− x1)(1− x2)

{
x2

1 + x2
2

}
. (161)

With the kinematics choice of Pythia, the matrix-element expression is always smaller
than the parton-shower one. It is therefore possible to run the shower as usual, but to
impose an extra weight factor dσME/dσPS, which is just the ratio of the expressions in
curly brackets. If a branching is rejected, the evolution is continued from the rejected
Q2 value onwards (the veto algorithm). The weighting procedure is applied to the first
branching of both the q and the q, in each case with the (nominal) assumption that none
of the other partons branch (neither the sister nor the daughters), so that the relations
of eq. (159) are applicable.

If a photon is emitted instead of a gluon, the emission rate in parton showers is given
by

1

σ

dσPS

dx1 dx2

=
αem

2π

1

(1− x1)(1− x2)
×

×
{
e2

q

1− x1

x3

(
1 +

(
x1

2− x2

)2
)

+ e2
q

1− x2

x3

(
1 +

(
x2

2− x1

)2
)}

, (162)

and in matrix elements by [Gro81]

1

σ

dσME

dx1 dx2

=
αem

2π

1

(1− x1)(1− x2)

{(
eq

1− x1

x3

− eq
1− x2

x3

)2 (
x2

1 + x2
2

)}
. (163)

As in the gluon emission case, a weighting factor dσME/dσPS can therefore be applied when
either the original q (`) or the original q (`) emits a photon. For a neutral resonance,
such as Z0, where eq = −eq, the above expressions simplify and one recovers exactly the
same ratio dσME/dσPS as for gluon emission.

Compared with the standard matrix-element treatment, a few differences remain. The
shower one automatically contains the Sudakov form factor and an αs running as a function
of the p2

⊥ scale of the branching. The shower also allows all partons to evolve further,
which means that the näıve kinematics assumed for a comparison with matrix elements
is modified by subsequent branchings, e.g. that the energy of parton 1 is reduced when
parton 2 is assigned a mass. All these effects are formally of higher order, and so do
not affect a first-order comparison. This does not mean that the corrections need be
small, but experimental results are encouraging: the approach outlined does as good as
explicit second-order matrix elements for the description of 4-jet production, better in
some respects (like overall rate) and worse in others (like some angular distributions).

263

10.2.4 Subsequent branches and angular ordering

The shower evolution is (almost) always done on a pair of partons, so that energy and
momentum can be conserved. In the first step of the evolution, the two original partons
thus undergo branchings 1→ 3 + 4 and 2→ 5 + 6. As described above, the allowed m1,
m2, z1 and z2 ranges are coupled by kinematical constraints. In the second step, the pair
3 + 4 is evolved and, separately, the pair 5 + 6. Considering only the former (the latter

is trivially obtained by symmetry), the partons thus have nominal initial energies E
(0)
3 =

z1E1 and E
(0)
4 = (1−z1)E1, and maximum allowed virtualities mmax,3 = min(m1, E

(0)
3) and

mmax,4 = min(m1, E
(0)
4). Initially partons 3 and 4 are evolved separately, giving masses

m3 and m4 and splitting variables z3 and z4. If m3 + m4 > m1, the parton of 3 and 4
that has the largest ratio of mi/mmax,i is evolved further. Thereafter eq. (157) is used to
construct corrected energies E3 and E4, and the z values are checked for consistency. If
a branching has to be rejected because the change of parton energy puts z outside the
allowed range, the parton is evolved further.

This procedure can then be iterated for the evolution of the two daughters of parton
3 and for the two of parton 4, etc., until each parton reaches the cut-off mass mmin. Then
the parton is put on the mass shell.

The model, as described so far, produces so-called conventional showers, wherein
masses are strictly decreasing in the shower evolution. Emission angles are decreasing
only in an average sense, however, which means that also fairly ‘late’ branchings can give
partons at large angles. Theoretical studies beyond the leading-log level show that this
is not correct [Mue81], but that destructive interference effects are large in the region of
non-ordered emission angles. To a good first approximation, these so-called coherence
effects can be taken into account in parton shower programs by requiring a strict order-
ing in terms of decreasing emission angles. (Actually, the fact that the shower described
here is already ordered in mass implies that the additional cut on angle will be a bit too
restrictive. While effects from this should be small at current energies, some deviations
become visible at very high energies.)

The coherence phenomenon is known already from QED. One manifestation is the
Chudakov effect [Chu55], discovered in the study of high-energy cosmic γ rays impinging
on a nuclear target. If a γ is converted into a highly collinear e+e− pair inside the
emulsion, the e+ and e− in their travel through the emulsion ionize atoms and thereby
produce blackening. However, near the conversion point the blackening is small: the e+

and e− then are still close together, so that an atom traversed by the pair does not resolve
the individual charges of the e+ and the e−, but only feels a net charge close to zero. Only
later, when the e+ and e− are separated by more than a typical atomic radius, are the
two able to ionize independently of each other.

The situation is similar in QCD, but is further extended, since now also gluons carry
colour. For example, in a branching q0 → qg the q and g share the newly created pair
of opposite colour–anticolour charges, and therefore the q and g cannot emit subsequent
gluons incoherently. Again the net effect is to reduce the amount of soft gluon emission:
since a soft gluon (emitted at large angles) corresponds to a large (transverse) wavelength,
the soft gluon is unable to resolve the separate colour charges of the q and the g, and
only feels the net charge carried by the q0. Such a soft gluon g′ (in the region θq0g′ > θqg)
could therefore be thought of as being emitted by the q0 rather than by the q–g system.
If one considers only emission that should be associated with the q or the g, to a good
approximation, there is a complete destructive interference in the regions of non-decreasing
opening angles, while partons radiate independently of each other inside the regions of
decreasing opening angles (θqg′ < θqg and θgg′ < θqg), once azimuthal angles are averaged
over. The details of the colour interference pattern are reflected in non-uniform azimuthal
emission probabilities.

The first branchings of the shower are not affected by the angular-ordering requirement

264

— since the evolution is performed in the c.m. frame of the original parton pair, where the
original opening angle is 180◦, any angle would anyway be smaller than this — but here
instead the matrix-element matching procedure is used, where applicable. Subsequently,
each opening angle is compared with that of the preceding branching in the shower.

For a branching a→ bc the kinematical approximation

θa ≈ p⊥b
Eb

+
p⊥c
Ec
≈
√
za(1− za)ma

(
1

zaEa
+

1

(1− za)Ea

)
=

1√
za(1− za)

ma

Ea
(164)

is used to derive the opening angle (this is anyway to the same level of approximation
as the one in which angular ordering is derived). With θb of the b branching calculated
similarly, the requirement θb < θa can be reduced to

zb(1− zb)
m2
b

>
1− za
zam2

a

. (165)

Since photons do not obey angular ordering, the check on angular ordering is not
performed when a photon is emitted. When a gluon is emitted in the branching after a
photon, its emission angle is restricted by that of the preceding QCD branching in the
shower, i.e. the photon emission angle does not enter.

10.2.5 Other final-state shower aspects

The electromagnetic coupling constant for the emission of photons on the mass shell is
αem = αem(Q2 = 0) ≈ 1/137. For the strong coupling constant several alternatives are
available, the default being the first-order expression αs(p

2
⊥), where p2

⊥ is defined by the
approximate expression p2

⊥ ≈ z(1 − z)m2. Studies of next-to-leading-order corrections
favour this choice [Ama80]. The other alternatives are a fixed αs and an αs(m

2).
With the default choice of p2

⊥ as scale in αs, a further cut-off is introduced on the
allowed phase space of gluon emission, not present in the options with fixed αs or with
αs(m

2), nor in the QED shower. A minimum requirement, to ensure a well-defined αs,
is that p⊥/Λ > 1.1, but additionally Pythia requires that p⊥ > Q0/2. This latter
requirement is not a necessity, but it makes sense when p⊥ is taken to be the preferred scale
of the branching process, rather than e.g.m. It reduces the allowed z range, compared with
the purely kinematical constraints. Since the p⊥ cut is not present for photon emission,
the relative ratio of photon to gluon emission off a quark is enhanced at small virtualities
compared with näıve expectations; in actual fact this enhancement is largely compensated
by the running of αs, which acts in the opposite direction. The main consequence, however,
is that the gluon energy spectrum is peaked at around Q0 and rapidly vanishes for energies
below that, whilst the photon spectrum extends all the way to zero energy.

Previously it was said that azimuthal angles in branchings are chosen isotropically.
In fact, it is possible to include some effects of gluon polarization, which correlate the
production and the decay planes of a gluon, such that a g → gg branching tends to take
place in the production plane of the gluon, while a decay out of the plane is favoured for
g → qq. The formulae are given e.g. in ref. [Web86], as simple functions of the z value
at the vertex where the gluon is produced and of the z value when it branches. Also
coherence phenomena lead to non-isotropic azimuthal distributions [Web86]. In either
case the ϕ azimuthal variable is first chosen isotropically, then the weight factor due to
polarization times coherence is evaluated, and the ϕ value is accepted or rejected. In case
of rejection, a new ϕ is generated, and so on.

While the rule is to have an initial pair of partons, there are a few examples where
one or three partons have to be allowed to shower. If only one parton is given, it is not
possible to conserve both energy and momentum. The choice has been made to conserve

265

energy and jet direction, but the momentum vector is scaled down when the radiating
parton acquires a mass. The ‘rest frame of the system’, used e.g. in the z definition, is
taken to be whatever frame the jet is given in.

In Υ→ ggg decays and other configurations (e.g. from external processes) with three
or more primary parton, one is left with the issue how the kinematics from the on-shell
matrix elements should be reinterpreted for an off-shell multi-parton configuration. We
have made the arbitrary choice of preserving the direction of motion of each parton in
the rest frame of the system, which means that all three-momenta are scaled down by
the same amount, and that some particles gain energy at the expense of others. Mass
multiplets outside the allowed phase space are rejected and the evolution continued.

Finally, it should be noted that two toy shower models are included as options. One
is a scalar gluon model, in which the q→ qg branching kernel is replaced by Pq→qg(z) =
2
3
(1−z). The couplings of the gluon, g→ gg and g→ qq, have been left as free parameters,

since they depend on the colour structure assumed in the model. The spectra are flat in
z for a spin 0 gluon. Higher-order couplings of the type g → ggg could well contribute
significantly, but are not included. The second toy model is an Abelian vector one. In this
option g → gg branchings are absent, and g → qq ones enhanced. More precisely, in the
splitting kernels, eq. (149), the Casimir factors are changed as follows: CF = 4/3 → 1,
NC = 3 → 0, TR = nf/2 → 3nf . When using either of these options, one should be
aware that also a number of other components in principle should be changed, from the
running of αs to the whole concept of fragmentation. One should therefore not take them
too seriously.

10.2.6 Merging with massive matrix elements

The matching to first-order matrix-elements is well-defined for massless quarks, and was
originally used unchanged for massive ones. A first attempt to include massive matrix
elements did not compensate for mass effects in the shower kinematics, and therefore
came to exaggerate the suppression of radiation off heavy quarks [Nor01, Bam00]. Now
the shower has been modified to solve this issue, and also improved and extended to cover
better a host of different reactions [Nor01].

The starting point is the calculation of processes a→ bc and a→ bcg, where the ratio

WME(x1, x2) =
1

σ(a→ bc)

dσ(a→ bcg)

dx1 dx2

(166)

gives the process-dependent differential gluon-emission rate. Here the phase space vari-
ables are x1 = 2Eb/ma and x2 = 2Ec/ma, expressed in the rest frame of particle a. Using
the standard model and the minimal supersymmetric extension thereof as templates, a
wide selection of colour and spin structures have been addressed, as shown in Table 25.
When allowed, processes have been calculated for an arbitrary mixture of ‘parities’, i.e.
without or with a γ5 factor, like in the vector/axial vector structure of γ∗/Z0. Various
combinations of 1 and γ5 may also arise e.g. from the wave functions of the sfermion part-
ners to the left- and right-handed fermion states. In cases where the correct combination
is not provided, an equal mixture of the two is assumed as a reasonable compromize. All
the matrix elements are encoded in the new function PYMAEL(NI,X1,X2,R1,R2,ALPHA),
where NI distinguishes the matrix elements, ALPHA is related to the γ5 admixture and the
mass ratios r1 = mb/ma and r2 = mc/ma are free parameters. This routine is called by
PYSHOW, but might also have an interest on its own.

In order to match to the singularity structure of the massive matrix elements, the
evolution variable Q2 is changed from m2 to m2 −m2

on−shell, i.e. 1/Q2 is the propagator
of a massive particle [Nor01]. For the shower history b → bg this gives a differential

266

Table 25: The processes that have been calculated, also with one extra gluon in the
final state. Colour is given with 1 for singlet, 3 for triplet and 8 for octet. See the
text for an explanation of the γ5 column and further comments.

colour spin γ5 example codes

1→ 3 + 3 — — (eikonal) 6 – 9

1→ 3 + 3 1→ 1
2

+ 1
2

1, γ5, 1± γ5 Z0 → qq 11 – 14

3→ 3 + 1 1
2
→ 1

2
+ 1 1, γ5, 1± γ5 t→ bW+ 16 – 19

1→ 3 + 3 0→ 1
2

+ 1
2

1, γ5, 1± γ5 h0 → qq 21 – 24

3→ 3 + 1 1
2
→ 1

2
+ 0 1, γ5, 1± γ5 t→ bH+ 26 – 29

1→ 3 + 3 1→ 0 + 0 1 Z0 → q̃q̃ 31 – 34

3→ 3 + 1 0→ 0 + 1 1 q̃→ q̃′W+ 36 – 39

1→ 3 + 3 0→ 0 + 0 1 h0 → q̃q̃ 41 – 44

3→ 3 + 1 0→ 0 + 0 1 q̃→ q̃′H+ 46 – 49

1→ 3 + 3 1
2
→ 1

2
+ 0 1, γ5, 1± γ5 χ̃→ qq̃ 51 – 54

3→ 3 + 1 0→ 1
2

+ 1
2

1, γ5, 1± γ5 q̃→ qχ̃ 56 – 59

3→ 3 + 1 1
2
→ 0 + 1

2
1, γ5, 1± γ5 t→ t̃χ̃ 61 – 64

8→ 3 + 3 1
2
→ 1

2
+ 0 1, γ5, 1± γ5 g̃→ qq̃ 66 – 69

3→ 3 + 8 0→ 1
2

+ 1
2

1, γ5, 1± γ5 q̃→ qg̃ 71 – 74

3→ 3 + 8 1
2
→ 0 + 1

2
1, γ5, 1± γ5 t→ t̃g̃ 76 – 79

1→ 8 + 8 — — (eikonal) 81 – 84

probability

WPS,1(x1, x2) =
αs

2π
CF

dQ2

Q2

2 dz

1− z
1

dx1 dx2

=
αs

2π
CF

2

x3 (1 + r2
2 − r2

1 − x2)
, (167)

where the numerator 1 + z2 of the splitting kernel for q → qg has been replaced by a
2 in the shower algorithm. For a process with only one radiating parton in the final
state, such as t → bW+, the ratio WME/WPS,1 gives the acceptance probability for an
emission in the shower. The singularity structure exactly agrees between ME and PS,
giving a well-behaved ratio always below unity. If both b and c can radiate, there is a
second possible shower history that has to be considered. The matrix element is here
split in two parts, one arbitrarily associated with b → bg branchings and the other with
c → cg ones. A convenient choice is WME,1 = WME(1 + r2

1 − r2
2 − x1)/x3 and WME,2 =

WME(1+r2
2−r2

1−x2)/x3, which again gives matching singularity structures in WME,i/WPS,i

and thus a well-behaved Monte Carlo procedure.
Also subsequent emissions of gluons off the primary particles are corrected to WME.

To this end, a reduced-energy system is constructed, which retains the kinematics of the
branching under consideration but omits the gluons already emitted, so that an effective
three-body shower state can be mapped to an (x1, x2, r1, r2) set of variables. For light
quarks this procedure is almost equivalent with the original one of using the simple uni-

267

versal splitting kernels after the first branching. For heavy quarks it offers an improved
modelling of mass effects also in the collinear region.

Some further changes have been introduced, a few minor as default and some more
significant ones as non-default options [Nor01]. This includes the description of coherence
effects and αs arguments, in general and more specifically for secondary heavy flavour
production by gluon splittings. The problem in the latter area is that data at LEP1 show
a larger rate of secondary charm and bottom production than predicted in most shower
descriptions [Bam00, Man00], or in analytical studies [Sey95]. This is based on applying
the same kind of coherence considerations to g → qq branchings as to g → gg, which
is not fully motivated by theory. In the lack of an unambiguous answer, it is therefore
helpful to allow options that can explore the range of uncertainty.

Further issues remain to be addressed, e.g. radiation off particles with non-negligible
width. In general, however, the new shower should allow an improved description of gluon
radiation in many different processes.

10.2.7 Matching to four-parton events

The shower routine, as described above, is optimized for two objects forming the showering
system, within which energy and momentum should be conserved. However, occasionally
more than two initial objects are given, e.g. if one would like to consider the subclass
of e+e− → qqgg events in order to study angular correlations as a test of the coupling
structure of QCD. Such events are generated in the showering of normal e+e− → qq
events, but not with high efficiency within desired cuts, and not with the full angular
structure included in the shower. Therefore four-parton matrix elements may be the
required starting point but, in order to ‘dress up’ these partons, one nevertheless wishes to
add shower emission. A possibility to start from three partons has existed since long, but
only with [And98a] was an approach for four parton introduced, and with the possibility
to generalize to more partons, although this latter work has not yet been done.

The basic idea is to cast the output of matrix element generators in the form of a
parton-shower history, that then can be used as input for a complete parton shower. In
the shower, that normally would be allowed to develop at random, some branchings are
now fixed to their matrix-element values while the others are still allowed to evolve in
the normal shower fashion. The preceding history of the event is also in these random
branchings then reflected e.g. in terms of kinematical or dynamical (e.g. angular ordering)
constraints.

Consider e.g. the qqgg case. The matrix-element expression contains contributions
from five graphs, and from interferences between them. The five graphs can also be read
as five possible parton-shower histories for arriving at the same four-parton state, but
here without the possibility of including interferences. The relative probability for each
of these possible shower histories can be obtained from the rules of shower branchings.
For example, the relative probability for the history where e+e− → q(1)q(2), followed by
q(1)→ q(3)g(4) and g(4)→ g(5)g(6), is given by:

P = P1→34P4→56 =
1

m2
1

4

3

1 + z2
34

1− z34

· 1

m2
4

3
(1− z56(1− z56))2

z56(1− z56)
(168)

where the probability for each branching contains the mass singularity, the colour factor
and the momentum splitting kernel. The masses are given by

m2
1 = p2

1 = (p3 + p5 + p6)2 , (169)

m2
4 = p2

4 = (p5 + p6)2 ,

268

and the z values by

zbc = za→bc =
m2
a

λ

Eb
Ea
− m2

a − λ+m2
b −m2

c

2λ
(170)

with λ =
√

(m2
a −m2

b −m2
c)

2 − 4m2
b m

2
c .

We here assume that the on-shell mass of quarks can be neglected. The form of the
probability then matches the expression used in the parton-shower algorithm.

Variants on the above probabilities are imaginable. For instance, in the spirit of the
matrix-element approach we have assumed a common αs for all graphs, which thus need
not be shown, whereas the parton-shower language normally assumes αs to be a function
of the transverse momentum of each branching. One could also include information on
azimuthal anisotropies.

The relative probability P for each of the five possible parton-shower histories can
be used to select one of the possibilities at random. (A less appealing alternative would
be a ‘winner takes all’ strategy, i.e. selecting the configuration with the largest P .) The
selection fixes the values of the m, z and ϕ at two vertices. The azimuthal angle ϕ
is defined by the daughter parton orientation around the mother direction. When the
conventional parton-shower algorithm is executed, these values are then forced on the
otherwise random evolution. This forcing cannot be exact for the z values, since the
final partons given by the matrix elements are on the mass shell, while the corresponding
partons in the parton shower might be virtual and branch further. The shift between
the wanted and the obtained z values are rather small, very seldom above 10−6. More
significant are the changes of the opening angle between two daughters: when daughters
originally assumed massless are given a mass the angle between them tends to be reduced.
This shift has a non-negligible tail even above 0.1 radians. The ‘narrowing’ of jets by
this mechanism is compensated by the broadening caused by the decay of the massive
daughters, and thus overall effects are not so dramatic.

All other branchings of the parton shower are selected at random according to the
standard evolution scheme. There is an upper limit on the non-forced masses from internal
logic, however. For instance, for four-parton matrix elements, the singular regions are
typically avoided with a cut y > 0.01, where y is the square of the minimal scaled invariant
mass between any pair of partons. Larger y values could be used for some purposes, while
smaller ones give so large four-jet rates that the need to include Sudakov form factors
can no longer be neglected. The y > 0.01 cut roughly corresponds to m > 9 GeV at
LEP 1 energies, so the hybrid approach must allow branchings at least below 9 GeV
in order to account for the emission missing from the matrix-element part. Since no 5-
parton emission is generated by the second-order matrix elements, one could also allow
a threshold higher than 9 GeV in order to account for this potential emission. However,
if any such mass is larger than one of the forced masses, the result would be a different
history than the chosen one, and one would risk some doublecounting issues. So, as an
alternative, one could set the minimum invariant mass between any of the four original
partons as the maximum scale of the subsequent shower evolution.

10.3 Initial-State Showers

The initial-state shower algorithm in Pythia is not quite as sophisticated as the final-state
one. This is partly because initial-state radiation is less well understood theoretically,
partly because the programming task is more complicated and ambiguous. Still, the
program at disposal is known to do a reasonably good job of describing existing data,
such as Z0 production properties at hadron colliders [Sjö85]. It can be used both for QCD
showers and for photon emission off leptons (e, µ or τ ; relative to earlier versions, the

269

description of incoming µ and τ are better geared to represent the differences in lepton
mass, and the lepton-inside-lepton parton distributions are properly defined).

10.3.1 The shower structure

A fast hadron may be viewed as a cloud of quasi-real partons. Similarly a fast lepton
may be viewed as surrounded by a cloud of photons and partons; in the program the two
situations are on an equal footing, but here we choose the hadron as example. At each
instant, an individual parton can initiate a virtual cascade, branching into a number of
partons. This cascade can be described in terms of a tree-like structure, composed of
many subsequent branchings a → bc. Each branching involves some relative transverse
momentum between the two daughters. In a language where four-momentum is conserved
at each vertex, this implies that at least one of the b and c partons must have a space-like
virtuality, m2 < 0. Since the partons are not on the mass shell, the cascade only lives a
finite time before reassembling, with those parts of the cascade that are most off the mass
shell living the shortest time.

A hard scattering, e.g. in deeply inelastic leptoproduction, will probe the hadron at a
given instant. The probe, i.e. the virtual photon in the leptoproduction case, is able to
resolve fluctuations in the hadron up to the Q2 scale of the hard scattering. Thus probes
at different Q2 values will seem to see different parton compositions in the hadron. The
change in parton composition with t = ln(Q2/Λ2) is given by the evolution equations

dfb(x, t)

dt
=
∑
a,c

∫ dx′

x′
fa(x

′, t)
αabc
2π

Pa→bc
(
x

x′

)
. (171)

Here the fi(x, t) are the parton-distribution functions, expressing the probability of finding
a parton i carrying a fraction x of the total momentum if the hadron is probed at virtuality
Q2. The Pa→bc(z) are given in eq. (149). As before, αabc is αs for QCD shower and αem

for QED ones.
Eq. (171) is closely related to eq. (148): dPa describes the probability that a given

parton a will branch (into partons b and c), dfb the influx of partons b from the branchings
of partons a. (The expression dfb in principle also should contain a loss term for partons
b that branch; this term is important for parton-distribution evolution, but does not
appear explicitly in what we shall be using eq. (171) for.) The absolute form of hadron
parton distributions cannot be predicted in perturbative QCD, but rather have to be
parameterized at some Q0 scale, with the Q2 dependence thereafter given by eq. (171).
Available parameterizations are discussed in section 7.1. The lepton and photon parton
distributions inside a lepton can be fully predicted, but here for simplicity are treated on
equal footing with hadron parton distributions.

If a hard interaction scatters a parton out of the incoming hadron, the ‘coherence’
[Gri83] of the cascade is broken: the partons can no longer reassemble completely back
to the cascade-initiating parton. In this semiclassical picture, the partons on the ‘main
chain’ of consecutive branchings that lead directly from the initiating parton to the scat-
tered parton can no longer reassemble, whereas fluctuations on the ‘side branches’ to this
chain may still disappear. A convenient description is obtained by assigning a space-like
virtuality to the partons on the main chain, in such a way that the partons on the side
branches may still be on the mass shell. Since the momentum transfer of the hard process
can put the scattered parton on the mass shell (or even give it a time-like virtuality, so
that it can initiate a final-state shower), one is then guaranteed that no partons have a
space-like virtuality in the final state. (In real life, confinement effects obviously imply
that partons need not be quite on the mass shell.) If no hard scattering had taken place,
the virtuality of the space-like parton line would still force the complete cascade to re-
assemble. Since the virtuality of the cascade probed is carried by one single parton, it is

270

possible to equate the space-like virtuality of this parton with the Q2 scale of the cascade,
to be used e.g. in the evolution equations. Coherence effects [Gri83, Bas83] guarantee that
the Q2 values of the partons along the main chain are strictly ordered, with the largest
Q2 values close to the hard scattering.

Further coherence effects have been studied [Cia87], with particular implications for
the structure of parton showers at small x. None of these additional complications are
implemented in the current algorithm, with the exception of a few rather primitive options
that do not address the full complexity of the problem.

Instead of having a tree-like structure, where all legs are treated democratically, the
cascade is reduced to a single sequence of branchings a→ bc, where the a and b partons
are on the main chain of space-like virtuality, m2

a,b < 0, while the c partons are on the
mass shell and do not branch. (Later we will include the possibility that the c partons
may have positive virtualities, m2

c > 0, which leads to the appearance of time-like ‘final-
state’ parton showers on the side branches.) This truncation of the cascade is only possible
when it is known which parton actually partakes in the hard scattering: of all the possible
cascades that exist virtually in the incoming hadron, the hard scattering will select one.

To obtain the correct Q2 evolution of parton distributions, e.g., it is essential that all
branches of the cascade be treated democratically. In Monte Carlo simulation of space-like
showers this is a major problem. If indeed the evolution of the complete cascade is to be
followed from some small Q2

0 up to the Q2 scale of the hard scattering, it is not possible
at the same time to handle kinematics exactly, since the virtuality of the various partons
cannot be found until after the hard scattering has been selected. This kind of ‘forward
evolution’ scheme therefore requires a number of extra tricks to be made to work. Further,
in this approach it is not known e.g. what the ŝ of the hard scattering subsystem will be
until the evolution has been carried out, which means that the initial-state evolution and
the hard scattering have to be selected jointly, a not so trivial task.

Instead we use the ‘backwards evolution’ approach [Sjö85], in which the hard scattering
is first selected, and the parton shower that preceded it is subsequently reconstructed.
This reconstruction is started at the hard interaction, at the Q2

max scale, and thereafter
step by step one moves ‘backwards’ in ‘time’, towards smaller Q2, all the way back to
the parton-shower initiator at the cut-off scale Q2

0. This procedure is possible if evolved
parton distributions are used to select the hard scattering, since the fi(x,Q

2) contain
the inclusive summation of all initial-state parton-shower histories that can lead to the
appearance of an interacting parton i at the hard scale. What remains is thus to select
an exclusive history from the set of inclusive ones.

10.3.2 Longitudinal evolution

The evolution equations, eq. (171), express that, during a small increase dt there is a
probability for parton a with momentum fraction x′ to become resolved into parton b
at x = zx′ and another parton c at x′ − x = (1 − z)x′. Correspondingly, in backwards
evolution, during a decrease dt a parton b may be ‘unresolved’ into parton a. The relative
probability dPb for this to happen is given by the ratio dfb/fb. Using eq. (171) one obtains

dPb =
dfb(x, t)

fb(x, t)
= |dt|∑

a,c

∫ dx′

x′
fa(x

′, t)
fb(x, t)

αabc
2π

Pa→bc
(
x

x′

)
. (172)

Summing up the cumulative effect of many small changes dt, the probability for no radi-
ation exponentiates. Therefore one may define a form factor

Sb(x, tmax, t) = exp

{
−
∫ tmax

t
dt′

∑
a,c

∫ dx′

x′
fa(x

′, t′)
fb(x, t′)

αabc(t
′)

2π
Pa→bc

(
x

x′

)}

= exp

{
−
∫ tmax

t
dt′

∑
a,c

∫
dz

αabc(t
′)

2π
Pa→bc(z)

x′fa(x′, t′)
xfb(x, t′)

}
, (173)

271

giving the probability that a parton b remains at x from tmax to a t < tmax.
It may be useful to compare this with the corresponding expression for forward evolu-

tion, i.e. with Sa(t) in eq. (151). The most obvious difference is the appearance of parton
distributions in Sb. Parton distributions are absent in Sa: the probability for a given
parton a to branch, once it exists, is independent of the density of partons a or b. The
parton distributions in Sb, on the other hand, express the fact that the probability for
a parton b to come from the branching of a parton a is proportional to the number of
partons a there are in the hadron, and inversely proportional to the number of partons b.
Thus the numerator fa in the exponential of Sb ensures that the parton composition of
the hadron is properly reflected. As an example, when a gluon is chosen at the hard scat-
tering and evolved backwards, this gluon is more likely to have been emitted by a u than
by a d if the incoming hadron is a proton. Similarly, if a heavy flavour is chosen at the
hard scattering, the denominator fb will vanish at the Q2 threshold of the heavy-flavour
production, which means that the integrand diverges and Sb itself vanishes, so that no
heavy flavour remain below threshold.

Another difference between Sb and Sa, already touched upon, is that the Pg→gg(z)
splitting kernel appears with a normalization 2NC in Sb but only with NC in Sa, since
two gluons are produced but only one decays in a branching.

A knowledge of Sb is enough to reconstruct the parton shower backwards. At each
branching a→ bc, three quantities have to be found: the t value of the branching (which
defines the space-like virtuality Q2

b of parton b), the parton flavour a and the splitting
variable z. This information may be extracted as follows:

1. If parton b partook in the hard scattering or branched into other partons at a scale
tmax, the probability that b was produced in a branching a→ bc at a lower scale t is

dPb
dt

= −dSb(x, tmax, t)

dt
=

(∑
a,c

∫
dz

αabc(t
′)

2π
Pa→bc(z)

x′fa(x′, t′)
xfb(x, t′)

)
Sb(x, tmax, t) .

(174)
If no branching is found above the cut-off scale t0 the iteration is stopped and parton
b is assumed to be massless.

2. Given the t of a branching, the relative probabilities for the different allowed branch-
ings a→ bc are given by the z integrals above, i.e. by

∫
dz

αabc(t)

2π
Pa→bc(z)

x′fa(x′, t)
xfb(x, t)

. (175)

3. Finally, with t and a known, the probability distribution in the splitting variable
z = x/x′ = xb/xa is given by the integrand in eq. (175).

In addition, the azimuthal angle ϕ of the branching is selected isotropically, i.e. no spin
or coherence effects are included in this distribution.

The selection of t, a and z is then a standard task of the kind than can be performed
with the help of the veto algorithm. Specifically, upper and lower bounds for parton dis-
tributions are used to find simple functions that are everywhere larger than the integrands
in eq. (175). Based on these simple expressions, the integration over z may be carried out,
and t, a and z values selected. This set is then accepted with a weight given by a ratio of
the correct integrand in eq. (175) to the simple approximation used, both evaluated for
the given set. Since parton distributions, as a rule, are not in a simple analytical form,
it may be tricky to find reasonably good bounds to parton distributions. It is necessary
to make different assumptions for valence and sea quarks, and be especially attentive
close to a flavour threshold ([Sjö85]). An electron distribution inside an electron behaves
differently from parton distributions encountered in hadrons, and has to be considered
separately.

A comment on soft gluon emission. Nominally the range of the z integral in Sb is
x ≤ z ≤ 1. The lower limit corresponds to x′ = x/z = 1, and parton distributions vanish

272

in this limit, wherefore no problems are encountered here. At the upper cut-off z = 1 the
splitting kernels Pq→qg(z) and Pg→gg diverge. This is the soft gluon singularity: the energy
carried by the emitted gluon is vanishing, xg = x′ − x = (1 − z)x′ = (1 − z)x/z → 0 for
z → 1. In order to calculate the integral over z in Sb, an upper cut-off zmax = x/(x+ xε)
is introduced, i.e. only branchings with z ≤ zmax are included in Sb. Here xε is a small
number, typically chosen so that the gluon energy is above 2 GeV when calculated in the
rest frame of the hard scattering. That is, the gluon energy xg

√
s/2 ≥ xε

√
s/2 = 2 GeV/γ,

where γ is the boost factor of the hard scattering. The average amount of energy carried
away by gluons in the range xg < xε, over the given range of t values from ta to tb, may be
estimated [Sjö85]. The finally selected z value may thus be picked as z = zhard〈zsoft(ta, tb)〉,
where zhard is the originally selected z value and zsoft is the correction factor for soft gluon
emission.

In QED showers, the smallness of αem means that one can use rather smaller cut-off
values without obtaining large amounts of emission. A fixed small cut-off xγ > 10−10 is
therefore used to avoid the region of very soft photons. As has been discussed in section
7.1.3, the electron distribution inside the electron is cut off at xe < 1−10−10, for numerical
reasons, so the two cuts are closely matched.

The cut-off scale Q0 may be chosen separately for QCD and QED showers, just as in
final-state radiation. The defaults are 1 GeV and 0.001 GeV, respectively. The former
is the typical hadronic mass scale, below which radiation is not expected resolvable; the
latter is of the order of the electron mass.

Normally QED and QCD showers do not appear mixed. The most notable exception
is resolved photoproduction (in ep) and resolved γγ events (in e+e−), i.e. shower histories
of the type e → γ → q. Here the Q2 scales need not be ordered at the interface, i.e.
the last e → eγ branching may well have a larger Q2 than the first q → qg one, and the
branching γ → q does not even have a strict parton-shower interpretation for the vector
dominance model part of the photon parton distribution. This kind of configurations
is best described by the ’gamma/lepton’ machinery for having a flux of virtual photons
inisde the lepton, see section 7.1.4. In this case, no initial-state radiation has currently
been implemented for the electron (or µ or τ). The one inside the virtual-photon system
is considered with the normal algorithm, but with the lower cut-off scale modified by the
photon virtuality, see MSTP(66).

An older description still lives on, although no longer as the recommended one. There,
these issues are currently not addressed in full. Rather, based on the x selected for the
parton (quark or gluon) at the hard scattering, the xγ is selected once and for all in the
range x < xγ < 1, according to the distribution implied by eq. (54). The QCD parton
shower is then traced backwards from the hard scattering to the QCD shower initiator at
t0. No attempt is made to perform the full QED shower, but rather the beam remnant
treatment (see section 11.1) is used to find the q (or g) remnant that matches the q (or
g) QCD shower initiator, with the electron itself considered as a second beam remnant.

10.3.3 Transverse evolution

We have above seen that two parton lines may be defined, stretching back from the
hard scattering to the initial incoming hadron wavefunctions at small Q2. Specifically,
all parton flavours i, virtualities Q2 and energy fractions x may be found. The exact
kinematical interpretation of the x variable is not unique, however. For partons with
small virtualities and transverse momenta, essentially all definitions agree, but differences
may appear for branchings close to the hard scattering.

In first-order QED [Ber85] and in some simple QCD toy models [Got86], one may show
that the ‘correct’ choice is the ‘ŝ approach’. Here one requires that ŝ = x1x2s, both at the
hard scattering scale and at any lower scale, i.e. ŝ(Q2) = x1(Q2) x2(Q2) s, where x1 and
x2 are the x values of the two resolved partons (one from each incoming beam particle) at

273

the given Q2 scale. In practice this means that, at a branching with the splitting variable
z, the total ŝ has to be increased by a factor 1/z in the backwards evolution. It also means
that branchings on the two incoming legs have to be interleaved in a single monotonic
sequence of Q2 values of branchings. A problem with this x interpretation is that it is not
quite equivalent with an ms definition of parton densities [Col00], or any other standard
definition. In practice, effects should not be large from this mismatch.

For a reconstruction of the complete kinematics in this approach, one should start
with the hard scattering, for which ŝ has been chosen according to the hard scattering
matrix element. By backwards evolution, the virtualities Q2

1 = −m2
1 and Q2

2 = −m2
2 of

the two interacting partons are reconstructed. Initially the two partons are considered in
their common c.m. frame, coming in along the ±z directions. Then the four-momentum
vectors have the non-vanishing components

E1,2 =
ŝ± (Q2

2 −Q2
1)

2
√
ŝ

,

pz1 = −pz2 =

√
(ŝ+Q2

1 +Q2
2)2 − 4Q2

1Q
2
2

4ŝ
, (176)

with (p1 + p2)2 = ŝ.
If, say, Q2

1 > Q2
2, then the branching 3 → 1 + 4, which produced parton 1, is the one

that took place closest to the hard scattering, and the one to be reconstructed first. With
the four-momentum p3 known, p4 = p3 − p1 is automatically known, so there are four
degrees of freedom. One corresponds to a trivial azimuthal angle around the z axis. The
z splitting variable for the 3→ 1+4 vertex is found as the same time as Q2

1, and provides
the constraint (p3 + p2)2 = ŝ/z. The virtuality Q2

3 is given by backwards evolution of
parton 3.

One degree of freedom remains to be specified, and this is related to the possibility
that parton 4 initiates a time-like parton shower, i.e. may have a non-zero mass. The
maximum allowed squared mass m2

max,4 is found for a collinear branching 3 → 1 + 4. In
terms of the combinations

s1 = ŝ+Q2
2 +Q2

1 ,

s3 =
ŝ

z
+Q2

2 +Q2
3 ,

r1 =
√
s2

1 − 4Q2
2Q

2
1 ,

r3 =
√
s2

3 − 4Q2
2Q

2
3 , (177)

one obtains

m2
max,4 =

s1s3 − r1r3

2Q2
2

−Q2
1 −Q2

3 , (178)

which, for the special case of Q2
2 = 0, reduces to

m2
max,4 =

{
Q2

1

z
−Q2

3

}{
ŝ

ŝ+Q2
1

− ŝ

ŝ/z +Q2
3

}
. (179)

These constraints on m4 are only the kinematical ones, in addition coherence phenomena
could constrain the mmax,4 values further. Some options of this kind are available; the
default one is to require additionally that m2

4 ≤ Q2
1, i.e. lesser than the space-like virtuality

of the sister parton.
With the maximum virtuality given, the final-state showering machinery may be used

to give the development of the subsequent cascade, including the actual mass m2
4, with

274

0 ≤ m2
4 ≤ m2

max,4. The evolution is performed in the c.m. frame of the two ‘resolved’
partons, i.e. that of partons 1 and 2 for the branching 3→ 1 + 4, and parton 4 is assumed
to have a nominal energy Enom,4 = (1/z− 1)

√
ŝ/2. (Slight modifications appear if parton

4 has a non-vanishing mass mq or m`.)
Using the relation m2

4 = (p3 − p1)2, the momentum of parton 3 may now be found as

E3 =
1

2
√
ŝ

{
ŝ

z
+Q2

2 −Q2
1 −m2

4

}
,

pz3 =
1

2pz1
{s3 − 2E2E3} ,

p2
⊥,3 =

{
m2

max,4 −m2
4

} (s1s3 + r1r3)/2−Q2
2(Q2

1 +Q2
3 +m2

4)

r2
1

. (180)

The requirement that m2
4 ≥ 0 (or ≥ m2

f for heavy flavours) imposes a constraint on

allowed z values. This constraint cannot be included in the choice of Q2
1, where it logically

belongs, since it also depends on Q2
2 and Q2

3, which are unknown at this point. It is fairly
rare (in the order of 10% of all events) that an unallowed z value is generated, and when it
happens it is almost always for one of the two branchings closest to the hard interaction:
for Q2

2 = 0 eq. (179) may be solved to yield z ≤ ŝ/(ŝ+Q2
1 −Q2

3), which is a more severe
cut for ŝ small and Q2

1 large. Therefore an essentially bias-free way of coping is to redo
completely any initial-state cascade for which this problem appears.

This completes the reconstruction of the 3→ 1 + 4 vertex. The subsystem made out
of partons 3 and 2 may now be boosted to its rest frame and rotated to bring partons 3
and 2 along the ±z directions. The partons 1 and 4 now have opposite and compensating
transverse momenta with respect to the event axis. When the next vertex is considered,
either the one that produces parton 3 or the one that produces parton 2, the 3–2 subsystem
will fill the function the 1–2 system did above, e.g. the rôle of ŝ = ŝ12 in the formulae above
is now played by ŝ32 = ŝ12/z. The internal structure of the 3–2 system, i.e. the branching
3 → 1 + 4, appears nowhere in the continued description, but has become ‘unresolved’.
It is only reflected in the successive rotations and boosts performed to bring back the
new endpoints to their common rest frame. Thereby the hard scattering subsystem 1–2
builds up a net transverse momentum and also an overall rotation of the hard scattering
subsystem.

After a number of steps, the two outermost partons have virtualities Q2 < Q2
0 and

then the shower is terminated and the endpoints assigned Q2 = 0. Up to small corrections
from primordial k⊥, discussed in section 11.1, a final boost will bring the partons from
their c.m. frame to the overall c.m. frame, where the x values of the outermost partons
agree also with the light-cone definition.

10.3.4 Other initial-state shower aspects

In the formulae above, Q2 has been used as argument for αs, and not only as the space-like
virtuality of partons. This is one possibility, but in fact loop calculations tend to indicate
that the proper argument for αs is not Q2 but p2

⊥ = (1 − z)Q2 [Bas83]. The variable
p⊥ does have the interpretation of transverse momentum, although it is only exactly so
for a branching a → bc with a and c massless and Q2 = −m2

b , and with z interpreted
as light-cone fraction of energy and momentum. The use of αs((1 − z)Q2) is default in
the program. Indeed, if one wanted to, the complete shower might be interpreted as an
evolution in p2

⊥ rather than in Q2.
Angular ordering is included in the shower evolution by default. However, as already

mentioned, the physics is much more complicated than for timelike showers, and so this
option should only be viewed as a first approximation. In the code the quantity ordered

275

is an approximation of p⊥/p ≈ sin θ. (An alternative would have been p⊥/pL ≈ tan θ, but
this suffers from instability problems.)

In flavour excitation processes, a c (or b) quark enters the hard scattering and should
be reconstructed by the shower as coming from a g → cc (or g → bb) branching. Here
an x value for the incoming c above Q2

c/(Q
2
c +m2

c), where Q2
c is the spacelike virtuality of

the c, does not allow a kinematical reconstruction of the gluon branching with an xg < 1,
and is thus outside the allowed phase space. Such events (with some safety margin) are
rejected. Currently they will appear in PYSTAT(1) listings in the ‘Fraction of events that
fail fragmentation cuts’, which is partly misleading, but has the correct consequence of
suppressing the physical cross section. Further, the Q2 value of the backwards evolution
of a c quark is by force kept above m2

c, so as to ensure that the branching g → cc is not
‘forgotten’ by evolving Q2 below Q2

0. Thereby the possibility of having a c in the beam
remnant proper is eliminated [Nor98]. Warning: as a consequence, flavour excitation is
not at all possible too close to threshold. If the KFIN array in PYSUBS is set so as to require
a c (or b) on either side, and the phase space is closed for such a c to come from a g→ cc
branching, the program will enter an infinite loop.

For proton beams, say, any c or b quark entering the hard scattering has to come from
a preceding gluon splitting. This is not the case for a photon beam, since a photon has a
c and b valence quark content. Therefore the above procedure need not be pursued there,
but c and b quarks may indeed appear as beam remnants.

As we see, the initial-state showering algorithm leads to a net boost and rotation of
the hard scattering subsystems. The overall final state is made even more complex by the
additional final-state radiation. In principle, the complexity is very physical, but it may
still have undesirable side effects. One such, discussed further in section 9.2, is that it is
very difficult to generate events that fulfil specific kinematics conditions, since kinematics
is smeared and even, at times, ambiguous.

A special case is encountered in Deeply Inelastic Scattering in ep collisions. Here the
DIS x and Q2 values are defined in terms of the scattered electron direction and energy,
and therefore are unambiguous (except for issues of final-state photon radiation close to
the electron direction). Neither initial- nor final-state showers preserve the kinematics of
the scattered electron, however, and hence the DIS x and Q2 are changed. In principle,
this is perfectly legitimate, with the caveat that one then also should use different sets of
parton distributions than ones derived from DIS, since these are based on the kinematics
of the scattered lepton and nothing else. Alternatively, one might consider showering
schemes that leave x and Q2 unchanged. In [Ben88] detailed modifications are presented
that make a preservation possible when radiation off the incoming and outgoing electron
is neglected, but these are not included in the current version of Pythia. Instead the
current ’gamma/lepton’ machinery explicitly separates off the e → eγ vertex from the
continued fate of the photon.

The only reason for using the older machinery, such as process 10, is that this is still
the only place where weak charged and neutral current effects can be considered. What
is available there, as an option, is a simple machinery which preserves x and Q2 from the
effects of QCD radiation, and also from those of primordial k⊥ and the beam remnant
treatment, as follows. After the showers have been generated, the four-momentum of
the scattered lepton is changed to the expected one, based on the nominal x and Q2

values. The azimuthal angle of the lepton is maintained when the transverse momentum
is adjusted. Photon radiation off the lepton leg is not fully accounted for, i.e. it is assumed
that the energy of final-state photons is added to that of the scattered electron for the
definition of x and Q2 (this is the normal procedure for parton-distribution definitions).

The change of three-momentum on the lepton side of the event is balanced by the
final state partons on the hadron side, excluding the beam remnant but including all the
partons both from initial- and final-state showering. The fraction of three-momentum
shift taken by each parton is proportional to its original light-cone momentum in the

276

direction of the incoming lepton, i.e. to E ∓ pz for a hadron moving in the ± direction.
This procedure guarantees momentum but not energy conservation. For the latter, one
additional degree of freedom is needed, which is taken to be the longitudinal momentum
of the initial state shower initiator. As this momentum is modified, the change is shared
by the final state partons on the hadron side, according to the same light-cone fractions
as before (based on the original momenta). Energy conservation requires that the total
change in final state parton energies plus the change in lepton side energy equals the
change in initiator energy. This condition can be turned into an iterative procedure to
find the initiator momentum shift.

Sometimes the procedure may break down. For instance, an initiator with x > 1 may
be reconstructed. If this should happen, the x and Q2 values of the event are preserved,
but new initial and final state showers are generated. After five such failures, the event
is completely discarded in favour of a new kinematical setup.

Kindly note that the four-momentum of intermediate partons in the shower history
are not being adjusted. In a listing of the complete event history, energy and momentum
need then not be conserved in shower branchings. This mismatch could be fixed up, if
need be.

The scheme presented above should not be taken too literally, but is rather intended
as a contrast to the more sophisticated schemes already on the market, if one would like
to understand whether the kind of conservation scheme chosen does affect the observable
physics.

10.3.5 Matrix-element matching

In Pythia 6.1, matrix-element matching was introduced for the initial-state shower de-
scription of initial-state radiation in the production of a single colour-singlet resonance,
such as γ∗/Z0/W± [Miu99]. The basic idea is to map the kinematics between the PS and
ME descriptions, and to find a correction factor that can be applied to hard emissions in
the shower so as to bring agreement with the matrix-element expression. The Pythia
shower kinematics definitions are based on Q2 as the spacelike virtuality of the parton
produced in a branching and z as the factor by which the ŝ of the scattering subsystem
is reduced by the branching. Some simple algebra then shows that the two qq′ → gW±

emission rates disagree by a factor

Rqq′→gW(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
t̂2 + û2 + 2m2

Wŝ

ŝ2 +m4
W

, (181)

which is always between 1/2 and 1. The shower can therefore be improved in two ways,
relative to the old description. Firstly, the maximum virtuality of emissions is raised from
Q2

max ≈ m2
W to Q2

max = s, i.e. the shower is allowed to populate the full phase space.
Secondly, the emission rate for the final (which normally also is the hardest) q → qg
emission on each side is corrected by the factor R(ŝ, t̂) above, so as to bring agreement
with the matrix-element rate in the hard-emission region. In the backwards evolution
shower algorithm [Sjö85], this is the first branching considered.

The other possible O(αs) graph is qg → q′W±, where the corresponding correction
factor is

Rqg→q′W(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
ŝ2 + û2 + 2m2

Wt̂

(ŝ−m2
W)2 +m4

W

, (182)

which lies between 1 and 3. A probable reason for the lower shower rate here is that the
shower does not explicitly simulate the s-channel graph qg → q∗ → q′W. The g → qq
branching therefore has to be preweighted by a factor of 3 in the shower, but otherwise
the method works the same as above. Obviously, the shower will mix the two alternative
branchings, and the correction factor for a final branching is based on the current type.

277

The reweighting procedure prompts some other changes in the shower. In particular,
û < 0 translates into a constraint on the phase space of allowed branchings, not previously
implemented. Here û = Q2 − ŝold(1 − z)/z = Q2 − ŝnew(1 − z), where the association
with the û variable is relevant if the branching is reinterpreted in terms of a 2 → 2
scattering. Usually such a requirement comes out of the kinematics, and therefore is
imposed eventually anyway. The corner of emissions that do not respect this requirement
is that where the Q2 value of the spacelike emitting parton is little changed and the
z value of the branching is close to unity. (That is, such branchings are kinematically
allowed, but since the mapping to matrix-element variables would assume the first parton
to have Q2 = 0, this mapping gives an unphysical û, and hence no possibility to impose a
matrix-element correction factor.) The correct behaviour in this region is beyond leading-
log predictivity. It is mainly important for the hardest emission, i.e. with largest Q2.
The effect of this change is to reduce the total amount of emission by a non-negligible
amount when no matrix-element correction is applied. (This can be confirmed by using
the special option MSTP(68)=-1.) For matrix-element corrections to be applied, this
requirement must be used for the hardest branching, and then whether it is used or not
for the softer ones is less relevant.

Our published comparisons with data on the p⊥W spectrum show quite a good agree-
ment with this improved simulation [Miu99]. A worry was that an unexpectedly large
primordial k⊥, around 4 GeV, was required to match the data in the low-p⊥Z region.
However, at that time we had not realized that the data were not fully unsmeared. The
required primordial k⊥ therefore drops by about a factor of two [Bál01]. This number is
still uncomfortably large, but not too dissimilar from what is required in various resum-
mation descriptions.

The method can also be used for initial-state photon emission, e.g. in the process
e+e− → γ∗/Z0. There the old default Q2

max = m2
Z allowed no emission at large p⊥,

p⊥ >∼mZ at LEP2. This is now corrected by the increased Q2
max = s, and using the R of

eq. (181) with mW → mZ.
The above method does not address the issue of next-to-leading order corrections to

the total W cross section. Rather, the implicit assumption is that such corrections, coming
mainly from soft- and virtual-gluon effects, largely factorize from the hard-emission effects.
That is, that the p⊥ shape obtained in our approach will be rather unaffected by next-
to-leading order corrections (when used both for the total and the high-p⊥ cross section).
A rescaling by a common K factor could then be applied by hand at the end of the
day. However, the issue is not clear. Alternative approaches have been proposed, where
more sophisticated matching procedures are used also to get the next-to-leading order
corrections to the cross section integrated into the shower formalism [Mre99].

A matching can also be attempted for other processes than the ones above. Currently
a matrix-element correction factor is also used for g → gg and q→ gq branchings in the
gg → h0 process, in order to match on to the gg → gh0 and qg → qh0 matrix elements
[Ell88]. The loop integrals of Higgs production are quite complex, however, and therefore
only the expressions obtained in the limit of a heavy top quark is used as a starting point
to define the ratios of gg → gh0 and qg → qh0 to gg → h0 cross sections. (Whereas
the gg → h0 cross section by itself contains the complete expressions.) In this limit, the
compact correction factors

Rgg→gh0(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
ŝ4 + t̂4 + û4 +m8

h

2(ŝ2 −m2
h(ŝ−m2

h))2
(183)

and

Rqg→qh0(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
ŝ2 + û2

ŝ2 + (ŝ−m2
h)2

(184)

can be derived. Even though they are clearly not as reliable as the above expressions for
γ∗/Z0/W±, they should hopefully represent an improved description relative to having no

278

correction factor at all. For this reason they are applied not only for the standard model
Higgs, but for all the three Higgs states h0, H0 and A0. The Higgs correction factors are
always in the comfortable range between 1/2 and 1.

Note that a third process, qq→ gh0 does not fit into the pattern of the other two. The
above process cannot be viewed as a showering correction to a lowest-order qq→ h0 one:
since the q is assumed (essentially) massless there is no pointlike coupling. The graph
above instead again involved a top loop, coupled to the initial state by a single s-channel
gluon. The final-state gluon is necessary to balance colours in the process, and therefore
the cross section is vanishing in the p⊥ → 0 limit.

10.4 Routines and Common Block Variables

In this section we collect information on how to use the initial- and final-state showering
routines. Of these PYSHOW for final-state radiation is the more generally interesting, since
it can be called to let a user-defined parton configuration shower. PYSSPA, on the other
hand, is so intertwined with the general structure of a Pythia event that it is of little
use as a stand-alone product.

CALL PYSHOW(IP1,IP2,QMAX)

Purpose: to generate time-like parton showers, conventional or coherent. The perfor-
mance of the program is regulated by the switches MSTJ(38) - MSTJ(50) and
parameters PARJ(80) - PARJ(90). In order to keep track of the colour flow
information, the positions K(I,4) and K(I,5) have to be organized properly
for showering partons. Inside the Pythia programs, this is done automati-
cally, but for external use proper care must be taken.

IP1 > 0, IP2 = 0 : generate a time-like parton shower for the parton in line IP1 in
common block PYJETS, with maximum allowed mass QMAX. With only one
parton at hand, one cannot simultaneously conserve both energy and momen-
tum: we here choose to conserve energy and jet direction, while longitudinal
momentum (along the jet axis) is not conserved.

IP1 > 0, IP2 > 0 : generate time-like parton showers for the two partons in lines IP1
and IP2 in the common block PYJETS, with maximum allowed mass for each
parton QMAX. For shower evolution, the two partons are boosted to their c.m.
frame. Energy and momentum is conserved for the pair of partons, although
not for each individually. One of the two partons may be replaced by a nonra-
diating particle, such as a photon or a diquark; the energy and momentum of
this particle will then be modified to conserve the total energy and momentum.

IP1 > 0, -7 ≤ IP2 < 0 : generate time-like parton showers for the -IP2 (at most 7)
partons in lines IP1, IP1+1, . . . IPI-IP2-1 in the common block PYJETS, with
maximum allowed mass for each parton QMAX. The actions for IP2=-1 and
IP2=-2 correspond to what is described above, but additionally larger num-
bers may be used to generate the evolution starting from three or more given
partons. Then the partons are boosted to their c.m. frame, the direction of
the momentum vector is conserved for each parton individually and energy
for the system as a whole. It should be understood that the uncertainty in
this option is larger than for two-parton systems, and that a number of the
sophisticated features (such as coherence with the incoming colour flow) are
not implemented.

IP1 > 0, IP2 = -8 : generate a four-parton system, where a history starting from two
partons has already been constructed as discussed in subsection 10.2.7. In-
cluding intermediate partons this requires 8 lines, whence the IP2 value. This

279

option is used in PY4JET, whereas you would normally not want to use this
option directly yourself.

QMAX : the maximum allowed mass of a radiating parton, i.e. the starting value for the
subsequent evolution. (In addition, the mass of a single parton may not exceed
its energy, the mass of a parton in a system may not exceed the invariant mass
of the system.)

FUNCTION PYMAEL(NI,X1,X2,R1,R2,ALPHA)

Purpose: returns the ratio of the first-order gluon emission rate normalized to the lowest-
order event rate, eq. (166). An overall factor CFαs/2π is omitted, since the
running of αs probably is done better in shower language anyway.

NI : code of the matrix element to be used, see Table 25. In each group of four
codes in that table, the first is for the 1 case, the second for the γ5 one, the
third for an arbitrary mixture, see ALPHA below, and the last for 1± γ5.

X1, X2 : standard energy fractions of the two daughters.
R1, R2 : mass of the two daughters normalized to the mother mass.
ALPHA: fraction of the no-γ5 (i.e. vector/scalar/...) part of the cross section; a free

parameter for the third matrix element option of each group in Table 25 (13,
18, 23, 28, . . .).

SUBROUTINE PYADSH(NFIN)

Purpose: to administrate a sequence of final-state showers for external processes, where
the order normally is that all resonances have decayed before showers are
considered, and therefore already existing daughters have to be boosted when
their mothers radiate or take the recoil from radiation.

NFIN : line in the event record of the last final-state entry to consider.

SUBROUTINE PYSSPA(IPU1,IPU2)

Purpose: to generate the space-like showers of the initial-state radiation.
IPU1, IPU2 : positions of the two partons entering the hard scattering, from which the

backwards evolution is initiated.

SUBROUTINE PYMEMX(MECOR,WTFF,WTGF,WTFG,WTGG)

Purpose: to set the maximum of the ratio of the correct matrix element to the one
implied by the spacelike parton shower.

MECOR : kind of hard scattering process, 1 for f + f → γ∗/Z0/W±/ . . . vector gauge
bosons, 2 for g + g→ h0/H0/A0.

WTFF, WTGF, WTFG, WTGG : maximum weights for f → f (+g/γ), g/γ → f (+f), f →
g/γ (+f) and g→ g (+g), respectively.

SUBROUTINE PYMEWT(MECOR,IFLCB,Q2,Z,PHIBR,WTME)

Purpose: to calculate the ratio of the correct matrix element to the one implied by the
spacelike parton shower.

MECOR : kind of hard scattering process, 1 for f + f → γ∗/Z0/W±/ . . . vector gauge

280

bosons, 2 for g + g→ h0/H0/A0.
IFLCB : kind of branching, 1 for f → f (+g/γ), 2 for g/γ → f (+f), 3 for f → g/γ (+f)

and 4 for g→ g (+g).
Q2, Z : Q2 and z values of shower branching under consideration.
PHIBR : ϕ azimuthal angle of the shower branching; may be overwritten inside routine.
WTME : calculated matrix element correction weight, used in the acceptance/rejection

of the shower branching under consideration.

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of Pythia. Most parameters are described in section 14.3; here
only those related to PYSHOW are described.

MSTJ(38) : (D=0) matrix element code NI for PYMAEL; as in MSTJ(47). If nonzero, the
MSTJ(38) value overrides MSTJ(47), but is then set =0 in the PYSHOW call. The
usefulness of this switch lies in processes where sequential decays occur and
thus there are several showers, each requiring its matrix element. Therefore
MSTJ(38) can be set in the calling routine when it is known, and when not set
one defaults back to the attempted matching procedure of MSTJ(47)=3 (e.g.).

MSTJ(40) : (D=0) possibility to suppress the branching probability for a branching q→
qg (or q → qγ) of a quark produced in the decay of an unstable particle
with width Γ, where this width has to be specified by you in PARJ(89). The
algorithm used is not exact, but still gives some impression of potential effects.
This switch ought to have appeared at the end of the current list of shower
switches (after MSTJ(50)), but because of lack of space it appears immediately
before.

= 0 : no suppression, i.e. the standard parton-shower machinery.
= 1 : suppress radiation by a factor χ(ω) = Γ2/(Γ2 + ω2), where ω is the

energy of the gluon (or photon) in the rest frame of the radiating dipole.
Essentially this means that hard radiation with ω > Γ is removed.

= 2 : suppress radiation by a factor 1 − χ(ω) = ω2/(Γ2 + ω2), where ω is the
energy of the gluon (or photon) in the rest frame of the radiating dipole.
Essentially this means that soft radiation with ω < Γ is removed.

MSTJ(41) : (D=2) type of branchings allowed in shower.
= 0 : no branchings at all, i.e. shower is switched off.
= 1 : QCD type branchings of quarks and gluons.
= 2 : also emission of photons off quarks and leptons; the photons are assumed

on the mass shell.
= 10 : as =2, but enhance photon emission by a factor PARJ(84). This option

is unphysical, but for moderate values, PARJ(84)≤ 10, it may be used
to enhance the prompt photon signal in qq events. The normalization of
the prompt photon rate should then be scaled down by the same factor.
The dangers of an improper use are significant, so do not use this option
if you do not know what you are doing.

MSTJ(42) : (D=2) branching mode, especially coherence level, for time-like show-
ers.

= 1 : conventional branching, i.e. without angular ordering.
= 2 : coherent branching, i.e. with angular ordering.
= 3 : in a branching a→ bg, where mb is nonvanishing, the decay angle is re-

duced by a factor (1 + (m2
b/m

2
a)(1− z)/z)−1, thereby taking into account

mass effects in the decay [Nor01]. Therefore more branchings are accept-
able from an angular ordering point of view. In the definition of the angle

281

in a g → qq branchings, the naive massless expression is reduced by a

factor
√

1− 4m2
q/m

2
g, which can be motivated by a corresponding actual

reduction in the p⊥ by mass effects. The requirement of angular ordering
then kills fewer potential g → qq branchings, i.e. the rate of such comes
up. The g → gg branchings are not changed from =2. This option is
fully within the range of uncertainty that exists.

= 4 : as =3 for a → bg and g → gg branchings, but no angular ordering
requirement conditions at all are imposed on g → qq branchings. This
is an unrealistic extreme, and results obtained with it should not be
overstressed. However, for some studies it is of interest. For instance, it
not only gives a much higher rate of charm and bottom production in
showers, but also affects the kinematical distributions of such pairs.

= 5 : new ‘intermediate’ coherence level [Nor01], where the consecutive gluon
emissions off the original pair of branching partons is not constrained
by angular ordering at all. The subsequent showering of such a gluon is
angular ordered, however, starting from its production angle. At LEP
energies, this gives almost no change in the total parton multiplicity, but
this multiplicity now increases somewhat faster with energy than before,
in better agreement with analytical formulae. (The PYSHOW algorithm
overconstrains the shower by ordering emissions in mass and then vetoing
increasing angles. This is a first simple attempt to redress the issue.)
Other branchings as in =2.

= 6 : ‘intermediate’ coherence level as =5 for primary partons, unchanged for
g→ gg and reduced angle for g→ qq and secondary q→ qg as in =3.

= 7 : ‘intermediate’ coherence level as =5 for primary partons, unchanged for
g → gg, reduced angle for secondary q → qg as in =3 and no angular
ordering for g→ qq as in =4.

MSTJ(43) : (D=4) choice of z definition in branching.
= 1 : energy fraction in grandmother’s rest frame (‘local, constrained’).
= 2 : energy fraction in grandmother’s rest frame assuming massless daughters,

with energy and momentum reshuffled for massive ones (‘local, uncon-
strained’).

= 3 : energy fraction in c.m. frame of the showering partons (‘global, con-
strained’).

= 4 : energy fraction in c.m. frame of the showering partons assuming mass-
less daughters, with energy and momentum reshuffled for massive ones
(‘global, unconstrained’).

MSTJ(44) : (D=2) choice of αs scale for shower.
= 0 : fixed at PARU(111) value.
= 1 : running with Q2 = m2/4, m mass of decaying parton, Λ as stored in

PARJ(81) (natural choice for conventional showers).
= 2 : running with Q2 = z(1− z)m2, i.e. roughly p2

⊥ of branching, Λ as stored
in PARJ(81) (natural choice for coherent showers).

= 3 : while p2
⊥ is used as αs argument in q→ qg and g→ gg branchings, as in

=2, instead m2/4 is used as argument for g→ qq ones. The argument is
that the soft-gluon resummation results suggesting the p2

⊥ scale [Ama80]
in the former processes is not valid for the latter one, so that any multiple
of the mass of the branching parton is a perfectly valid alternative. The
m2/4 ones then gives continuity with p2

⊥ for z = 1/2. Furthermore, with
this choice, it is no longer necessary to have the requirement of a min-
imum p⊥ in branchings, else required in order to avoid having αs blow
up. Therefore, in this option, that cut has been removed for g → gg
branchings. Specifically, when combined with MSTJ(42)=4, it is possible

282

to reproduce the simple 1+cos2 θ angular distribution of g→ gg branch-
ings, which is not possible in any other approach. (However it may give
too high a charm and bottom production rate in showers [Nor01].)

= 4 : p2
⊥ as in =2, but scaled down by a factor (1 −m2

b/m
2
a)

2 for a branching
a → bg with b massive, in an attempt better to take into account the
mass effect on kinematics.

= 5 : as for =4 for q→ qg, unchanged for g→ gg and as =3 for g→ qq.
MSTJ(45) : (D=5) maximum flavour that can be produced in shower by g → qq; also

used to determine the maximum number of active flavours in the αs factor in
parton showers (here with a minimum of 3).

MSTJ(46) : (D=3) nonhomogeneous azimuthal distributions in a shower branching.
= 0 : azimuthal angle is chosen uniformly.
= 1 : nonhomogeneous azimuthal angle in gluon decays due to a kinematics-

dependent effective gluon polarization. Not meaningful for scalar model,
i.e. then same as =0.

= 2 : nonhomogeneous azimuthal angle in gluon decay due to interference with
nearest neighbour (in colour). Not meaningful for Abelian model, i.e.
then same as =0.

= 3 : nonhomogeneous azimuthal angle in gluon decay due to both polarization
(=1) and interference (=2). Not meaningful for Abelian model, i.e. then
same as =1. Not meaningful for scalar model, i.e. then same as =2.

MSTJ(47) : (D=3) matrix-element-motivated corrections to the gluon shower emission
rate in generic processes of the type a → bcg. Also, in the massless fermion
approximation, with an imagined vector source, to the lowest-order qqγ, `+`−γ
or `ν`γ matrix elements, i.e. more primitive than for QCD radiation.

= 0 : no corrections.
= 1 - 5 : yes; try to match to the most relevant matrix element and default back

to an assumed source (e.g. a vector for a qq pair) if the correct mother
particle cannot be found.

= 6 - : yes, match to the specific matrix element code NI = MSTJ(47) of the
PYMAEL function; see Table 25.

Warning : since a process may contain sequential decays involving several different
kinds of matrix elements, it may be dangerous to fix MSTJ(47) to a
specialized value > 5; see MSTJ(38) above.

MSTJ(48) : (D=0) possibility to impose maximum angle for the first branching in a
shower.

= 0 : no explicit maximum angle.
= 1 : maximum angle given by PARJ(85) for single showering parton, by

PARJ(85) and PARJ(86) for pair of showering partons.
MSTJ(49) : (D=0) possibility to change the branching probabilities according to some

alternative toy models (note that the Q2 evolution of αs may well be different in
these models, but that only the MSTJ(44) options are at your disposal).

= 0 : standard QCD branchings.
= 1 : branchings according to a scalar gluon theory, i.e. the splitting kernels

in the evolution equations are, with a common factor αs/(2π) omitted,
Pq→qg = (2/3)(1 − z), Pg→gg = PARJ(87), Pg→qq = PARJ(88) (for each
separate flavour). The couplings of the gluon have been left as free pa-
rameters, since they depend on the colour structure assumed. Note that,
since a spin 0 object decays isotropically, the gluon splitting kernels con-
tain no z dependence.

= 2 : branchings according to an Abelian vector gluon theory, i.e. the colour
factors are changed (compared with QCD) according to CF = 4/3 → 1,
NC = 3 → 0, TR = 1/2 → 3. Note that an Abelian model is not

283

expected to contain any coherence effects between gluons, so that one
should normally use MSTJ(42)=1 and MSTJ(46)= 0 or 1. Also, αs is
expected to increase with increasing Q2 scale, rather than decrease. No
such αs option is available; the one that comes closest is MSTJ(44)=0, i.e.
a fix value.

MSTJ(50) : (D=3) possibility to introduce colour coherence effects in the first branching
of a final state shower; mainly of relevance for QCD parton–parton scattering
processes.

= 0 : none.
= 1 : impose an azimuthal anisotropy.
= 2 : restrict the polar angle of a branching to be smaller than the scattering

angle of the relevant colour flow.
= 3 : both azimuthal anisotropy and restricted polar angles.
Note: for subsequent branchings the (polar) angular ordering is automatic

(MSTP(42)=2) and MSTJ(46)=3).

PARJ(80) : (D=0.5) ‘parity’ mixing parameter, α value for the PYMAEL routine, to be
used when MSTJ(38) is nonvanishing.

PARJ(81) : (D=0.29 GeV) Λ value in running αs for parton showers (see MSTJ(44)).
This is used in all user calls to PYSHOW, in the PYEEVT/PYONIA e+e− routines,
and in a resonance decay. It is not intended for other timelike showers, however,
for which PARP(72) is used.

PARJ(82) : (D=1.0 GeV) invariant mass cut-off mmin of parton showers, below which
partons are not assumed to radiate. For Q2 = p2

⊥ (MSTJ(44)=2) PARJ(82)/2
additionally gives the minimum p⊥ of a branching. To avoid infinite αs values,
one must have PARJ(82)> 2×PARJ(81) for MSTJ(44)≥ 1 (this is automatically
checked in the program, with 2.2×PARJ(81) as the lowest value attainable).

PARJ(83) : (D=1.0 GeV) invariant mass cut-off mmin used for photon emission in parton
showers, below which quarks are not assumed to radiate. The function of
PARJ(83) closely parallels that of PARJ(82) for QCD branchings, but there is
a priori no requirement that the two be equal. The cut-off for photon emission
off leptons is given by PARJ(90).

PARJ(84) : (D=1.) used for option MSTJ(41)=10 as a multiplicative factor in the prompt
photon emission rate in final state parton showers. Unphysical but useful
technical trick, so beware!

PARJ(85), PARJ(86) : (D=10.,10.) maximum opening angles allowed in the first
branching of parton showers; see MSTJ(48).

PARJ(87) : (D=0.) coupling of g→ gg in scalar gluon shower, see MSTJ(49)=1.
PARJ(88) : (D=0.) coupling of g → qq in scalar gluon shower (per quark species), see

MSTJ(49)=1.
PARJ(89) : (D=0. GeV) the width of the unstable particle studied for the MSTJ(40)>0

options; to be set by you (separately for each PYSHOW call, if need be).
PARJ(90) : (D=0.0001 GeV) invariant mass cut-off mmin used for photon emission in

parton showers, below which leptons are not assumed to radiate, cf. PARJ(83)
for radiation off quarks. By making this separation of cut-off values, photon
emission off leptons becomes more realistic, covering a larger part of the phase
space. The emission rate is still not well reproduced for lepton-photon invariant
masses smaller than roughly twice the lepton mass itself.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Purpose: to give access to status code and parameters which regulate the performance
of Pythia. Most parameters are described in section 9.3; here only those

284

related to PYSSPA and PYSHOW are described.
MSTP(22) : (D=0) special override of normal Q2 definition used for maximum of parton-

shower evolution. This option only affects processes 10 and 83 (Deeply Inelastic
Scattering) and only in lepton–hadron events.

= 0 : use the scale as given in MSTP(32).
= 1 : use the DIS Q2 scale, i.e. −t̂.
= 2 : use the DIS W 2 scale, i.e. (−t̂)(1− x)/x.

= 3 : use the DIS Q×W scale, i.e. (−t̂)
√

(1− x)/x.

= 4 : use the scale Q2(1−x) max(1, ln(1/x)), as motivated by first order matrix
elements [Ing80, Alt78].

Note: in all of these alternatives, a multiplicative factor is introduced by
PARP(67) and PARP(71), as usual.

MSTP(61) : (D=1) master switch for initial-state QCD and QED radiation.
= 0 : off.
= 1 : on.

MSTP(62) : (D=3) level of coherence imposed on the space-like parton-shower evolu-
tion.

= 1 : none, i.e. neither Q2 values nor angles need be ordered.
= 2 : Q2 values at branches are strictly ordered, increasing towards the hard

interaction.
= 3 : Q2 values and opening angles of emitted (on-mass-shell or time-like) par-

tons are both strictly ordered, increasing towards the hard interaction.
MSTP(63) : (D=2) structure of associated time-like showers, i.e. showers initiated by

emission off the incoming space-like partons.
= 0 : no associated showers are allowed, i.e. emitted partons are put on the

mass shell.
= 1 : a shower may evolve, with maximum allowed time-like virtuality set by

the phase space only.
= 2 : a shower may evolve, with maximum allowed time-like virtuality set by

phase space or by PARP(71) times the Q2 value of the space-like parton
created in the same vertex, whichever is the stronger constraint.

= 2 : a shower may evolve, with maximum allowed time-like virtuality set by
phase space, but further constrained to evolve within a cone with opening
angle (approximately) set by the opening angle of the branching where
the showering parton was produced.

MSTP(64) : (D=2) choice of αs and Q2 scale in space-like parton showers.
= 0 : αs is taken to be fix at the value PARU(111).
= 1 : first-order running αs with argument PARP(63)Q2.
= 2 : first-order running αs with argument PARP(64)k2

⊥ =PARP(64)(1− z)Q2.
MSTP(65) : (D=1) treatment of soft gluon emission in space-like parton-shower evolu-

tion.
= 0 : soft gluons are entirely neglected.
= 1 : soft gluon emission is resummed and included together with the hard

radiation as an effective z shift.
MSTP(66) : (D=5) choice of lower cut-off for initial-state QCD radiation in VMD or

anomalous photoproduction events, and matching to primordial k⊥.
= 0 : the lower Q2 cutoff is the standard one in PARP(62)2.
= 1 : for anomalous photons, the lower Q2 cut-off is the larger of PARP(62)2

and VINT(283) or VINT(284), where the latter is the virtuality scale for
the γ → qq vertex on the appropriate side of the event. The VINT values
are selected logarithmically even between PARP(15)2 and the Q2 scale of
the parton distributions of the hard process.

285

= 2 : extended option of the above, intended for virtual photons. For VMD
photons, the lower Q2 cut-off is the larger of PARP(62)2 and the P 2

int

scale of the SaS parton distributions. For anomalous photons, the lower
cut-off is chosen as for =1, but the VINT(283) and VINT(284) are here
selected logarithmically even between P 2

int and the Q2 scale of the parton
distributions of the hard process.

= 3 : the k⊥ of the anomalous/GVMD component is distributed like 1/k2
⊥ be-

tween k0 and p⊥min(W 2). Apart from the change of the upper limit, this
option works just like =1.

= 4 : a stronger damping at large k⊥, like dk2
⊥/(k

2
⊥ + Q2/4)2 with k0 < k⊥ <

p⊥min(W 2). Apart from this, it works like =1.
= 5 : a k⊥ generated as in =4 is added vectorially with a standard Gaussian

k⊥ generated like for VMD states. Ensures that GVMD has typical k⊥’s
above those of VMD, in spite of the large primordial k⊥’s implied by
hadronic physics. (Probably attributable to a lack of soft QCD radiation
in parton showers.)

MSTP(67) : (D=2) possibility to introduce colour coherence effects in the first branching
of the backwards evolution of an initial state shower; mainly of relevance for
QCD parton–parton scattering processes.

= 0 : none.
= 2 : restrict the polar angle of a branching to be smaller than the scattering

angle of the relevant colour flow.
Note 1: azimuthal anisotropies have not yet been included.
Note 2: for subsequent branchings, MSTP(62)=3 is used to restrict the (polar)

angular range of branchings.
MSTP(68) : (D=1) choice of maximum virtuality scale and matrix-element matching

scheme for initial-state radiation.
= 0 : maximum shower virtuality is the same as the Q2 choice for the parton

distributions, see MSTP(32). (Except that the multiplicative extra factor
PARP(34) is absent and instead PARP(67) can be used for this purpose.)
No matrix-element correction.

= 1 : as =0 for most processes, but new scheme for processes 1, 2, 141, 142,
144 and 102, i.e. single s-channel colourless gauge boson and Higgs pro-
duction: γ∗/Z0, W±, Z′0, W′±, R and h0. Here the maximum scale of
shower evolution is s, the total squared energy. The nearest branching
on either side of the hard scattering is corrected by the ratio of the first-
order matrix-element weight to the parton-shower one, so as to obtain an
improved description. For gauge boson production, this branching can
be of the types q → q + g, f → f + γ, g → q + q or γ → f + f, while for
Higgs production it is g → g + g. See section 10.3.5 for a detailed de-
scription. Note that the improvements apply both for incoming hadron
and lepton beams.

= 2 : the maximum scale for initial-state shower evolution is always selected to
be s, except for the 2→ 2 QCD processes 11, 12, 13, 28, 53 and 68. The
QCD exception is to avoid the double-counting issues that could easily
arise here. Based on the experience in [Miu99], there is reason to assume
that this does give an improved qualitative description of the high-p⊥ tail,
although the quantitative agreement is currently beyond our control. No
matrix-element corrections, even for the processes in =1.

= -1 : as =0, except that there is no requirement on û being negative.
MSTP(69) : (D=0) possibility to change Q2 scale for parton distributions from the

MSTP(32) choice, especially for e+e−.
= 0 : use MSTP(32) scale.

286

= 1 : in lepton-lepton collisions, the QED lepton-inside-lepton parton distri-
butions are evaluated with s, the full squared c.m. energy, as scale.

= 2 : s is used as parton distribution scale also in other processes.
MSTP(71) : (D=1) master switch for final-state QCD and QED radiation.

= 0 : off.
= 1 : on.

PARP(61) : (D=0.25 GeV) Λ value used in space-like parton shower (see MSTP(64)).
This value may be overwritten, see MSTP(3).

PARP(62) : (D=1. GeV) effective cut-off Q or k⊥ value (see MSTP(64)), below which
space-like parton showers are not evolved.

PARP(63) : (D=0.25) in space-like shower evolution the virtuality Q2 of a parton is
multiplied by PARP(63) for use as a scale in αs and parton distributions when
MSTP(64)=1.

PARP(64) : (D=1.) in space-like parton-shower evolution the squared transverse mo-
mentum evolution scale k2

⊥ is multiplied by PARP(64) for use as a scale in αs

and parton distributions when MSTP(64)=2.
PARP(65) : (D=2. GeV) effective minimum energy (in c.m. frame) of time-like or on-shell

parton emitted in space-like shower; see also PARP(66). For a hard subprocess
moving in the rest frame of the hard process, this number is reduced roughly
by a factor 1/γ for the boost to the hard scattering rest frame.

PARP(66) : (D=0.001) effective lower cut-off on 1− z in space-like showers, in addition
to the cut implied by PARP(65).

PARP(67) : (D=1.) the Q2 scale of the hard scattering (see MSTP(32)) is multiplied
by PARP(67) to define the maximum parton virtuality allowed in space-like
showers. This does not apply to s-channel resonances, where the maximum
virtuality is set by m2. The current default is based on arguments from a
matching of scales in heavy-flavour production [Nor98], and other values such
as 4 (the previous default) could be imagined from other arguments or in other
processes.

PARP(68) : (D=0.001 GeV) lower Q cut-off for QED space-like showers. Comes in ad-
dition to a hardcoded cut that the Q2 is at least 2m2

e, 2m2
µ or 2m2

τ , as the case
may be.

PARP(71) : (D=4.) the Q2 scale of the hard scattering (see MSTP(32)) is multiplied
by PARP(71) to define the maximum parton virtuality allowed in time-like
showers. This does not apply to s-channel resonances, where the maximum
virtuality is set by m2. Like for PARP(67) this number is uncertain.

PARP(72) : (D=0.25 GeV) Λ value used in running αs for timelike parton showers, except
for showers in the decay of a resonance. (Resonance decay, e.g. γ∗/Z0 decay,
is instead set by PARJ(81).)

287

11 Beam Remnants and Underlying Events

Each incoming beam particle may leave behind a beam remnant, which does not take part
in the initial-state radiation or hard scattering process. If nothing else, the remnants need
be reconstructed and connected to the rest of the event. In hadron–hadron collisions, the
composite nature of the two incoming beam particles implies the additional possibility
that several parton pairs undergo separate hard or semi-hard scatterings, ‘multiple inter-
actions’. This may give a non-negligible contribution to the ‘underlying event’ structure,
and thus to the total multiplicity. Finally, in high-luminosity colliders, it is possible to
have several collisions between beam particles in one and the same beam crossing, i.e.
pile-up events, which further act to build up the general particle production activity that
is to be observed by detectors. These three aspects are described in turn, with emphasis
on the middle one, that of multiple interactions within a single hadron–hadron collision.

The main reference on the multiple interactions model is [Sjö87a].

11.1 Beam Remnants

The initial-state radiation algorithm reconstructs one shower initiator in each beam. (If
initial-state radiation is not included, the initiator is nothing but the incoming parton
to the hard interaction.) Together the two initiators delineate an interaction subsystem,
which contains all the partons that participate in the initial-state showers, in the hard
interaction, and in the final-state showers. Left behind are two beam remnants which,
to first approximation, just sail through, unaffected by the hard process. (The issue of
additional interactions is covered in the next section.)

A description of the beam remnant structure contains a few components. First, given
the flavour content of a (colour-singlet) beam particle, and the flavour and colour of the
initiator parton, it is possible to reconstruct the flavour and colour of the beam remnant.
Sometimes the remnant may be represented by just a single parton or diquark, but often
the remnant has to be subdivided into two separate objects. In the latter case it is
necessary to share the remnant energy and momentum between the two. Due to Fermi
motion inside hadron beams, the initiator parton may have a ‘primordial k⊥’ transverse
momentum motion, which has to be compensated by the beam remnant. If the remnant
is subdivided, there may also be a relative transverse momentum. In the end, total energy
and momentum has to be conserved. To first approximation, this is ensured within each
remnant separately, but some final global adjustments are necessary to compensate for
the primordial k⊥ and any effective beam remnant mass.

Consider first a proton (or, with trivial modifications, any other baryon or antibaryon).
• If the initiator parton is a u or d quark, it is assumed to be a valence quark, and

therefore leaves behind a diquark beam remnant, i.e. either a ud or a uu diquark,
in a colour antitriplet state. Relative probabilities for different diquark spins are
derived within the context of the non-relativistic SU(6) model, i.e. flavour SU(3)
times spin SU(2). Thus a ud is 3/4 ud0 and 1/4 ud1, while a uu is always uu1.
• An initiator gluon leaves behind a colour octet uud state, which is subdivided into a

colour triplet quark and a colour antitriplet diquark. SU(6) gives the appropriate
subdivision, 1/2 of the time into u + ud0, 1/6 into u + ud1 and 1/3 into d + uu1.
• A sea quark initiator, such as an s, leaves behind a uuds four-quark state. The PDG

flavour coding scheme and the fragmentation routines do not foresee such a state, so
therefore it is subdivided into a meson plus a diquark, i.e. 1/2 into us+ud0, 1/6 into
us + ud1 and 1/3 into ds + uu1. Once the flavours of the meson are determined, the
choice of meson multiplet is performed as in the standard fragmentation description.
• Finally, an antiquark initiator, such as an s, leaves behind a uuds four-quark state,

which is subdivided into a baryon plus a quark. Since, to first approximation, the
ss pair comes from the branching g → ss of a colour octet gluon, the subdivision

288

uud + s is not allowed, since it would correspond to a colour-singlet ss. Therefore
the subdivision is 1/2 into ud0s + u, 1/6 into ud1s + u and 1/3 into uu1s + d. A
baryon is formed among the ones possible for the given flavour content and diquark
spin, according to the relative probabilities used in the fragmentation. One could
argue for an additional weighting to count the number of baryon states available for
a given diquark plus quark combination, but this has not been included.

One may note that any u or d quark taken out of the proton is automatically assumed
to be a valence quark. Clearly this is unrealistic, but not quite as bad as it might seem.
In particular, one should remember that the beam remnant scenario is applied to the
initial-state shower initiators at a scale of Q0 ≈ 1 GeV and at an x value usually much
larger than the x at the hard scattering. The sea quark contribution therefore normally
is negligible.

For a meson beam remnant, the rules are in the same spirit, but somewhat easier, since
no diquark or baryons need be taken into account. Thus a valence quark (antiquark)
initiator leaves behind a valence antiquark (quark), a gluon initiator leaves behind a
valence quark plus a valence antiquark, and a sea quark (antiquark) leaves behind a
meson (which contains the partner to the sea parton) plus a valence antiquark (quark).

A resolved photon is similar in spirit to a meson. A VMD photon is associated with
either ρ0, ω, φ or J/ψ, and so corresponds to a well-defined valence flavour content. Since
the ρ0 and ω are supposed to add coherently, the uu : dd mixing is in the ratio 4 : 1.
Similarly a GVMD state is characterized by its qq classification, in rates according to e2

q

times a mass suppression for heavier quarks.
In the older photon physics options, where a quark content inside an electron is ob-

tained by a numerical convolution, one does not have to make the distinction between
valence and sea flavour. Thus any quark (antiquark) initiator leaves behind the matching
antiquark (quark), and a gluon leaves behind a quark + antiquark pair. The relative
quark flavour composition in the latter case is assumed proportional to e2

q among light

flavours, i.e. 2/3 into u + u, 1/6 into d + d, and 1/6 into s + s. If one wanted to, one could
also have chosen to represent the remnant by a single gluon.

If no initial-state radiation is assumed, an electron (or, in general, a lepton or a
neutrino) leaves behind no beam remnant. Also when radiation is included, one would
expect to recover a single electron with the full beam energy when the shower initiator is
reconstructed. This does not have to happen, e.g. if the initial-state shower is cut off at
a non-vanishing scale, such that some of the emission at low Q2 values is not simulated.
Further, for purely technical reasons, the distribution of an electron inside an electron,
f e

e (x,Q2), is cut off at x = 1−10−10. This means that always, when initial-state radiation
is included, a fraction of at least 10−10 of the beam energy has to be put into one single
photon along the beam direction, to represent this not simulated radiation. The physics
is here slightly different from the standard beam remnant concept, but it is handled with
the same machinery. Beam remnants can also appear when the electron is resolved with
the use of parton distributions, but initial-state radiation is switched off. Conceptually,
this is a contradiction, since it is the initial-state radiation that builds up the parton
distributions, but sometimes the combination is still useful. Finally, since QED radiation
has not yet been included in events with resolved photons inside electrons, also in this
case effective beam remnants have to be assigned by the program.

The beam remnant assignments inside an electron, in either of the cases above, is as
follows.
• An e− initiator leaves behind a γ remnant.
• A γ initiator leaves behind an e− remnant.
• An e+ initiator leaves behind an e− + e− remnant.
• A q (q) initiator leaves behind a q + e− (q + e−) remnant.
• A g initiator leaves behind a g + e− remnant. One could argue that, in agreement

289

with the treatment of photon beams above, the remnant should be q + q + e−. The
program currently does not allow for three beam remnant objects, however.

It is customary to assign a primordial transverse momentum to the shower initiator,
to take into account the motion of quarks inside the original hadron, basically as required
by the uncertainty principle. A number of the order of 〈k⊥〉 ≈ mp/3 ≈ 300 MeV could
therefore be expected. However, in hadronic collisions much higher numbers than that are
often required to describe data, typically of the order of or even above 1 GeV [EMC87,
Bál01] if a Gaussian parameterization is used. (This number is now the default.) Thus, an
interpretation as a purely nonperturbative motion inside a hadron is difficult to maintain.

Instead a likely culprit is the initial-state shower algorithm. This is set up to cover the
region of hard emissions, but may miss out on some of the softer activity, which inherently
borders on nonperturbative physics. By default, the shower does not evolve down to scales
below Q0 = 1 GeV. Any shortfall in shower activity around or below this cutoff then has
to be compensated by the primordial k⊥ source, which thereby largely loses its original
meaning. One specific reason for such a shortfall is that the current initial-state shower
algorithm does not include non-order emissions in Q2, as is predicted to occur especially
at small x and Q2 within the BFKL/CCFM framework [Lip76, Cia87].

By the hard scattering and initial-state radiation machinery, the shower initiator has
been assigned some fraction x of the four-momentum of the beam particle, leaving behind
1− x to the remnant. If the remnant consists of two objects, this energy and momentum
has to be shared, somehow. For an electron in the old photoproduction machinery, the
sharing is given from first principles: if, e.g., the initiator is a q, then that q was produced
in the sequence of branchings e → γ → q, where xγ is distributed according to the
convolution in eq. (54). Therefore the q remnant takes a fraction χ = (xγ − x)/(1− x) of
the total remnant energy, and the e takes 1− χ.

For the other beam remnants, the relative energy-sharing variable χ is not known from
first principles, but picked according to some suitable parameterization. Normally several
different options are available, that can be set separately for baryon and meson beams,
and for hadron + quark and quark + diquark (or antiquark) remnants. In one extreme
are shapes in agreement with näıve counting rules, i.e. where energy is shared evenly
between ‘valence’ partons. For instance, P(χ) = 2 (1 − χ) for the energy fraction taken
by the q in a q + qq remnant. In the other extreme, an uneven distribution could be
used, like in parton distributions, where the quark only takes a small fraction and most
is retained by the diquark. The default for a q + qq remnant is of an intermediate type,

P(χ) ∝ (1− χ)3

4

√
χ2 + c2

min

, (185)

with cmin = 2〈mq〉/Ecm = (0.6 GeV)/Ecm providing a lower cut-off. The default when a
hadron is split off to leave a quark or diquark remnant is to use the standard Lund sym-
metric fragmentation function. In general, the more uneven the sharing of the energy, the
less the total multiplicity in the beam remnant fragmentation. If no multiple interactions
are allowed, a rather even sharing is needed to come close to the experimental multiplicity
(and yet one does not quite make it). With an uneven sharing there is room to generate
more of the total multiplicity by multiple interactions [Sjö87a].

In a photon beam, with a remnant q + q, the χ variable is chosen the same way it
would have been in a corresponding meson remnant.

Before the χ variable is used to assign remnant momenta, it is also necessary to
consider the issue of primordial k⊥. The initiator partons are thus assigned each a k⊥
value, vanishing for an electron or photon inside an electron, distributed either according
to a Gaussian or an exponential shape for a hadron, and according to either of these
shapes or a power-like shape for a quark or gluon inside a photon (which may in its turn
be inside an electron). The interaction subsystem is boosted and rotated to bring it from

290

the frame assumed so far, with each initiator along the ±z axis, to one where the initiators
have the required primordial k⊥ values.

The p⊥ recoil is taken by the remnant. If the remnant is composite, the recoil is
evenly split between the two. In addition, however, the two beam remnants may be
given a relative p⊥, which is then always chosen as for qiqi pairs in the fragmentation
description.

The χ variable is interpreted as a sharing of light-cone energy and momentum, i.e.
E + pz for the beam moving in the +z direction and E − pz for the other one. When the
two transverse masses m⊥1 and m⊥2 of a composite remnant have been constructed, the
total transverse mass can therefore be found as

m2
⊥ =

m2
⊥1

χ
+

m2
⊥2

1− χ , (186)

if remnant 1 is the one that takes the fraction χ. The choice of a light-cone interpretation
to χ means the definition is invariant under longitudinal boosts, and therefore does not
depend on the beam energy itself. A χ value close to the näıve borders 0 or 1 can lead
to an unreasonably large remnant m⊥. Therefore an additional check is introduced, that
the remnant m⊥ be smaller than the näıve c.m. frame remnant energy, (1 − x)Ecm/2. If
this is not the case, a new χ and a new relative transverse momentum is selected.

Whether there is one remnant parton or two, the transverse mass of the remnant is
not likely to agree with 1−x times the mass of the beam particle, i.e. it is not going to be
possible to preserve the energy and momentum in each remnant separately. One therefore
allows a shuffling of energy and momentum between the beam remnants from each of the
two incoming beams. This may be achieved by performing a (small) longitudinal boost of
each remnant system. Since there are two boost degrees of freedom, one for each remnant,
and two constraints, one for energy and one for longitudinal momentum, a solution may
be found.

Under some circumstances, one beam remnant may be absent or of very low energy,
while the other one is more complicated. One example is Deeply Inelastic Scattering in ep
collisions, where the electron leaves no remnant, or maybe only a low-energy photon. It is
clearly then not possible to balance the two beam remnants against each other. Therefore,
if one beam remnant has an energy below 0.2 of the beam energy, i.e. if the initiator parton
has x > 0.8, then the two boosts needed to ensure energy and momentum conservation
are instead performed on the other remnant and on the interaction subsystem. If there is
a low-energy remnant at all then, before that, energy and momentum are assigned to the
remnant constituent(s) so that the appropriate light-cone combination E±pz is conserved,
but not energy or momentum separately. If both beam remnants have low energy, but
both still exist, then the one with lower m⊥/E is the one that will not be boosted.

11.2 Multiple Interactions

In this section we present the model [Sjö87a] used in Pythia to describe the possibility
that several parton pairs undergo hard interactions in a hadron–hadron collision, and
thereby contribute to the overall event activity, in particular at low p⊥. The same model
is also used to describe the VMD γp events, where the photon interacts like a hadron. It
should from the onset be made clear that this is not an easy topic. In fact, in the full
event generation process, probably no other area is as poorly understood as this one. The
whole concept of multiple interactions has been very controversial, with contradictory
experimental conclusions [AFS87], but a recent CDF study [CDF97] has now started to
bring more general acceptance.

The multiple interactions scenario presented here [Sjö87a] was the first detailed model
for this kind of physics, and is still one of the very few available. We will present two
related but separate scenarios, one ‘simple’ model and one somewhat more sophisticated.

291

In fact, neither of them are all that simple, which may make the models look unattractive.
However, the world of hadron physics is complicated, and if we err, it is most likely in
being too unsophisticated. The experience gained with the model(s), in failures as well
as successes, could be used as a guideline in the evolution of yet more detailed models.

Our basic philosophy will be as follows. The total rate of parton–parton interactions,
as a function of the transverse momentum scale p⊥, is assumed to be given by pertur-
bative QCD. This is certainly true for reasonably large p⊥ values, but here we shall also
extend the perturbative parton–parton scattering framework into the low-p⊥ region. A
regularization of the divergence in the cross section for p⊥ → 0 has to be introduced,
however, which will provide us with the main free parameter of the model. Since each
incoming hadron is a composite object, consisting of many partons, there should exist
the possibility of several parton pairs interacting when two hadrons collide. It is not
unreasonable to assume that the different pairwise interactions take place essentially in-
dependently of each other, and that therefore the number of interactions in an event is
given by a Poissonian distribution. This is the strategy of the ‘simple’ scenario.

Furthermore, hadrons are not only composite but also extended objects, meaning that
collisions range from very central to rather peripheral ones. Reasonably, the average num-
ber of interactions should be larger in the former than in the latter case. Whereas the
assumption of a Poissonian distribution should hold for each impact parameter separately,
the distribution in number of interactions should be widened by the spread of impact pa-
rameters. The amount of widening depends on the assumed matter distribution inside the
colliding hadrons. In the ‘complex’ scenario, different matter distributions are therefore
introduced.

11.2.1 The basic cross sections

The QCD cross section for hard 2 → 2 processes, as a function of the p2
⊥ scale, is given

by
dσ

dp2
⊥

=
∑

i,j,k

∫
dx1

∫
dx2

∫
dt̂ fi(x1, Q

2) fj(x2, Q
2)

dσ̂kij
dt̂

δ

(
p2
⊥ −

t̂û

ŝ

)
, (187)

cf. section 7.2. Implicitly, from now on we are assuming that the ‘hardness’ of processes
is given by the p⊥ scale of the scattering. For an application of the formula above to small
p⊥ values, a number of caveats could be made. At low p⊥, the integrals receive major
contributions from the small-x region, where parton distributions are poorly understood
theoretically (Regge limit behaviour, dense packing problems etc. [Lev90]) and not yet
measured. Different sets of parton distributions can therefore give numerically rather
different results for the phenomenology of interest. One may also worry about higher-
order corrections to the jet rates, K factors, beyond what is given by parton-shower
corrections — one simple option we allow here is to evaluate αs of the hard scattering
process at an optimized scale, such as αs(0.075p2

⊥) [Ell86].
The hard scattering cross section above some given p⊥min is given by

σhard(p⊥min) =
∫ s/4

p2
⊥min

dσ

dp2
⊥

dp2
⊥ . (188)

Since the differential cross section diverges roughly like dp2
⊥/p

4
⊥, σhard is also divergent for

p⊥min → 0. We may compare this with the total inelastic, non-diffractive cross section
σnd(s) — elastic and diffractive events are not the topic of this section. At current collider
energies σhard(p⊥min) becomes comparable with σnd for p⊥min ≈ 1.5–2 GeV. This need
not lead to contradictions: σhard does not give the hadron–hadron cross section but the
parton–parton one. Each of the incoming hadrons may be viewed as a beam of partons,
with the possibility of having several parton–parton interactions when the hadrons pass

292

through each other. In this language, σhard(p⊥min)/σnd(s) is simply the average number
of parton–parton scatterings above p⊥min in an event, and this number may well be larger
than unity.

While the introduction of several interactions per event is the natural consequence of
allowing small p⊥min values and hence large σhard ones, it is not the solution of σhard(p⊥min)
being divergent for p⊥min → 0: the average ŝ of a scattering decreases slower with p⊥min

than the number of interactions increases, so näıvely the total amount of scattered partonic
energy becomes infinite. One cut-off is therefore obtained via the need to introduce proper
multi-parton correlated parton distributions inside a hadron. This is not a part of the
standard perturbative QCD formalism and is therefore not built into eq. (188). In practice,
even correlated parton-distribution functions seems to provide too weak a cut, i.e. one is
lead to a picture with too little of the incoming energy remaining in the small-angle beam
jet region [Sjö87a].

A more credible reason for an effective cut-off is that the incoming hadrons are colour
neutral objects. Therefore, when the p⊥ of an exchanged gluon is made small and the
transverse wavelength correspondingly large, the gluon can no longer resolve the indi-
vidual colour charges, and the effective coupling is decreased. This mechanism is not in
contradiction to perturbative QCD calculations, which are always performed assuming
scattering of free partons (rather than partons inside hadrons), but neither does present
knowledge of QCD provide an understanding of how such a decoupling mechanism would
work in detail. In the simple model one makes use of a sharp cut-off at some scale p⊥min,
while a more smooth dampening is assumed for the complex scenario.

One key question is the energy-dependence of p⊥min; this may be relevant e.g. for com-
parisons of jet rates at different Tevatron energies, and even more for any extrapolation to
LHC energies. The problem actually is more pressing now than at the time of the original
study [Sjö87a], since nowadays parton distributions are known to be rising more steeply
at small x than the flat xf(x) behaviour normally assumed for small Q2 before HERA.
This translates into a more dramatic energy dependence of the multiple-interactions rate
for a fixed p⊥min.

The larger number of partons should also increase the amount of screening, however, as
confirmed by toy simulations [Dis01]. As a simple first approximation, p⊥min is assumed to
increase in the same way as the total cross section, i.e. with some power ε ≈ 0.08 [Don92]
that, via reggeon phenomenology, should relate to the behaviour of parton distributions
at small x and Q2. Thus the default in Pythia is

p⊥min(s) = (1.9 GeV)
(

s

1 TeV2

)0.08

(189)

for the simple model, with the same ansatz for p⊥0 in the impact-parameter-dependent
approach, except that then 1.9 GeV→ 2.1 GeV. At any energy scale, the simplest criterion
to fix p⊥min is to require the average charged multiplicity to agree with the experimentally
determined one. In general, there is quite a strong dependence of the multiplicity on
p⊥min, with a lower p⊥min corresponding to more multiple interactions and therefore a
higher multiplicity. This is the way the 1.9 GeV and 2.1 GeV numbers are fixed, based
on a comparison with UA5 data in the energy range 200–900 GeV [UA584]. The energy
dependence inside this range is also consistent with the chosen ansatz. However, clearly,
neither the experimental nor the theoretical precision is high enough to make too strong
statements. It should also be remembered that the p⊥min values are determined within the
context of a given calculation of the QCD jet cross section, and given model parameters
within the multiple interactions scenario. If anything of this is changed, e.g. the parton
distributions used, then p⊥min ought to be retuned accordingly.

293

11.2.2 The simple model

In an event with several interactions, it is convenient to impose an ordering. The logical
choice is to arrange the scatterings in falling sequence of x⊥ = 2p⊥/Ecm. The ‘first’ scat-
tering is thus the hardest one, with the ‘subsequent’ (‘second’, ‘third’, etc.) successively
softer. It is important to remember that this terminology is in no way related to any
picture in physical time; we do not know anything about the latter. In principle, all the
scatterings that occur in an event must be correlated somehow, näıvely by momentum
and flavour conservation for the partons from each incoming hadron, less näıvely by var-
ious quantum mechanical effects. When averaging over all configurations of soft partons,
however, one should effectively obtain the standard QCD phenomenology for a hard scat-
tering, e.g. in terms of parton distributions. Correlation effects, known or estimated, can
be introduced in the choice of subsequent scatterings, given that the ‘preceding’ (harder)
ones are already known.

With a total cross section of hard interactions σhard(p⊥min) to be distributed among
σnd(s) (non-diffractive, inelastic) events, the average number of interactions per event is
just the ratio n = σhard(p⊥min)/σnd(s). As a starting point we will assume that all hadron
collisions are equivalent (no impact parameter dependence), and that the different parton–
parton interactions take place completely independently of each other. The number of
scatterings per event is then distributed according to a Poissonian with mean n. A fit
to SppS collider multiplicity data [UA584] gave p⊥min ≈ 1.6 GeV, which corresponds to
n ≈ 1. For Monte Carlo generation of these interactions it is useful to define

f(x⊥) =
1

σnd(s)

dσ

dx⊥
, (190)

with dσ/dx⊥ obtained by analogy with eq. (187). Then f(x⊥) is simply the probability
to have a parton–parton interaction at x⊥, given that the two hadrons undergo a non-
diffractive, inelastic collision.

The probability that the hardest interaction, i.e. the one with highest x⊥, is at x⊥1, is
now given by

f(x⊥1) exp
{
−
∫ 1

x⊥1

f(x′⊥) dx′⊥

}
, (191)

i.e. the näıve probability to have a scattering at x⊥1 multiplied by the probability that
there was no scattering with x⊥ larger than x⊥1. This is the familiar exponential damp-
ening in radioactive decays, encountered e.g. in parton showers in section 10.1.2. Using
the same technique as in the proof of the veto algorithm, section 4.2, the probability to
have an i:th scattering at an x⊥i < x⊥i−1 < · · · < x⊥1 < 1 is found to be

f(x⊥i)
1

(i− 1)!

(∫ 1

x⊥i
f(x′⊥) dx′⊥

)i−1

exp
{
−
∫ 1

x⊥i
f(x′⊥) dx′⊥

}
. (192)

The total probability to have a scattering at a given x⊥, irrespectively of it being the
first, the second or whatever, obviously adds up to give back f(x⊥). The multiple inter-
action formalism thus retains the correct perturbative QCD expression for the scattering
probability at any given x⊥.

With the help of the integral

F (x⊥) =
∫ 1

x⊥
f(x′⊥) dx′⊥ =

1

σnd(s)

∫ s/4

sx2
⊥/4

dσ

dp2
⊥

dp2
⊥ (193)

(where we assume F (x⊥) → ∞ for x⊥ → 0) and its inverse F−1, the iterative procedure
to generate a chain of scatterings 1 > x⊥1 > x⊥2 > · · · > x⊥i is given by

x⊥i = F−1(F (x⊥i−1)− lnRi) . (194)

294

Here the Ri are random numbers evenly distributed between 0 and 1. The iterative
chain is started with a fictitious x⊥0 = 1 and is terminated when x⊥i is smaller than
x⊥min = 2p⊥min/Ecm. Since F and F−1 are not known analytically, the standard veto
algorithm is used to generate a much denser set of x⊥ values, whereof only some are
retained in the end. In addition to the p2

⊥ of an interaction, it is also necessary to generate
the other flavour and kinematics variables according to the relevant matrix elements.

Whereas the ordinary parton distributions should be used for the hardest scattering,
in order to reproduce standard QCD phenomenology, the parton distributions to be used
for subsequent scatterings must depend on all preceding x values and flavours chosen. We
do not know enough about the hadron wave function to write down such joint probability
distributions. To take into account the energy ‘already’ used in harder scatterings, a con-
servative approach is to evaluate the parton distributions, not at xi for the i:th scattered
parton from hadron, but at the rescaled value

x′i =
xi∑i−1
j=1 xj

. (195)

This is our standard procedure in the program; we have tried a few alternatives without
finding any significantly different behaviour in the final physics.

In a fraction exp(−F (x⊥min)) of the events studied, there will be no hard scattering
above x⊥min when the iterative procedure in eq. (194) is applied. It is therefore also
necessary to have a model for what happens in events with no (semi)hard interactions.
The simplest possible way to produce an event is to have an exchange of a very soft
gluon between the two colliding hadrons. Without (initially) affecting the momentum
distribution of partons, the ‘hadrons’ become colour octet objects rather than colour
singlet ones. If only valence quarks are considered, the colour octet state of a baryon can
be decomposed into a colour triplet quark and an antitriplet diquark. In a baryon-baryon
collision, one would then obtain a two-string picture, with each string stretched from the
quark of one baryon to the diquark of the other. A baryon-antibaryon collision would give
one string between a quark and an antiquark and another one between a diquark and an
antidiquark.

In a hard interaction, the number of possible string drawings are many more, and the
overall situation can become quite complex when several hard scatterings are present in
an event. Specifically, the string drawing now depends on the relative colour arrangement,
in each hadron individually, of the partons that are about to scatter. This is a subject
about which nothing is known. To make matters worse, the standard string fragmentation
description would have to be extended, to handle events where two or more valence quarks
have been kicked out of an incoming hadron by separate interactions. In particular, the
position of the baryon number would be unclear. We therefore here assume that, following
the hardest interaction, all subsequent interactions belong to one of three classes.
• Scatterings of the gg→ gg type, with the two gluons in a colour-singlet state, such

that a double string is stretched directly between the two outgoing gluons, decoupled
from the rest of the system.
• Scatterings gg → gg, but colour correlations assumed to be such that each of the

gluons is connected to one of the strings ‘already’ present. Among the different pos-
sibilities of connecting the colours of the gluons, the one which minimizes the total
increase in string length is chosen. This is in contrast to the previous alternative,
which roughly corresponds to a maximization (within reason) of the extra string
length.
• Scatterings gg→ qq, with the final pair again in a colour-singlet state, such that a

single string is stretched between the outgoing q and q.
By default, the three possibilities are assumed equally probable. Note that the total jet
rate is maintained at its nominal value, i.e. scatterings such as qg → qg are included in

295

the cross section, but are replaced by a mixture of gg and qq events for string drawing
issues. Only the hardest interaction is guaranteed to give strings coupled to the beam
remnants. One should not take this approach to colour flow too seriously — clearly it
is a simplification — but the overall picture does not tend to be very dependent on the
particular choice you make.

Since a gg → gg or qq scattering need not remain of this character if initial- and
final-state showers were to be included (e.g. it could turn into a qg-initiated process),
radiation is only included for the hardest interaction. In practice, this is not a serious
problem: except for the hardest interaction, which can be hard because of experimental
trigger conditions, it is unlikely for a parton scattering to be so hard that radiation plays
a significant rôle.

In events with multiple interactions, the beam remnant treatment is slightly modified.
First the hard scattering is generated, with its associated initial- and final-state radia-
tion, and next any additional multiple interactions. Only thereafter are beam remnants
attached to the initiator partons of the hardest scattering, using the same machinery
as before, except that the energy and momentum already taken away from the beam
remnants also include that of the subsequent interactions.

11.2.3 A model with varying impact parameters

Up to this point, it has been assumed that the initial state is the same for all hadron col-
lisions, whereas in fact each collision also is characterized by a varying impact parameter
b. Within the classical framework of the model reviewed here, b is to be thought of as a
distance of closest approach, not as the Fourier transform of the momentum transfer. A
small b value corresponds to a large overlap between the two colliding hadrons, and hence
an enhanced probability for multiple interactions. A large b, on the other hand, corre-
sponds to a grazing collision, with a large probability that no parton–parton interactions
at all take place.

In order to quantify the concept of hadronic matter overlap, one may assume a spheri-
cally symmetric distribution of matter inside the hadron, ρ(x) d3x = ρ(r) d3x. For simplic-
ity, the same spatial distribution is taken to apply for all parton species and momenta.
Several different matter distributions have been tried, and are available. We will here
concentrate on the most extreme one, a double Gaussian

ρ(r) ∝ 1− β
a3

1

exp

{
−r

2

a2
1

}
+
β

a3
2

exp

{
−r

2

a2
2

}
. (196)

This corresponds to a distribution with a small core region, of radius a2 and containing a
fraction β of the total hadronic matter, embedded in a larger hadron of radius a1. While
it is mathematically convenient to have the origin of the two Gaussians coinciding, the
physics could well correspond to having three disjoint core regions, reflecting the presence
of three valence quarks, together carrying the fraction β of the proton momentum. One
could alternatively imagine a hard hadronic core surrounded by a pion cloud. Such details
would affect e.g. the predictions for the t distribution in elastic scattering, but are not of
any consequence for the current topics. To be specific, the values β = 0.5 and a2/a1 = 0.2
have been picked as default values. It should be noted that the overall distance scale
a1 never enters in the subsequent calculations, since the inelastic, non-diffractive cross
section σnd(s) is taken from literature rather than calculated from the ρ(r).

Compared to other shapes, like a simple Gaussian, the double Gaussian tends to give
larger fluctuations, e.g. in the multiplicity distribution of minimum bias events: a collision
in which the two cores overlap tends to have a strongly increased activity, while ones where
they do not are rather less active. One also has a biasing effect: hard processes are more
likely when the cores overlap, thus hard scatterings are associated with an enhanced

296

multiple interaction rate. This provides one possible explanation for the experimental
‘pedestal effect’.

For a collision with impact parameter b, the time-integrated overlap O(b) between the
matter distributions of the colliding hadrons is given by

O(b) ∝
∫

dt
∫

d3x ρ(x, y, z) ρ(x+ b, y, z + t)

∝ (1− β)2

2a2
1

exp

{
− b2

2a2
1

}
+

2β(1− β)

a2
1 + a2

2

exp

{
− b2

a2
1 + a2

2

}
+

β2

2a2
2

exp

{
− b2

2a2
2

}
.(197)

The necessity to use boosted ρ(x) distributions has been circumvented by a suitable scale
transformation of the z and t coordinates.

The overlapO(b) is obviously strongly related to the eikonal Ω(b) of optical models. We
have kept a separate notation, since the physics context of the two is slightly different: Ω(b)
is based on the quantum mechanical scattering of waves in a potential, and is normally
used to describe the elastic scattering of a hadron-as-a-whole, while O(b) comes from a
purely classical picture of point-like partons distributed inside the two colliding hadrons.
Furthermore, the normalization and energy dependence is differently realized in the two
formalisms.

The larger the overlapO(b) is, the more likely it is to have interactions between partons
in the two colliding hadrons. In fact, there should be a linear relationship

〈ñ(b)〉 = kO(b) , (198)

where ñ = 0, 1, 2, . . . counts the number of interactions when two hadrons pass each
other with an impact parameter b. The constant of proportionality, k, is related to the
parton–parton cross section and hence increases with c.m. energy.

For each given impact parameter, the number of interactions is assumed to be dis-
tributed according to a Poissonian. If the matter distribution has a tail to infinity (as the
double Gaussian does), events may be obtained with arbitrarily large b values. In order
to obtain finite total cross sections, it is necessary to assume that each event contains
at least one semi-hard interaction. The probability that two hadrons, passing each other
with an impact parameter b, will actually undergo a collision is then given by

Pint(b) = 1− exp(−〈ñ(b)〉) = 1− exp(−kO(b)) , (199)

according to Poissonian statistics. The average number of interactions per event at impact
parameter b is now

〈n(b)〉 =
〈ñ(b)〉
Pint(b)

=
kO(b)

1− exp(−kO(b))
, (200)

where the denominator comes from the removal of hadron pairs which pass without col-
liding, i.e. with ñ = 0.

The relationship 〈n〉 = σhard/σnd was earlier introduced for the average number of in-
teractions per non-diffractive, inelastic event. When averaged over all impact parameters,
this relation must still hold true: the introduction of variable impact parameters may give
more interactions in some events and less in others, but it does not affect either σhard or
σnd. For the former this is because the perturbative QCD calculations only depend on
the total parton flux, for the latter by construction. Integrating eq. (200) over b, one then
obtains

〈n〉 =

∫ 〈n(b)〉 Pint(b) d2b∫ Pint(b) d2b
=

∫
kO(b) d2b∫

(1− exp(−kO(b))) d2b
=
σhard

σnd

. (201)

For O(b), σhard and σnd given, with σhard/σnd > 1, k can thus always be found (numeri-
cally) by solving the last equality.

297

The absolute normalization of O(b) is not interesting in itself, but only the relative
variation with impact parameter. It is therefore useful to introduce an ‘enhancement
factor’ e(b), which gauges how the interaction probability for a passage with impact
parameter b compares with the average, i.e.

〈ñ(b)〉 = kO(b) = e(b) 〈kO(b)〉 . (202)

The definition of the average 〈kO(b)〉 is a bit delicate, since the average number of inter-
actions per event is pushed up by the requirement that each event contain at least one
interaction. However, an exact meaning can be given [Sjö87a].

With the knowledge of e(b), the f(x⊥) function of the simple model generalizes to

f(x⊥, b) = e(b) f(x⊥) . (203)

The näıve generation procedure is thus to pick a b according to the phase space d2b, find
the relevant e(b) and plug in the resulting f(x⊥, b) in the formalism of the simple model.
If at least one hard interaction is generated, the event is retained, else a new b is to be
found. This algorithm would work fine for hadronic matter distributions which vanish
outside some radius, so that the d2b phase space which needs to be probed is finite. Since
this is not true for the distributions under study, it is necessary to do better.

By analogy with eq. (191), it is possible to ask what the probability is to find the
hardest scattering of an event at x⊥1. For each impact parameter separately, the proba-
bility to have an interaction at x⊥1 is given by f(x⊥, b), and this should be multiplied by
the probability that the event contains no interactions at a scale x′⊥ > x⊥1, to yield the
total probability distribution

dPhardest

d2b dx⊥1

= f(x⊥1, b) exp
{
−
∫ 1

x⊥1

f(x′⊥, b) dx′⊥

}

= e(b) f(x⊥1) exp
{
−e(b)

∫ 1

x⊥1

f(x′⊥) dx′⊥

}
. (204)

If the treatment of the exponential is deferred for a moment, the distribution in b and x⊥1

appears in factorized form, so that the two can be chosen independently of each other.
In particular, a high-p⊥ QCD scattering or any other hard scattering can be selected
with whatever kinematics desired for that process, and thereafter assigned some suitable
‘hardness’ x⊥1. With the b chosen according to e(b) d2b, the neglected exponential can now
be evaluated, and the event retained with a probability proportional to it. From the x⊥1

scale of the selected interaction, a sequence of softer x⊥i values may again be generated
as in the simple model, using the known f(x⊥, b). This sequence may be empty, i.e. the
event need not contain any further interactions.

It is interesting to understand how the algorithm above works. By selecting b according
to e(b) d2b, i.e. O(b) d2b, the primary b distribution is maximally biased towards small
impact parameters. If the first interaction is hard, by choice or by chance, the integral
of the cross section above x⊥1 is small, and the exponential close to unity. The rejection
procedure is therefore very efficient for all standard hard processes in the program — one
may even safely drop the weighting with the exponential completely. The large e(b) value
is also likely to lead to the generation of many further, softer interactions. If, on the other
hand, the first interaction is not hard, the exponential is no longer close to unity, and many
events are rejected. This pulls down the efficiency for ‘minimum bias’ event generation.
Since the exponent is proportional to e(b), a large e(b) leads to an enhanced probability
for rejection, whereas the chance of acceptance is larger with a small e(b). Among events
where the hardest interaction is soft, the b distribution is therefore biased towards larger
values (smaller e(b)), and there is a small probability for yet softer interactions.

To evaluate the exponential factor, the program pretabulates the integral of f(x⊥) at
the initialization stage, and further increases the Monte Carlo statistics of this tabulation

298

as the run proceeds. The x⊥ grid is concentrated towards small x⊥, where the integral
is large. For a selected x⊥1 value, the f(x⊥) integral is obtained by interpolation. After
multiplication by the known e(b) factor, the exponential factor may be found.

In this section, nothing has yet been assumed about the form of the dσ/dp⊥ spectrum.
Like in the impact parameter independent case, it is possible to use a sharp cut-off at
some given p⊥min value. However, now each event is required to have at least one inter-
action, whereas before events without interactions were retained and put at p⊥ = 0. It is
therefore aesthetically more appealing to assume a gradual turn-off, so that a (semi)hard
interaction can be rather soft part of the time. The matrix elements roughly diverge like
αs(p

2
⊥) dp2

⊥/p
4
⊥ for p⊥ → 0. They could therefore be regularized as follows. Firstly, to

remove the 1/p4
⊥ behaviour, multiply by a factor p4

⊥/(p
2
⊥ + p2

⊥0)2. Secondly, replace the
p2
⊥ argument in αs by p2

⊥ + p2
⊥0. If one has included a K factor by a rescaling of the αs

argument, as mentioned earlier, replace 0.075 p2
⊥ by 0.075 (p2

⊥ + p2
⊥0).

With these substitutions, a continuous p⊥ spectrum is obtained, stretching from p⊥ = 0
to Ecm/2. For p⊥ � p⊥0 the standard perturbative QCD cross section is recovered,
while values p⊥ � p⊥0 are strongly damped. The p⊥0 scale, which now is the main free
parameter of the model, in practice comes out to be of the same order of magnitude as
the sharp cut-off p⊥min did, i.e. 1.5–2 GeV, but typically about 10% higher.

Above we have argued that p⊥min and p⊥0 should only have a slow energy dependence,
and even allowed for the possibility of fixed values. For the impact parameter independent
picture this works out fine, with all events being reduced to low-p⊥ two-string ones when
the c.m. energy is reduced. In the variable impact parameter picture, the whole formalism
only makes sense if σhard > σnd, see e.g. eq. (201). Since σnd does not vanish with
decreasing energy, but σhard would do that for a fixed p⊥0, this means that p⊥0 has to
be reduced significantly at low energies, even more than implied by our assumed energy
dependence. The more ‘sophisticated’ model of this section therefore makes sense at
collider energies, whereas it is not well suited for applications at fixed-target energies.
There one should presumably attach to a picture of multiple soft Pomeron exchanges.

11.3 Pile-up Events

In high luminosity colliders, there is a non-negligible probability that one single bunch
crossing may produce several separate events, so-called pile-up events. This in particular
applies to future pp colliders like LHC, but one could also consider e.g. e+e− colliders
with high rates of γγ collisions. The program therefore contains an option, currently only
applicable to hadron–hadron collisions, wherein several events may be generated and put
one after the other in the event record, to simulate the full amount of particle production
a detector might be facing.

The program needs to know the assumed luminosity per bunch–bunch crossing, ex-
pressed in mb−1. Multiplied by the cross section for pile-up processes studied, σpile, this
gives the average number of collisions per beam crossing, n. These pile-up events are
taken to be of the minimum bias type, with diffractive and elastic events included or not
(and a further subdivision of diffractive events into single and double). This means that
σpile may be either σtot, σtot − σel or σtot − σel − σdiffr. Which option to choose depends
on the detector: most detectors would not be able to observe elastic pp scattering, and
therefore it would be superfluous to generate that kind of events. In addition, we allow for
the possibility that one interaction may be of a rare kind, selected freely by you. There is
no option to generate two ‘rare’ events in the same crossing; normally the likelihood for
that kind of occurrences should be small.

If only minimum bias type events are generated, i.e. if only one cross section is involved
in the problem, then the number of events in a crossing is distributed according to a
Poissonian with the average number n as calculated above. The program actually will
simulate only those beam crossings where at least one event occurs, i.e. not consider

299

the fraction exp(−n) of zero-event crossings. Therefore the actually generated average
number of pile-up events is 〈n〉 = n/(1− exp(−n)).

Now instead consider the other extreme, where one event is supposed be rare, with a
cross section σrare much smaller than σpile, i.e. f ≡ σrare/σpile � 1. The probability that
a bunch crossing will give i events, whereof one of the rare kind, now is

Pi = f i exp(−n)
ni

i!
= f n exp(−n)

ni−1

(i− 1)!
. (205)

The näıve Poissonian is suppressed by a factor f , since one of the events is rare rather
than of the normal kind, but enhanced by a factor i, since any one of the i events may
be the rare one. As the equality shows, the probability distribution is now a Poissonian
in i− 1: in a beam crossing which produces one rare event, the multiplicity of additional
pile-up events is distributed according to a Poissonian with average number n. The total
average number of events thus is 〈n〉 = n+ 1.

Clearly, for processes with intermediate cross sections, nσrare/σpile ' 1, also the aver-
age number of events will be intermediate, and it is not allowed to assume only one event
to be of the ‘rare’ type. We do not consider that kind of situations.

Each pileup event can be assigned a separate collision vertex within the envelope
provided by the colliding beams, see MSTP(151). Only simple Gaussian shapes in space
and time are implemented internally, however. If this is too restrictive, you would have
to assign interaction points yourself, and then shift each event separately by the required
amount in space and time.

When the pile-up option is used, one main limitation is that event records may become
very large when several events are put one after the other, so that the space limit in the
PYJETS common block is reached. It is possible to expand the dimension of the common
block, see MSTU(4) and MSTU(5), but only up to about 20 000 entries, which might not
always be enough, e.g. for LHC. Simplifications like switching off π0 decay may help keep
down the size, but also has its limits.

For practical reasons, the program will only allow a n up to 120. The multiplicity
distribution is truncated above 200, or when the probability for a multiplicity has fallen
below 10−6, whichever occurs sooner. Also low multiplicities with probabilities below 10−6

are truncated.

11.4 Common Block Variables

Of the routines used to generate beam remnants, multiple interactions and pile-up events,
none are intended to be called directly by the user. The only way to regulate these aspects
is therefore via the variables in the PYPARS common block.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of Pythia. Most parameters are described in section 9.3; here
only those related to beam remnants, multiple interactions and pile-up events
are described. If the default values, below denoted by (D=. . .), are not satis-
factory, they must in general be changed before the PYINIT call. Exceptions,
i.e. variables which can be changed for each new event, are denoted by (C).

MSTP(81) : (D=1) master switch for multiple interactions.
= 0 : off.
= 1 : on.

300

MSTP(82) : (D=1) structure of multiple interactions. For QCD processes, used down
to p⊥ values below p⊥min, it also affects the choice of structure for the one
hard/semi-hard interaction.

= 0 : simple two-string model without any hard interactions. Toy model only!
= 1 : multiple interactions assuming the same probability in all events, with

an abrupt p⊥min cut-off at PARP(81). (With a slow energy dependence
given by PARP(89) and PARP(90).)

= 2 : multiple interactions assuming the same probability in all events, with a
continuous turn-off of the cross section at p⊥0 =PARP(82). (With a slow
energy dependence given by PARP(89) and PARP(90).)

= 3 : multiple interactions assuming a varying impact parameter and a
hadronic matter overlap consistent with a Gaussian matter distribution,
with a continuous turn-off of the cross section at p⊥0 =PARP(82). (With
a slow energy dependence given by PARP(89) and PARP(90).)

= 4 : multiple interactions assuming a varying impact parameter and a
hadronic matter overlap consistent with a double Gaussian matter dis-
tribution given by PARP(83) and PARP(84), with a continuous turn-off
of the cross section at p⊥0 =PARP(82). (With a slow energy dependence
given by PARP(89) and PARP(90).)

Note 1: For MSTP(82)≥ 2 and CKIN(3)>PARP(82) (modulo the slow energy de-
pendence noted above), cross sections given with PYSTAT(1) may be
somewhat too large, since (for reasons of efficiency) the probability factor
that the hard interaction is indeed the hardest in the event is not included
in the cross sections. It is included in the event selection, however, so the
events generated are correctly distributed. For CKIN(3) values a couple
of times larger than PARP(82) this ceases to be a problem.

Note 2: The PARP(81) and PARP(82) values are sensitive to the choice of parton
distributions, ΛQCD, etc., in the sense that a change in the latter variables
leads to a net change in the multiple interaction rate, which has to be
compensated by a retuning of PARP(81) or PARP(82) if one wants to keep
the net multiple interaction structure the same. The default PARP(81)
and PARP(82) values are consistent with the other default values give,
i.e. parton distributions of the proton etc.

MSTP(83) : (D=100) number of Monte Carlo generated phase-space points per bin
(whereof there are 20) in the initialization (in PYMULT) of multiple interac-
tions for MSTP(82)≥ 2.

MSTP(86) : (D=2) requirements on multiple interactions based on the hardness scale of
the main process.

= 1 : the main collision is harder than all the subsequent ones. This is the old
behaviour, preserved for reasons of backwards compatibility, and most of
the time quite sensible, but with dangers as follows.
The traditional multiple interactions procedure is to let the main inter-
action set the upper p⊥ scale for subsequent multiple interactions. For
QCD, this is a matter of avoiding double-counting. Other processes nor-
mally are hard, so the procedure is then also sensible. However, for a soft
main interaction, further softer interactions are hardly possible, i.e. mul-
tiple interactions are more or less killed. Such a behaviour could be moti-
vated by the rejected events instead appearing as part of the interactions
underneath a normal QCD hard interaction, but in practice the latter
mechanism is not implemented. (And would have been very inefficient
to work with, had it been.) For MSTP(82)≥ 3 it is even worse, since also
the events themselves are likely to be rejected in the impact-parameter
selection stage. Thus the spectrum of main events that survive is biased,

301

with the low-p⊥, soft tail suppressed. Furthermore, even when events are
rejected by the impact parameter procedure, this is not reflected in the
cross section for the process, as it should have been. Results may thus
be misleading.

= 2 : when the main process is of the QCD jets type (the same as those in
multiple interactions) subsequent jets are requested to be softer, but for
other processes no such requirement exists.

= 3 : no requirements at all that multiple interactions have to be softer than
the main interactions (of dubious use for QCD processes but intended
for cross-checks).

Note: process cross sections are unreliable whenever the main process does re-
strict subsequent interactions, and the main process can become soft.
For QCD jet studies in this region it is then better to put CKIN(3)=0
and get the ‘correct’ total cross section.

MSTP(91) : (D=1) (C) primordial k⊥ distribution in hadron. See MSTP(93) for pho-
ton.

= 0 : no primordial k⊥.
= 1 : Gaussian, width given in PARP(91), upper cut-off in PARP(93).
= 2 : exponential, width given in PARP(92), upper cut-off in PARP(93).

MSTP(92) : (D=3) (C) energy partitioning in hadron or resolved photon remnant, when
this remnant is split into two jets. (For a splitting into a hadron plus a jet, see
MSTP(94).) The energy fraction χ taken by one of the two objects, with con-
ventions as described for PARP(94) and PARP(96), is chosen according to the
different distributions below. Here cmin = 0.6 GeV/Ecm ≈ 2〈mq〉/Ecm.

= 1 : 1 for meson or resolved photon, 2(1− χ) for baryon, i.e. simple counting
rules.

= 2 : (k + 1)(1− χ)k, with k given by PARP(94) or PARP(96).

= 3 : proportional to (1 − χ)k/ 4

√
χ2 + c2

min, with k given by PARP(94) or
PARP(96).

= 4 : proportional to (1 − χ)k/
√
χ2 + c2

min, with k given by PARP(94) or
PARP(96).

= 5 : proportional to (1 − χ)k/(χ2 + c2
min)b/2, with k given by PARP(94) or

PARP(96), and b by PARP(98).
MSTP(93) : (D=1) (C) primordial k⊥ distribution in photon, either it is one of the in-

coming particles or inside an electron.
= 0 : no primordial k⊥.
= 1 : Gaussian, width given in PARP(99), upper cut-off in PARP(100).
= 2 : exponential, width given in PARP(99), upper cut-off in PARP(100).
= 3 : power-like of the type dk2

⊥/(k
2
⊥0 + k2

⊥)2, with k⊥0 in PARP(99) and upper
k⊥ cut-off in PARP(100).

= 4 : power-like of the type dk2
⊥/(k

2
⊥0 + k2

⊥), with k⊥0 in PARP(99) and upper
k⊥ cut-off in PARP(100).

= 5 : power-like of the type dk2
⊥/(k

2
⊥0 + k2

⊥), with k⊥0 in PARP(99) and upper
k⊥ cut-off given by the p⊥ of the hard process or by PARP(100), whichever
is smaller.

Note: for options 1 and 2 the PARP(100) value is of minor importance, once
PARP(100)�PARP(99). However, options 3 and 4 correspond to distri-
butions with infinite 〈k2

⊥〉 if the k⊥ spectrum is not cut off, and therefore
the PARP(100) value is as important for the overall distribution as is
PARP(99).

MSTP(94) : (D=3) (C) energy partitioning in hadron or resolved photon remnant, when
this remnant is split into a hadron plus a remainder-jet. The energy fraction

302

chi is taken by one of the two objects, with conventions as described below or
for PARP(95) and PARP(97).

= 1 : 1 for meson or resolved photon, 2(1− χ) for baryon, i.e. simple counting
rules.

= 2 : (k + 1)(1− χ)k, with k given by PARP(95) or PARP(97).
= 3 : the χ of the hadron is selected according to the normal fragmentation

function used for the hadron in jet fragmentation, see MSTJ(11). The
possibility of a changed fragmentation function shape in diquark frag-
mentation (see PARJ(45)) is not included.

= 4 : as =3, but the shape is changed as allowed in diquark fragmentation (see
PARJ(45)); this change is here also allowed for meson production. (This
option is not so natural for mesons, but has been added to provide the
same amount of freedom as for baryons).

MSTP(131) : (D=0) master switch for pile-up events, i.e. several independent hadron–
hadron interactions generated in the same bunch–bunch crossing, with the
events following one after the other in the event record.

= 0 : off, i.e. only one event is generated at a time.
= 1 : on, i.e. several events are allowed in the same event record. Information

on the processes generated may be found in MSTI(41) - MSTI(50).
MSTP(132) : (D=4) the processes that are switched on for pile-up events. The first event

may be set up completely arbitrarily, using the switches in the PYSUBS common
block, while all the subsequent events have to be of one of the ‘inclusive’
processes which dominate the cross section, according to the options below. It
is thus not possible to generate two rare events in the pile-up option.

= 1 : low-p⊥ processes (ISUB = 95) only. The low-p⊥ model actually used, both
in the hard event and in the pile-up events, is the one set by MSTP(81)
etc. This means that implicitly also high-p⊥ jets can be generated in the
pile-up events.

= 2 : low-p⊥ + double diffractive processes (ISUB = 95 and 94).
= 3 : low-p⊥ + double diffractive + single diffractive processes (ISUB = 95, 94,

93 and 92).
= 4 : low-p⊥ + double diffractive + single diffractive + elastic processes, to-

gether corresponding to the full hadron–hadron cross section (ISUB = 95,
94, 93, 92 and 91).

MSTP(133) : (D=0) multiplicity distribution of pile-up events.
= 0 : selected by you, before each PYEVNT call, by giving the MSTP(134) value.
= 1 : a Poissonian multiplicity distribution in the total number of pile-up

events. This is the relevant distribution if the switches set for the
first event in PYSUBS give the same subprocesses as are implied by
MSTP(132). In that case the mean number of events per beam cross-
ing is n = σpile×PARP(131), where σpile is the sum of the cross section
for allowed processes. Since bunch crossing which do not give any events
at all (probability exp(−n)) are not simulated, the actual average number
per PYEVNT call is 〈n〉 = n/(1− exp(−n)).

= 2 : a biased distribution, as is relevant when one of the events to be generated
is assumed to belong to an event class with a cross section much smaller
than the total hadronic cross section. If σrare is the cross section for this
rare process (or the sum of the cross sections of several rare processes)
and σpile the cross section for the processes allowed by MSTP(132), then
define n = σpile×PARP(131) and f = σrare/σpile. The probability that a
bunch crossing will give i events is then Pi = f i exp(−n)ni/i!, i.e. the
näıve Poissonian is suppressed by a factor f since one of the events will
be rare rather than frequent, but enhanced by a factor i since any of the

303

i events may be the rare one. Only beam crossings which give at least
one event of the required rare type are simulated, and the distribution
above normalized accordingly.

Note: for practical reasons, it is required that n < 120, i.e. that an average
beam crossing does not contain more than 120 pile-up events. The mul-
tiplicity distribution is truncated above 200, or when the probability
for a multiplicity has fallen below 10−6, whichever occurs sooner. Also
low multiplicities with probabilities below 10−6 are truncated. See also
PARI(91) - PARI(93).

MSTP(134) : (D=1) a user selected multiplicity, i.e. total number of pile-up events, to be
generated in the next PYEVNT call when MSTP(133)=0. May be reset for each
new event, but must be in the range 1 ≤MSTP(134)≤ 200.

PARP(81) : (D=1.9 GeV) effective minimum transverse momentum p⊥min for multiple
interactions with MSTP(82)=1, at the reference energy scale PARP(89), with
the degree of energy rescaling given by PARP(90).

PARP(82) : (D=2.1 GeV) regularization scale p⊥0 of the transverse momentum spec-
trum for multiple interactions with MSTP(82)≥ 2, at the reference energy scale
PARP(89), with the degree of energy rescaling given by PARP(90). (Current
default based on the MSTP(82)=4 option, without any change of MSTP(2) or
MSTP(33).)

PARP(83), PARP(84) : (D=0.5, 0.2) parameters of an assumed double Gaussian matter
distribution inside the colliding hadrons for MSTP(82)=4, of the form given in
eq. (196), i.e. with a core of radius PARP(84) of the main radius and containing
a fraction PARP(83) of the total hadronic matter.

PARP(85) : (D=0.33) probability that an additional interaction in the multiple inter-
action formalism gives two gluons, with colour connections to ‘nearest neigh-
bours’ in momentum space.

PARP(86) : (D=0.66) probability that an additional interaction in the multiple interac-
tion formalism gives two gluons, either as described in PARP(85) or as a closed
gluon loop. Remaining fraction is supposed to consist of quark–antiquark
pairs.

PARP(87), PARP(88) : (D=0.7, 0.5) in order to account for an assumed dominance of
valence quarks at low transverse momentum scales, a probability is introduced
that a gg-scattering according to näıve cross section is replaced by a qq one; this
is used only for MSTP(82)≥ 2. The probability is parameterized as P = a(1−
(p2
⊥/(p

2
⊥ + b2)2), where a =PARP(87) and b =PARP(88)×PARP(82) (including

the slow energy rescaling of the p⊥0 parameter).
PARP(89) : (D=1000. GeV) reference energy scale, at which PARP(81) and PARP(82)

give the p⊥min and p⊥0 values directly. Has no physical meaning in itself, but is
used for convenience only. (A form p⊥min = PARP(81)EPARP(90)

cm would have been
equally possible but then with a less transparent meaning of PARP(81).) For
studies of the p⊥min dependence at some specific energy it may be convenient
to choose PARP(89) equal to this energy.

PARP(90) : (D=0.16) power of the energy-rescaling term of the p⊥min and p⊥0 parame-
ters, which are assumed proportional to EPARP(90)

cm . The default value is inspired
by the rise of the total cross section by the pomeron term, sε = E2ε

cm = E2·0.08
cm ,

which is not inconsistent with the small-x behaviour. It is also reasonably
consistent with the energy-dependence implied by a comparison with the UA5
multiplicity distributions at 200 and 900 GeV [UA584]. PARP(90) = 0 is an
allowed value, i.e. it is possible to have energy-independent parameters.

PARP(91) : (D=1. GeV/c) (C) width of Gaussian primordial k⊥ distribution inside
hadron for MSTP(91)=1, i.e. exp(−k2

⊥/σ
2) k⊥ dk⊥ with σ =PARP(91) and

304

〈k2
⊥〉 =PARP(91)2.

PARP(92) : (D=0.40 GeV/c) (C) width parameter of exponential primordial k⊥ distribu-
tion inside hadron for MSTP(91)=2, i.e. exp(−k⊥/σ) k⊥ dk⊥ with σ =PARP(92)

and 〈k2
⊥〉 = 6×PARP(92)2. Thus one should put PARP(92)≈PARP(91)/√6 to

have continuity with the option above.
PARP(93) : (D=5. GeV/c) (C) upper cut-off for primordial k⊥ distribution inside

hadron.
PARP(94) : (D=1.) (C) for MSTP(92)≥ 2 this gives the value of the parameter k for

the case when a meson or resolved photon remnant is split into two fragments
(which is which is chosen at random).

PARP(95) : (D=0.) (C) for MSTP(94)=2 this gives the value of the parameter k for the
case when a meson or resolved photon remnant is split into a meson and a
spectator fragment jet, with χ giving the energy fraction taken by the meson.

PARP(96) : (D=3.) (C) for MSTP(92)≥ 2 this gives the value of the parameter k for the
case when a nucleon remnant is split into a diquark and a quark fragment,
with χ giving the energy fraction taken by the quark jet.

PARP(97) : (D=1.) (C) for MSTP(94)=2 this gives the value of the parameter k for the
case when a nucleon remnant is split into a baryon and a quark jet or a meson
and a diquark jet, with χ giving the energy fraction taken by the quark jet or
meson, respectively.

PARP(98) : (D=0.75) (C) for MSTP(92)=5 this gives the power of an assumed basic 1/χb

behaviour in the splitting distribution, with b =PARP(98).
PARP(99) : (D=1. GeV/c) (C) width parameter of primordial k⊥ distribution inside

photon; exact meaning depends on MSTP(93) value chosen (cf. PARP(91) and
PARP(92) above).

PARP(100) : (D=5. GeV/c) (C) upper cut-off for primordial k⊥ distribution inside pho-
ton.

PARP(131) : (D=0.01 mb−1) in the pile-up events scenario, PARP(131) gives the assumed
luminosity per bunch–bunch crossing, i.e. if a subprocess has a cross section
σ, the average number of events of this type per bunch–bunch crossing is
n = σ×PARP(131). PARP(131) may be obtained by dividing the integrated
luminosity over a given time (1 s, say) by the number of bunch–bunch crossings
that this corresponds to. Since the program will not generate more than 200
pile-up events, the initialization procedure will crash if n is above 120.

305

12 Fragmentation

The main fragmentation option in Pythia is the Lund string scheme, but independent
fragmentation options are also available. These latter options should not be taken too
seriously, since we know that independent fragmentation does not provide a consistent
alternative, but occasionally one may like to compare string fragmentation with something
else.

The subsequent four sections give further details; the first one on flavour selection,
which is common to the two approaches, the second on string fragmentation, the third
on independent fragmentation, while the fourth and final contains information on a few
other issues.

The Lund fragmentation model is described in [And83], where all the basic ideas are
presented and earlier papers [And79, And80, And82, And82a] summarized. The details
given there on how a multiparton jet system is allowed to fragment are out of date,
however, and for this one should turn to [Sjö84]. Also the ‘popcorn’ baryon production
mechanism is not covered, see [And85], and [Edé97] for a more sophisticated version. The
most recent comprehensive description of the Lund model is found in [And98]. Reviews
of fragmentation models in general may be found in [Sjö88, Sjö89].

12.1 Flavour Selection

In either string or independent fragmentation, an iterative approach is used to describe
the fragmentation process. Given an initial quark q = q0, it is assumed that a new q1q1

pair may be created, such that a meson q0q1 is formed, and a q1 is left behind. This q1

may at a later stage pair off with a q2, and so on. What need be given is thus the relative
probabilities to produce the various possible qiqi pairs, uu, dd, ss, etc., and the relative
probabilities that a given qi−1qi quark pair combination forms a specific meson, e.g. for
ud either π+, ρ+ or some higher state.

In Pythia, it is assumed that the two aspects can be factorized, i.e. that it is possible
first to select a qiqi pair, without any reference to allowed physical meson states, and
that, once the qi−1qi flavour combination is given, it can be assigned to a given meson
state with total probability unity. Corrections to this factorized ansatz will come in the
baryon sector.

12.1.1 Quark flavours and transverse momenta

In order to generate the quark–antiquark pairs qiqi which lead to string breakups, the
Lund model invokes the idea of quantum mechanical tunnelling, as follows. If the qi and
qi have no (common) mass or transverse momentum, the pair can classically be created at
one point and then be pulled apart by the field. If the quarks have mass and/or transverse
momentum, however, the qi and qi must classically be produced at a certain distance so
that the field energy between them can be transformed into the sum of the two transverse
masses m⊥. Quantum mechanically, the quarks may be created in one point (so as to keep
the concept of local flavour conservation) and then tunnel out to the classically allowed
region. In terms of a common transverse mass m⊥ of the qi and the qi, the tunnelling
probability is given by

exp

(
−πm

2
⊥

κ

)
= exp

(
−πm

2

κ

)
exp

(
−πp

2
⊥
κ

)
. (206)

The factorization of the transverse momentum and the mass terms leads to a flavour-
independent Gaussian spectrum for the px and py components of qiqi pairs. Since the
string is assumed to have no transverse excitations, this p⊥ is locally compensated between

306

the quark and the antiquark of the pair. The p⊥ of a meson qi−1qi is given by the vector
sum of the p⊥:s of the qi−1 and qi constituents, which implies Gaussians in px and py with

a width
√

2 that of the quarks themselves. The assumption of a Gaussian shape may be
a good first approximation, but there remains the possibility of non-Gaussian tails, that
can be important in some situations.

In a perturbative QCD framework, a hard scattering is associated with gluon radiation,
and further contributions to what is näıvely called fragmentation p⊥ comes from unre-
solved radiation. This is used as an explanation why the experimental 〈p⊥〉 is somewhat
higher than obtained with the formula above.

The formula also implies a suppression of heavy quark production u : d : s : c ≈
1 : 1 : 0.3 : 10−11. Charm and heavier quarks are hence not expected to be produced in the
soft fragmentation. Since the predicted flavour suppressions are in terms of quark masses,
which are notoriously difficult to assign (should it be current algebra, or constituent, or
maybe something in between?), the suppression of ss production is left as a free parameter
in the program: uu : dd : ss = 1 : 1 : γs, where by default γs = 0.3. At least qualitatively,
the experimental value agrees with theoretical prejudice. There is no production at all of
heavier flavours in the fragmentation process, but only in the hard process or as part of
the shower evolution.

12.1.2 Meson production

Once the flavours qi−1 and qi have been selected, a choice is made between the possible
multiplets. The relative composition of different multiplets is not given from first princi-
ples, but must depend on the details of the fragmentation process. To some approximation
one would expect a negligible fraction of states with radial excitations or non-vanishing
orbital angular momentum. Spin counting arguments would then suggest a 3:1 mixture
between the lowest lying vector and pseudoscalar multiplets. Wave function overlap ar-
guments lead to a relative enhancement of the lighter pseudoscalar states, which is more
pronounced the larger the mass splitting is [And82a].

In the program, six meson multiplets are included. If the nonrelativistic classification
scheme is used, i.e. mesons are assigned a valence quark spin S and an internal orbital
angular momentum L, with the physical spin s denoted J , J = L+S, then the multiplets
are:
• L = 0, S = 0, J = 0: the ordinary pseudoscalar meson multiplet;
• L = 0, S = 1, J = 1: the ordinary vector meson multiplet;
• L = 1, S = 0, J = 1: an axial vector meson multiplet;
• L = 1, S = 1, J = 0: the scalar meson multiplet;
• L = 1, S = 1, J = 1: another axial vector meson multiplet; and
• L = 1, S = 1, J = 2: the tensor meson multiplet.

Each multiplet has the full five-flavour setup of 5 × 5 states included in the program.
Some simplifications have been made; thus there is no mixing included between the two
axial vector multiplets.

In the program, the spin S is first chosen to be either 0 or 1. This is done according to
parameterized relative probabilities, where the probability for spin 1 by default is taken
to be 0.5 for a meson consisting only of u and d quark, 0.6 for one which contains s as
well, and 0.75 for quarks with c or heavier quark, in accordance with the deliberations
above.

By default, it is assumed that L = 0, such that only pseudoscalar and vector mesons
are produced. For inclusion of L = 1 production, four parameters can be used, one to
give the probability that a S = 0 state also has L = 1, the other three for the probability
that a S = 1 state has L = 1 and J either 0, 1, or 2.

For the flavour-diagonal meson states uu, dd and ss, it is also necessary to include

307

mixing into the physical mesons. This is done according to a parameterization, based on
the mixing angles given in the Review of Particle Properties [PDG88]. In particular, the
default choices correspond to

η =
1

2
(uu + dd)− 1√

2
ss ;

η′ =
1

2
(uu + dd) +

1√
2

ss ;

ω =
1√
2

(uu + dd)

φ = ss . (207)

In the π0 − η − η′ system, no account is therefore taken of the difference in masses, an
approximation which seems to lead to an overestimate of η′ rates [ALE92]. Therefore
parameters have been introduced to allow an additional ‘brute force’ suppression of η and
η′ states.

12.1.3 Baryon production

The mechanism for meson production follows rather naturally from the simple picture of
a meson as a short piece of string between two q/q endpoints. There is no unique recipe to
generalize this picture to baryons. The program actually contains three different scenarios:
diquark, simple popcorn, and advanced popcorn. In the diquark model the baryon and
antibaryon are always produced as nearest neighbours along the string, while mesons may
(but need not) be produced in between in the popcorn scenarios. The simpler popcorn
alternative admits at most one intermediate meson, while the advanced one allows many.
Further differences may be found, but several aspects are also common between the three
scenarios. Below they are therefore described in order of increasing sophistication. Finally
the application of the models to baryon remnant fragmentation, where a diquark originally
sits at one endpoint of the string, is discussed.

Diquark picture
Baryon production may, in its simplest form, be obtained by assuming that any flavour

qi given above could represent either a quark or an antidiquark in a colour triplet state.
Then the same basic machinery can be run through as above, supplemented with the
probability to produce various diquark pairs. In principle, there is one parameter for each
diquark, but if tunnelling is still assumed to give an effective description, mass relations
can be used to reduce the effective number of parameters. There are three main ones
appearing in the program:
• the relative probability to pick a qq diquark rather than a q;
• the extra suppression associated with a diquark containing a strange quark (over

and above the ordinary s/u suppression factor γs); and
• the suppression of spin 1 diquarks relative to spin 0 ones (apart from the factor of

3 enhancement of the former based on counting the number of spin states).
The extra strange diquark suppression factor comes about since what appears in the
exponent of the tunnelling formula is m2 and not m, so that the diquark and the strange
quark suppressions do not factorize.

Only two baryon multiplets are included, i.e. there are no L = 1 excited states. The
two multiplets are:
• S = J = 1/2: the ‘octet’ multiplet of SU(3);
• S = J = 3/2: the ‘decuplet’ multiplet of SU(3).

In contrast to the meson case, different flavour combinations have different numbers of
states available: for uuu only ∆++, whereas uds may become either Λ, Σ0 or Σ∗0.

308

An important constraint is that a baryon is a symmetric state of three quarks, ne-
glecting the colour degree of freedom. When a diquark and a quark are joined to form a
baryon, the combination is therefore weighted with the probability that they form a sym-
metric three-quark state. The program implementation of this principle is to first select
a diquark at random, with the strangeness and spin 1 suppression factors above included,
but then to accept the selected diquark with a weight proportional to the number of
states available for the quark-diquark combination. This means that, were it not for the
tunnelling suppression factors, all states in the SU(6) (flavour SU(3) times spin SU(2))
56-multiplet would become equally populated. Of course also heavier baryons may come
from the fragmentation of e.g. c quark jets, but although the particle classification scheme
used in the program is SU(10), i.e. with five flavours, all possible quark-diquark combi-
nations can be related to SU(6) by symmetry arguments. As in the case for mesons, one
could imagine an explicit further suppression of the heavier spin 3/2 baryons.

In case of rejection, one again chooses between a diquark or a quark. If choosing
diquark, a new baryon is selected and tested, etc. (In versions earlier than Pythia 6.106,
the algorithm was instead to always produce a new diquark if the previous one had been
rejected. However, the probability that a quark will produce a baryon and a antidiquark
is then flavour independent, which is not in agreement with the model.) Calling the
tunnelling factor for diquark D TD, the number of spin states σD and the SU(6) factor
for D and a quark q SUD,q, the model prediction for the (q → B + D)/(q → M + q′)
ratio is

Sq =
P (qq)

P (q)

∑

D

TDσDSUD,q . (208)

(Neglecting this flavour dependence e.g. leads to an enhancement of the Ω− relative to
primary proton production with approximately a factor 1.2, using Jetset 7.4 default
values.) Since the chosen algorithm implies the normalization

∑
D TDσD = 1 and SUD,q ≤

1, the final diquark production rate is somewhat reduced from the P (qq)/P (q) input value.
When a diquark has been fitted into a symmetrical three-particle state, it should

not suffer any further SU(6) suppressions. Thus the accompanying antidiquark should
‘survive’ with probability 1. When producing a quark to go with a previously produced
diquark, this is achieved by testing the configuration against the proper SU(6) factor,
but in case of rejection keep the diquark and pick a new quark, which then is tested, etc.

There is no obvious corresponding algorithm available when a quark from one side and
a diquark from the other are joined to form the last hadron of the string. In this case the
quark is a member of a pair, in which the antiquark already has formed a specific hadron.
Thus the quark flavour cannot be reselected. One could consider the SU(6) rejection
as a major joining failure, and restart the fragmentation of the original string, but then
the already accepted diquark does suffer extra SU(6) suppression. In the program the
joining of a quark and a diquark is always accepted.

Simple popcorn
A more general framework for baryon production is the ‘popcorn’ one [And85], in

which diquarks as such are never produced, but rather baryons appear from the successive
production of several qiqi pairs. The picture is the following. Assume that the original q
is red r and the q is r. Normally a new q1q1 pair produced in the field would also be rr,
so that the q1 is pulled towards the q end and vice versa, and two separate colour-singlet
systems qq1 and q1q are formed. Occasionally, the q1q1 pair may be e.g. gg (g = green),
in which case there is no net colour charge acting on either q1 or q1. Therefore, the pair
cannot gain energy from the field, and normally would exist only as a fluctuation. If q1

moves towards q and q1 towards q, the net field remaining between q1 and q1 is bb (b =
blue; g+r = b if only colour triplets are assumed). In this central field, an additional q2q2

pair can be created, where q2 now is pulled towards qq1 and q2 towards qq1, with no net
colour field between q2 and q2. If this is all that happens, the baryon B will be made up

309

out of q1, q2 and some q4 produced between q and q1, and B of q1, q2 and some q5, i.e.
the B and B will be nearest neighbours in rank and share two quark pairs. Specifically,
q1 will gain energy from q2 in order to end up on mass shell, and the tunnelling formula
for an effective q1q2 diquark is recovered.

Part of the time, several bb colour pair productions may take place between the q1

and q1, however. With two production vertices q2q2 and q3q3, a central meson q2q3 may
be formed, surrounded by a baryon q4q1q2 and an antibaryon q3q1q5. We call this a
BMB configuration to distinguish it from the q4q1q2 + q2q1q5 BB configuration above.
For BMB the B and B only share one quark–antiquark pair, as opposed to two for
BB configurations. The relative probability for a BMB configuration is given by the
uncertainty relation suppression for having the q1 and q1 sufficiently far apart that a
meson may be formed in between. The suppression of the BMB system is estimated by

|∆F |2 ≈ exp(−2µ⊥M⊥/κ) (209)

where µ⊥ and M⊥ is the transverse mass of q1 and the meson, respectively. Strictly
speaking, also configurations like BMMB, BMMMB, etc. should be possible, but since
the total invariant M⊥ grows rapidly with the number of mesons, the probability for this
is small in the simple model. Further, since larger masses corresponds to longer string
pieces, the production of pseudoscalar mesons is favoured over that of vector ones. If only
BB and BMB states are included, and if the probability for having a vector meson M
is not suppressed extra, two partly compensating errors are made (since a vector meson
typically decays into two or more pseudoscalar ones).

In total, the flavour iteration procedure therefore contains the following possible sub-
processes (plus, of course, their charge conjugates):
• q1 → q2 + (q1q2) meson;
• q1 → q2q3 + (q1q2q3) baryon;
• q1q2 → q3 + (q1q2q3) baryon;
• q1q2 → q1q3 + (q2q3) meson;

with the constraint that the last process cannot be iterated to obtain several mesons in
between the baryon and the antibaryon.

When selecting flavours for qq → M + qq′, the quark coming from the accepted qq
is kept, and the other member of qq′, as well as the spin of qq′, is chosen with weights
taking SU(6) symmetry into account. Thus the flavour of qq is not influenced by SU(6)
factors for qq′, but the flavour of M is.

Unfortunately, the resulting baryon production model has a fair number of parame-
ters, which would be given by the model only if quark and diquark masses were known
unambiguously. We have already mentioned the s/u ratio and the qq/q one; the latter
has to be increased from 0.09 to 0.10 for the popcorn model, since the total number of
possible baryon production configurations is lower in this case (the particle produced be-
tween the B and B is constrained to be a meson). With the improved SU(6) treatment
introduced in Pythia 6.106, a rejected q→ B+ qq may lead to the splitting q→M + q′

instead. This calls for an increase of the qq/q input ratio by approximately 10%. For the
popcorn model, exactly the same parameters as already found in the diquark model are
needed to describe the BB configurations. For BMB configurations, the square root of a
suppression factor should be applied if the factor is relevant only for one of the B and B,
e.g. if the B is formed with a spin 1 ‘diquark’ q1q2 but the B with a spin 0 diquark q1q3.
Additional parameters include the relative probability for BMB configurations, which is
assumed to be roughly 0.5 (with the remaining 0.5 being BB), a suppression factor for
having a strange meson M between the B and B (as opposed to having a lighter non-
strange one) and a suppression factor for having a ss pair (rather than a uu one) shared
between the B and B of a BMB configuration. The default parameter values are based
on a combination of experimental observation and internal model predictions.

310

In the diquark model, a diquark is expected to have exactly the same transverse mo-
mentum distribution as a quark. For BMB configurations the situation is somewhat more
unclear, but we have checked that various possibilities give very similar results. The op-
tion implemented in the program is to assume no transverse momentum at all for the q1q1

pair shared by the B and B, with all other pairs having the standard Gaussian spectrum
with local momentum conservation. This means that the B and B p⊥:s are uncorrelated
in a BMB configuration and (partially) anticorrelated in the BB configurations, with the
same mean transverse momentum for primary baryons as for primary mesons.

Advanced popcorn
In [Edé97], a revised popcorn model is presented, where the separate production of

the quarks in an effective diquark is taken more seriously. The production of a qq pair
which breaks the string is in this model determined by eq. (206), also when ending up in a
diquark. Furthermore, the popcorn model is re-implemented in such a way that eq (209)
could be used explicitly in the Monte Carlo. The two parameters

βq ≡ 2 〈µ⊥q〉 /κ, or βu and ∆β ≡ βs − βu, (210)

then govern both the diquark and the intermediate meson production. In this algorithm,
configurations like BMMB etc. are considered in a natural way. The more independent
production of the diquark partons implies a moderate suppression of spin 1 diquarks.
Instead the direct suppression of spin 3/2 baryons, in correspondence to the suppression
of vector mesons relative to pseudo-scalar ones, is assumed to be important. Consequently,
a suppression of Σ-states relative to Λ0 is derived from the spin 3/2 suppression parameter.

Several new routines have been added, and the diquark code has been extended with
information about the curtain quark flavour, i.e. the qq pair that is shared between the
baryon and antibaryon, but this is not visible externally. Some parameters are no longer
used, while others have to be given modified values. This is described in section 14.3.1.

Baryon remnant fragmentation
Occasionally, the endpoint of a string is not a single parton, but a diquark or an-

tidiquark, e.g. when a quark has been kicked out of a proton beam particle. One could
consider fairly complex schemes for the resulting fragmentation. One such [And81] was
available in Jetset version 6 but is no longer found here. Instead the same basic scheme
is used as for diquark pair production above. Thus a qq diquark endpoint is let to frag-
ment just as would a qq produced in the field behind a matching qq flavour, i.e. either
the two quarks of the diquark enter into the same leading baryon, or else a meson is
first produced, containing one of the quarks, while the other is contained in the baryon
produced in the next step.

Similarly, the revised algorithm for baron production can be applied to endpoint di-
quarks, though this must be made with some care [Edé97]. The suppression factor for
popcorn mesons is derived from the assumption of colour fluctuations violating energy
conservation and thus being suppressed by the Heisenberg uncertainty principle. When
splitting an original diquark into two more independent quarks, the same kind of energy
shift does not obviously emerge. One could still expect large separations of the diquark
constituents to be suppressed, but the shape of this suppression is beyond the scope of the
model. For simplicity, the same kind of exponential suppression as in the ”true popcorn”
case is implemented in the program. However, there is little reason for the strength of
the suppression to be exactly the same in the different situations. Thus the leading rank
meson production in a diquark jet is governed by a new β parameter, which is independent
of the popcorn parameters βu and ∆β in eq. (210). Furthermore, in the process (original
diquark → baryon+q) the spin 3/2 suppression should not apply at full strength. This
suppression factor stems from the normalization of the overlapping q and q wavefunctions
in a newly produced qq pair, but in the process considered here, two out of three valence
quarks already exist as an initial condition of the string.

311

12.2 String Fragmentation

An iterative procedure can also be used for other aspects of the fragmentation. This is
possible because, in the string picture, the various points where the string break by the
production of qq pairs are causally disconnected. Whereas the space–time picture in the
c.m. frame is such that slow particles (in the middle of the system) are formed first, this
ordering is Lorentz frame dependent and hence irrelevant. One may therefore make the
convenient choice of starting an iteration process at the ends of the string and proceeding
towards the middle.

The string fragmentation scheme is rather complicated for a generic multiparton state.
In order to simplify the discussion, we will therefore start with the simple qq process, and
only later survey the complications that appear when additional gluons are present. (This
distinction is made for pedagogical reasons, in the program there is only one general-
purpose algorithm).

12.2.1 Fragmentation functions

Assume a qq jet system, in its c.m. frame, with the quark moving out in the +z direction
and the antiquark in the −z one. We have discussed how it is possible to start the flavour
iteration from the q end, i.e. pick a q1q1 pair, form a hadron qq1, etc. It has also been
noted that the tunnelling mechanism is assumed to give a transverse momentum p⊥ for
each new qiqi pair created, with the p⊥ locally compensated between the qi and the qi
member of the pair, and with a Gaussian distribution in px and py separately. In the
program, this is regulated by one parameter, which gives the root-mean-square p⊥ of a
quark. Hadron transverse momenta are obtained as the sum of p⊥:s of the constituent qi
and qi+1, where a diquark is considered just as a single quark.

What remains to be determined is the energy and longitudinal momentum of the
hadron. In fact, only one variable can be selected independently, since the momentum of
the hadron is constrained by the already determined hadron transverse mass m⊥,

(E + pz)(E − pz) = E2 − p2
z = m2

⊥ = m2 + p2
x + p2

y . (211)

In an iteration from the quark end, one is led (by the desire for longitudinal boost invari-
ance and other considerations) to select the z variable as the fraction of E + pz taken by
the hadron, out of the available E + pz. As hadrons are split off, the E + pz (and E − pz)
left for subsequent steps is reduced accordingly:

(E + pz)new = (1− z)(E + pz)old ,

(E − pz)new = (E − pz)old − m2
⊥

z(E + pz)old

. (212)

The fragmentation function f(z), which expresses the probability that a given z is
picked, could in principle be arbitrary — indeed, several such choices can be used inside
the program, see below.

If one, in addition, requires that the fragmentation process as a whole should look
the same, irrespectively of whether the iterative procedure is performed from the q end
or the q one, ‘left–right symmetry’, the choice is essentially unique [And83a]: the ‘Lund
symmetric fragmentation function’,

f(z) ∝ 1

z
zaα

(
1− z
z

)aβ
exp

(
−bm

2
⊥
z

)
. (213)

There is one separate parameter a for each flavour, with the index α corresponding to the
‘old’ flavour in the iteration process, and β to the ‘new’ flavour. It is customary to put

312

all aα,β the same, and thus arrive at the simplified expression

f(z) ∝ z−1(1− z)a exp(−bm2
⊥/z) . (214)

In the program, only two separate a values can be given, that for quark pair production
and that for diquark one. In addition, there is the b parameter, which is universal.

The explicit mass dependence in f(z) implies a harder fragmentation function for
heavier hadrons. The asymptotic behaviour of the mean z value for heavy hadrons is

〈z〉 ≈ 1− 1 + a

bm2
⊥
. (215)

Unfortunately it seems this predicts a somewhat harder spectrum for B mesons than
observed in data. However, Bowler [Bow81] has shown, within the framework of the
Artru–Mennessier model [Art74], that a massive endpoint quark with mass mQ leads to
a modification of the symmetric fragmentation function, due to the fact that the string
area swept out is reduced for massive endpoint quarks, compared with massless ditto.
The Artru–Mennessier model in principle only applies for clusters with a continuous mass
spectrum, and does not allow an a term (i.e. a ≡ 0); however, it has been shown [Mor89]
that, for a discrete mass spectrum, one may still retain an effective a term. In the program
an approximate form with an a term has therefore been used:

f(z) ∝ 1

z1+rQbm
2
Q

zaα
(

1− z
z

)aβ
exp

(
−bm

2
⊥
z

)
. (216)

In principle the prediction is that rQ ≡ 1, but so as to be able to extrapolate smoothly
between this form and the original Lund symmetric one, it is possible to pick rQ separately
for c and b hadrons.

For future reference we note that the derivation of f(z) as a by-product also gives the
probability distribution in proper time τ of qiqi breakup vertices. In terms of Γ = (κτ)2,
this distribution is

P(Γ) dΓ ∝ Γa exp(−bΓ) dΓ , (217)

with the same a and b as above. The exponential decay allows an interpretation in terms
of an area law for the colour flux [And98].

Many different other fragmentation functions have been proposed, and a few are avail-
able as options in the program.
• The Field-Feynman parameterization [Fie78],

f(z) = 1− a+ 3a(1− z)2 , (218)

with default value a = 0.77, is intended to be used only for ordinary hadrons made
out of u, d and s quarks.
• Since there are indications that the shape above is too strongly peaked at z = 0,

instead a shape like
f(z) = (1 + c)(1− z)c (219)

may be used.
• Charm and bottom data clearly indicate the need for a harder fragmentation func-

tion for heavy flavours. The best known of these is the Peterson/SLAC formula
[Pet83]

f(z) ∝ 1

z
(
1− 1

z −
εQ

1− z
)2 , (220)

where εQ is a free parameter, expected to scale between flavours like εQ ∝ 1/m2
Q.

313

• As a crude alternative, that is also peaked at z = 1, one may use

f(z) = (1 + c)zc . (221)

• In [Edé97], it is argued that the quarks responsible for the colour fluctuations in
stepwise diquark production cannot move along the light-cones. Instead there is an
area of possible starting points for the colour fluctuation, which is essentially given
by the proper time of the vertex squared. By summing over all possible starting
points, one obtains the total weight for the colour fluctuation. The result is a
relative suppression of diquark vertices at early times, which is found to be of the
form 1− exp(−ρΓ), where Γ ≡ κ2τ 2 and ρ ≈ 0.7GeV−2. This result, and especially
the value of ρ, is independent of the fragmentation function, f(z), used to reach a
specific Γ-value. However, if using a f(z) which implies a small average value 〈Γ〉,
the program implementation is such that a large fraction of the q→ B+qq attempts
will be rejected. This dilutes the interpretation of the input P (qq)/P (q) parameter,
which needs to be significantly enhanced to compensate for the rejections.
A property of the Lund Symmetric Fragmentation Function is that the first vertices
produced near the string ends have a lower 〈Γ〉 than central vertices. Thus an effect
of the low-Γ suppression is a relative reduction of the leading baryons. The effect is
smaller if the baryon is very heavy, as the large mass implies that the first vertex
almost reaches the central region. Thus the leading baryon suppression effect is
reduced for c- and b jets.

12.2.2 Joining the jets

The f(z) formula above is only valid, for the breakup of a jet system into a hadron plus
a remainder-system, when the remainder mass is large. If the fragmentation algorithm
were to be used all the way from the q end to the q one, the mass of the last hadron
to be formed at the q end would be completely constrained by energy and momentum
conservation, and could not be on its mass shell. In theory it is known how to take such
effects into account [Edé00], but the resulting formulae are wholly unsuitable for Monte
Carlo implementation.

The practical solution to this problem is to carry out the fragmentation both from the
q and the q end, such that for each new step in the fragmentation process, a random choice
is made as to from what side the step is to be taken. If the step is on the q side, then z
is interpreted as fraction of the remaining E + pz of the system, while z is interpreted as
E−pz fraction for a step from the q end. At some point, when the remaining mass of the
system has dropped below a given value, it is decided that the next breakup will produce
two final hadrons, rather than a hadron and a remainder-system. Since the momenta of
two hadrons are to be selected, rather than that of one only, there are enough degrees of
freedom to have both total energy and total momentum completely conserved.

The mass at which the normal fragmentation process is stopped and the final two
hadrons formed is not actually a free parameter of the model: it is given by the require-
ment that the string everywhere looks the same, i.e. that the rapidity spacing of the final
two hadrons, internally and with respect to surrounding hadrons, is the same as elsewhere
in the fragmentation process. The stopping mass, for a given setup of fragmentation pa-
rameters, has therefore been determined in separate runs. If the fragmentation parameters
are changed, some retuning should be done but, in practice, reasonable changes can be
made without any special arrangements.

Consider a fragmentation process which has already split off a number of hadrons from
the q and q sides, leaving behind a a qiqj remainder system. When this system breaks by
the production of a qnqn pair, it is decided to make this pair the final one, and produce
the last two hadrons qiqn and qnqj, if

((E + pz)(E − pz))remaining = W 2
rem < W 2

min . (222)

314

The Wmin is calculated according to

Wmin = (Wmin0 +mqi +mqj + kmqn) (1± δ) . (223)

Here Wmin0 is the main free parameter, typically around 1 GeV, determined to give a flat
rapidity plateau (separately for each particle species), while the default k = 2 corresponds
to the mass of the final pair being taken fully into account. Smaller values may also be
considered, depending on what criteria are used to define the ‘best’ joining of the q and
the q chain. The factor 1±δ, by default evenly distributed between 0.8 and 1.2, signifies a
smearing of the Wmin value, to avoid an abrupt and unphysical cut-off in the invariant mass
distribution of the final two hadrons. Still, this distribution will be somewhat different
from that of any two adjacent hadrons elsewhere. Due to the cut there will be no tail up
to very high masses; there are also fewer events close to the lower limit, where the two
hadrons are formed at rest with respect to each other.

This procedure does not work all that well for heavy flavours, since it does not fully
take into account the harder fragmentation function encountered. Therefore, in addition
to the check above, one further test is performed for charm and heavier flavours, as follows.
If the check above allows more particle production, a heavy hadron qiqn is formed, leaving
a remainder qnqj. The range of allowed z values, i.e. the fraction of remaining E+pz that
may be taken by the qiqn hadron, is constrained away from 0 and 1 by the qiqn mass and
minimal mass of the qnqj system. The limits of the physical z range is obtained when
the qnqj system only consists of one single particle, which then has a well-determined

transverse mass m
(0)
⊥ . From the z value obtained with the infinite-energy fragmentation

function formulae, a rescaled z′ value between these limits is given by

z′ =
1

2





1 +
m2
⊥in

W 2
rem

− m
(0)2
⊥nj

W 2
rem

+

√√√√√

1− m2

⊥in
W 2

rem

− m
(0)2
⊥nj

W 2
rem




2

− 4
m2
⊥in

W 2
rem

m
(0)2
⊥nj

W 2
rem

(2z − 1)




. (224)

From the z′ value, the actual transverse mass m⊥nj ≥ m
(0)
⊥nj of the qnqj system may be

calculated. For more than one particle to be produced out of this system, the requirement

m2
⊥nj = (1− z′)

(
W 2

rem −
m2
⊥in
z′

)
> (mqj +Wmin0)2 + p2

⊥ (225)

has to be fulfilled. If not, the qnqj system is assumed to collapse to one single particle.
The consequence of the procedure above is that, the more the infinite energy fragmen-

tation function f(z) is peaked close to z = 1, the more likely it is that only two particles
are produced. The procedure above has been constructed so that the two-particle fraction
can be calculated directly from the shape of f(z) and the (approximate) mass spectrum,
but it is not unique. For the symmetric Lund fragmentation function, a number of alter-
natives tried all give essentially the same result, whereas other fragmentation functions
may be more sensitive to details.

Assume now that two final hadrons have been picked. If the transverse mass of the
remainder-system is smaller than the sum of transverse masses of the final two hadrons,
the whole fragmentation chain is rejected, and started over from the q and q endpoints.
This does not introduce any significant bias, since the decision to reject a fragmentation
chain only depends on what happens in the very last step, specifically that the next-to-last
step took away too much energy, and not on what happened in the steps before that.

If, on the other hand, the remainder-mass is large enough, there are two kinematically
allowed solutions for the final two hadrons: the two mirror images in the rest frame of the
remainder-system. Also the choice between these two solutions is given by the consistency
requirements, and can be derived from studies of infinite energy jets. The probability for

315

the reverse ordering, i.e. where the rapidity and the flavour orderings disagree, is given
by the area law as

Preverse =
1

1 + eb∆
where ∆ = Γ2 − Γ1 =

√
(W 2

rem −m2
⊥in +m2

⊥nj)2 − 4m2
⊥inm

2
⊥nj .

(226)
For the Lund symmetric fragmentation function, b is the familiar parameter, whereas for
other functions the b value becomes an effective number to be fitted to the behaviour
when not in the joining region.

When baryon production is included, some particular problems arise (also see section
12.1.3). First consider BB situations. In the näıve iterative scheme, away from the middle
of the event, one already has a quark and is to chose a matching diquark flavour or the
other way around. In either case the choice of the new flavour can be done taking into
account the number of SU(6) states available for the quark-diquark combination. For a
case where the final qnqn breakup is an antidiquark-diquark one, the weights for forming
qiqn and qnqi enter at the same time, however. We do not know how to handle this
problem; what is done is to use weights as usual for the qiqn baryon to select qn, but then
consider qnqi as given (or the other way around with equal probability). If qnqi turns
out to be an antidiquark-diquark combination, the whole fragmentation chain is rejected,
since we do not know how to form corresponding hadrons. A similar problem arises, and
is solved in the same spirit, for a BMB configuration in which the B (or B) was chosen
as third-last particle. When only two particles remain to be generated, it is obviously too
late to consider having a BMB configuration. This is as it should, however, as can be
found by looking at all possible ways a hadron of given rank can be a baryon.

While some practical compromises have to be accepted in the joining procedure, the
fact that the joining takes place in different parts of the string in different events means
that, in the end, essentially no visible effects remain.

12.2.3 String motion and infrared stability

We have now discussed the SF scheme for the fragmentation of a simple qq jet system.
In order to understand how these results generalize to arbitrary jet systems, it is first
necessary to understand the string motion for the case when no fragmentation takes
place. In the following we will assume that quarks as well as gluons are massless, but all
arguments can be generalized to massive quarks without too much problem.

For a qq event viewed in the c.m. frame, with total energy W , the partons start
moving out back-to-back, carrying half the energy each. As they move apart, energy
and momentum is lost to the string. When the partons are a distance W/κ apart, all
the energy is stored in the string. The partons now turn around and come together
again with the original momentum vectors reversed. This corresponds to half a period
of the full string motion; the second half the process is repeated, mirror-imaged. For
further generalizations to multiparton systems, a convenient description of the energy
and momentum flow is given in terms of ‘genes’ [Art83], infinitesimal packets of the four-
momentum given up by the partons to the string. Genes with pz = E, emitted from the q
end in the initial stages of the string motion above, will move in the q direction with the
speed of light, whereas genes with pz = −E given up by the q will move in the q direction.
Thus, in this simple case, the direction of motion for a gene is just opposite to that of
a free particle with the same four-momentum. This is due to the string tension. If the
system is not viewed in the c.m. frame, the rules are that any parton gives up genes with
four-momentum proportional to its own four-momentum, but the direction of motion of
any gene is given by the momentum direction of the genes it meets, i.e. that were emitted
by the parton at the other end of that particular string piece. When the q has lost all
its energy, the q genes, which before could not catch up with q, start impinging on it,

316

and the q is pulled back, accreting q genes in the process. When the q and q meet in the
origin again, they have completely traded genes with respect to the initial situation.

A 3-jet qqg event initially corresponds to having a string piece stretched between q and
g and another between g and q. Gluon four-momentum genes are thus flowing towards
the q and q. Correspondingly, q and q genes are flowing towards the g. When the gluon
has lost all its energy, the g genes continue moving apart, and instead a third string region
is formed in the ‘middle’ of the total string, consisting of overlapping q and q genes. The
two ‘corners’ on the string, separating the three string regions, are not of the gluon-kink
type: they do not carry any momentum.

If this third region would only appear at a time later than the typical time scale for
fragmentation, it could not affect the sharing of energy between different particles. This
is true in the limit of high energy, well separated partons. For a small gluon energy,
on the other hand, the third string region appears early, and the overall drawing of the
string becomes fairly 2-jet-like, since the third string region consists of q and q genes
and therefore behaves exactly as a sting pulled out directly between the q and q. In
the limit of vanishing gluon energy, the two initial string regions collapse to naught, and
the ordinary 2-jet event is recovered [Sjö84]. Also for a collinear gluon, i.e. θqg (or θqg)
small, the stretching becomes 2-jet-like. In particular, the q string endpoint first moves
out a distance pq/κ losing genes to the string, and then a further distance pg/κ, a first
half accreting genes from the g and the second half re-emitting them. (This latter half
actually includes yet another string piece; a corresponding piece appears at the q end,
such that half a period of the system involves five different string regions.) The end result
is, approximately, that a string is drawn out as if there had only been a single parton with
energy |pq + pg|, such that the simple 2-jet event again is recovered in the limit θqg → 0.
These properties of the string motion are the reason why the string fragmentation scheme
is ‘infrared safe’ with respect to soft or collinear gluon emission.

The discussions for the 3-jet case can be generalized to the motion of a string with q
and q endpoints and an arbitrary number of intermediate gluons. For n partons, whereof
n− 2 gluons, the original string contains n− 1 pieces. Anytime one of the original gluons
has lost its energy, a new string region is formed, delineated by a pair of ‘corners’. As
the extra ‘corners’ meet each other, old string regions vanish and new are created, so that
half a period of the string contains 2n2 − 6n + 5 different string regions. Each of these
regions can be understood simply as built up from the overlap of (opposite-moving) genes
from two of the original partons, according to well specified rules.

12.2.4 Fragmentation of multiparton systems

The full machinery needed for a multiparton system is very complicated, and is described
in detail in [Sjö84]. The following outline is far from complete, and is complicated nonethe-
less. The main message to be conveyed is that a Lorentz covariant algorithm exists for
handling an arbitrary parton configuration, but that the necessary machinery is more
complex than in either cluster or independent fragmentation.

Assume n partons, with ordering along the string, and related four-momenta, given
by q(p1)g(p2)g(p3) · · · g(pn−1)q(pn). The initial string then contains n− 1 separate pieces.
The string piece between the quark and its neighbouring gluon is, in four-momentum

space, spanned by one side with four-momentum p
(1)
+ = p1 and another with p

(1)
− = p2/2.

The factor of 1/2 in the second expression comes from the fact that the gluon shares its
energy between two string pieces. The indices ‘+’ and ‘−’ denotes direction towards the
q and q end, respectively. The next string piece, counted from the quark end, is spanned

by p
(2)
+ = p2/2 and p

(2)
− = p3/2, and so on, with the last one being p

(n−1)
+ = pn−1/2 and

p
(n−1)
− = pn.

For the algorithm to work, it is important that all p
(i)
± be light-cone-like, i.e. p

(i)2
± = 0.

317

Since gluons are massless, it is only the two endpoint quarks which can cause problems.
The procedure here is to create new p± vectors for each of the two endpoint regions,
defined to be linear combinations of the old p± ones for the same region, with coefficients
determined so that the new vectors are light-cone-like. De facto, this corresponds to
replacing a massive quark at the end of a string piece with a massless quark at the end of
a somewhat longer string piece. With the exception of the added fictitious piece, which
anyway ends up entirely within the heavy hadron produced from the heavy quark, the
string motion remains unchanged by this.

In the continued string motion, when new string regions appear as time goes by, the

first such string regions that appear can be represented as being spanned by one p
(j)
+

and another p
(k)
− four-vector, with j and k not necessarily adjacent. For instance, in

the qgq case, the ‘third’ string region is spanned by p
(1)
+ and p

(3)
− . Later on in the string

evolution history, it is also possible to have regions made up of two p+ or two p− momenta.
These appear when an endpoint quark has lost all its original momentum, has accreted
the momentum of an gluon, and is now re-emitting this momentum. In practice, these

regions may be neglected. Therefore only pieces made up by a (p
(j)
+ , p

(k)
−) pair of momenta

are considered in the program.
The allowed string regions may be ordered in an abstract parameter plane, where the

(j, k) indices of the four-momentum pairs define the position of each region along the
two (parameter plane) coordinate axes. In this plane the fragmentation procedure can
be described as a sequence of steps, starting at the quark end, where (j, k) = (1, 1), and
ending at the antiquark one, (j, k) = (n−1, n−1). Each step is taken from an ‘old’ qi−1qi−1

pair production vertex, to the production vertex of a ‘new’ qiqi pair, and the string piece
between these two string breaks represent a hadron. Some steps may be taken within
one and the same region, while others may have one vertex in one region and the other
vertex in another region. Consistency requirements, like energy-momentum conservation,
dictates that vertex j and k region values be ordered in a monotonic sequence, and that
the vertex positions are monotonically ordered inside each region. The four-momentum of
each hadron can be read off, for p+ (p−) momenta, by projecting the separation between

the old and the new vertex on to the j (k) axis. If the four-momentum fraction of p
(i)
±

taken by a hadron is denoted x
(i)
± , then the total hadron four-momentum is given by

p =
j2∑

j=j1

x
(j)
+ p

(j)
+ +

k2∑

k=k1

x
(k)
− p

(k)
− + px1ê

(j1k1)
x + py1ê

(j1k1)
y + px2ê

(j2k2)
x + py2ê

(j2k2)
y , (227)

for a step from region (j1, k1) to region (j2, k2). By necessity, x
(j)
+ is unity for a j1 < j < j2,

and correspondingly for x
(k)
− .

The (px, py) pairs are the transverse momenta produced at the two string breaks,
and the (êx, êy) pairs four-vectors transverse to the string directions in the regions of the
respective string breaks:

ê(jk)2
x = ê(jk)2

y = −1 ,

ê(jk)
x ê(jk)

y = ê(jk)
x,y p

(j)
+ = ê(jk)

x,y p
(k)
− = 0 . (228)

The fact that the hadron should be on mass shell, p2 = m2, puts one constraint on
where a new breakup may be, given that the old one is already known, just as eq. (211)
did in the simple 2-jet case. The remaining degree of freedom is, as before, to be given by
the fragmentation function f(z). The interpretation of the z is only well-defined for a step
entirely constrained to one of the initial string regions, however, which is not enough. In
the 2-jet case, the z values can be related to the proper times of string breaks, as follows.
The variable Γ = (κτ)2, with κ the string tension and τ the proper time between the

318

production vertex of the partons and the breakup point, obeys an iterative relation of the
kind

Γ0 = 0 ,

Γi = (1− zi)
(

Γi−1 +
m2
⊥i
zi

)
. (229)

Here Γ0 represents the value at the q and q endpoints, and Γi−1 and Γi the values at
the old and new breakup vertices needed to produce a hadron with transverse mass m⊥i,
and with the zi of the step chosen according to f(zi). The proper time can be defined
in an unambiguous way, also over boundaries between the different string regions, so for
multijet events the z variable may be interpreted just as an auxiliary variable needed to
determine the next Γ value. (In the Lund symmetric fragmentation function derivation,
the Γ variable actually does appear naturally, so the choice is not as arbitrary as it may
seem here.) The mass and Γ constraints together are sufficient to determine where the
next string breakup is to be chosen, given the preceding one in the iteration scheme.
Actually, several ambiguities remain, but are of no importance for the overall picture.

The algorithm for finding the next breakup then works something like follows. Pick
a hadron, p⊥, and z, and calculate the next Γ. If the old breakup is in the region (j, k),
and if the new breakup is also assumed to be in the same region, then the m2 and Γ

constraints can be reformulated in terms of the fractions x
(j)
+ and x

(k)
− the hadron must

take of the total four-vectors p
(j)
+ and p

(k)
− :

m2 = c1 + c2x
(j)
+ + c3x

(k)
− + c4x

(j)
+ x

(k)
− ,

Γ = d1 + d2x
(j)
+ + d3x

(k)
− + d4x

(j)
+ x

(k)
− . (230)

Here the coefficients cn are fairly simple expressions, obtainable by squaring eq. (227),
while dn are slightly more complicated in that they depend on the position of the old
string break, but both the cn and the dn are explicitly calculable. What remains is an

equation system with two unknowns, x
(j)
+ and x

(k)
− . The absence of any quadratic terms is

due to the fact that all p
(i)2
± = 0, i.e. to the choice of a formulation based on light-cone-like

longitudinal vectors. Of the two possible solutions to the equation system (elimination of
one variable gives a second degree equation in the other), one is unphysical and can be
discarded outright. The other solution is checked for whether the x± values are actually
inside the physically allowed region, i.e. whether the x± values of the current step, plus
whatever has already been used up in previous steps, are less than unity. If yes, a solution
has been found. If no, it is because the breakup could not take place inside the region
studied, i.e. because the equation system was solved for the wrong region. One therefore
has to change either index j or index k above by one step, i.e. go to the next nearest
string region. In this new region, a new equation system of the type in eq. (230) may be
written down, with new coefficients. A new solution is found and tested, and so on until
a physically acceptable solution is found. The hadron four-momentum is now given by
an expression of the type (227). The breakup found forms the starting point for the new
step in the fragmentation chain, and so on. The final joining in the middle is done as in
the 2-jet case, with minor extensions.

12.3 Independent Fragmentation

The independent fragmentation (IF) approach dates back to the early seventies [Krz72],
and gained widespread popularity with the Field-Feynman paper [Fie78]. Subsequently,
IF was the basis for two programs widely used in the early PETRA/PEP days, the Hoyer
et al. [Hoy79] and the Ali et al. [Ali80] programs. Pythia has as (non-default) options a
wide selection of independent fragmentation algorithms.

319

12.3.1 Fragmentation of a single jet

In the IF approach, it is assumed that the fragmentation of any system of partons can be
described as an incoherent sum of independent fragmentation procedures for each parton
separately. The process is to be carried out in the overall c.m. frame of the jet system,
with each jet fragmentation axis given by the direction of motion of the corresponding
parton in that frame.

Exactly as in string fragmentation, an iterative ansatz can be used to describe the
successive production of one hadron after the next. Assume that a quark is kicked out by
some hard interaction, carrying a well-defined amount of energy and momentum. This
quark jet q is split into a hadron qq1 and a remainder-jet q1, essentially collinear with
each other. New quark and hadron flavours are picked as already described. The sharing
of energy and momentum is given by some probability distribution f(z), where z is the
fraction taken by the hadron, leaving 1 − z for the remainder-jet. The remainder-jet is
assumed to be just a scaled-down version of the original jet, in an average sense. The
process of splitting off a hadron can therefore be iterated, to yield a sequence of hadrons.
In particular, the function f(z) is assumed to be the same at each step, i.e. independent
of remaining energy. If z is interpreted as the fraction of the jet E + pL, i.e. energy plus
longitudinal momentum with respect to the jet axis, this leads to a flat central rapidity
plateau dn/dy for a large initial energy.

Fragmentation functions can be chosen among those listed above for string fragmen-
tation, but also here the default is the Lund symmetric fragmentation function.

The normal z interpretation means that a choice of a z value close to 0 corresponds to a
particle moving backwards, i.e. with pL < 0. It makes sense to allow only the production of
particles with pL > 0, but to explicitly constrain z accordingly would destroy longitudinal
invariance. The most straightforward way out is to allow all z values but discard hadrons
with pL < 0. Flavour, transverse momentum and E + pL carried by these hadrons are
‘lost’ for the forward jet. The average energy of the final jet comes out roughly right
this way, with a spread of 1–2 GeV around the mean. The jet longitudinal momentum
is decreased, however, since the jet acquires an effective mass during the fragmentation
procedure. For a 2-jet event this is as it should be, at least on average, because also the
momentum of the compensating opposite-side parton is decreased.

Flavour is conserved locally in each qiqi splitting, but not in the jet as a whole. First
of all, there is going to be a last meson qn−1qn generated in the jet, and that will leave
behind an unpaired quark flavour qn. Independent fragmetation does not specify the fate
of this quark. Secondly, also a meson in the middle of the flavour chain may be selected
with such a small z value that it obtains pL < 0 and is rejected. Thus a u quark jet of
charge 2/3 need not only gives jets of charge 0 or 1, but also of −1 or +2, or even higher.
Like with the jet longitudinal momentum above, one could imagine this compensated by
other jets in the event.

It is also assumed that transverse momentum is locally conserved, i.e. the net p⊥
of the qiqi pair as a whole is assumed to be vanishing. The p⊥ of the qi is taken to
be a Gaussian in the two transverse degrees of freedom separately, with the transverse
momentum of a hadron obtained by the sum of constituent quark transverse momenta.
The total p⊥ of a jet can fluctuate for the same two reasons as discussed above for flavour.
Furthermore, in some scenarios one may wish to have the same p⊥ distribution for the
first-rank hadron qq1 as for subsequent ones, in which case also the original q should be
assigned an unpaired p⊥ according to a Gaussian.

Within the IF framework, there is no unique recipe for how gluon jet fragmentation
should be handled. One possibility is to treat it exactly like a quark jet, with the initial
quark flavour chosen at random among u, u, d, d, s and s, including the ordinary s quark
suppression factor. Since the gluon is supposed to fragment more softly than a quark
jet, the fragmentation function may be chosen independently. Another common option

320

is to split the g jet into a pair of parallel q and q ones, sharing the energy, e.g. as in a
perturbative branching g → qq, i.e. f(z) ∝ z2 + (1 − z)2. The fragmentation function
could still be chosen independently, if so desired. Further, in either case the fragmentation
p⊥ could be chosen to have a different mean.

12.3.2 Fragmentation of a jet system

In a system of many jets, each jet is fragmented independently. Since each jet by itself
does not conserve the flavour, energy and momentum, as we have seen, then neither does
a system of jets. At the end of the generation, special algorithms are therefore used to
patch this up. The choice of approach has major consequences, e.g. for event shapes and
αs determinations [Sjö84a].

Little attention is usually given to flavour conservation, and we only offer one scheme.
When the fragmentation of all jets has been performed, independently of each other,
the net initial flavour composition, i.e. number of u quarks minus number of u quarks
etc., is compared with the net final flavour composition. In case of an imbalance, the
flavours of the hadron with lowest three-momentum are removed, and the imbalance is
re-evaluated. If the remaining imbalance could be compensated by a suitable choice of
new flavours for this hadron, flavours are so chosen, a new mass is found and the new
energy can be evaluated, keeping the three-momentum of the original hadron. If the
removal of flavours from the hadron with lowest momentum is not enough, flavours are
removed from the one with next-lowest momentum, and so on until enough freedom is
obtained, whereafter the necessary flavours are recombined at random to form the new
hadrons. Occasionally one extra qiqi pair must be created, which is then done according
to the customary probabilities.

Several different schemes for energy and momentum conservation have been devised.
One [Hoy79] is to conserve transverse momentum locally within each jet, so that the final
momentum vector of a jet is always parallel with that of the corresponding parton. Then
longitudinal momenta may be rescaled separately for particles within each jet, such that
the ratio of rescaled jet momentum to initial parton momentum is the same in all jets.
Since the initial partons had net vanishing three-momentum, so do now the hadrons. The
rescaling factors may be chosen such that also energy comes out right. Another common
approach [Ali80] is to boost the event to the frame where the total hadronic momentum
is vanishing. After that, energy conservation can be obtained by rescaling all particle
three-momenta by a common factor.

The number of possible schemes is infinite. Two further options are available in the
program. One is to shift all particle three-momenta by a common amount to give net
vanishing momentum, and then rescale as before. Another is to shift all particle three-
momenta, for each particle by an amount proportional to the longitudinal mass with
respect to the imbalance direction, and with overall magnitude selected to give momentum
conservation, and then rescale as before. In addition, there is a choice of whether to treat
separate colour singlets (like qq′ and q′q in a qqq′q′ event) separately or as one single big
system.

A serious conceptual weakness of the IF framework is the issue of Lorentz invariance.
The outcome of the fragmentation procedure depends on the coordinate frame chosen,
a problem circumvented by requiring fragmentation always to be carried out in the c.m.
frame. This is a consistent procedure for 2-jet events, but only a technical trick for
multijets.

It should be noted, however, that a Lorentz covariant generalization of the independent
fragmentation model exists, in which separate ‘gluon-type’ and ‘quark-type’ strings are
used, the Montvay scheme [Mon79]. The ‘quark string’ is characterized by the ordinary
string constant κ, whereas a ‘gluon string’ is taken to have a string constant κg. If κg > 2κ
it is always energetically favourable to split a gluon string into two quark ones, and the

321

ordinary Lund string model is recovered. Otherwise, for a 3-jet qqg event the three
different string pieces are joined at a junction. The motion of this junction is given by the
composant of string tensions acting on it. In particular, it is always possible to boost an
event to a frame where this junction is at rest. In this frame, much of the standard näıve
IF picture holds for the fragmentation of the three jets; additionally, a correct treatment
would automatically give flavour, momentum and energy conservation. Unfortunately,
the simplicity is lost when studying events with several gluon jets. In general, each event
will contain a number of different junctions, resulting in a polypod shape with a number
of quark and gluons strings sticking out from a skeleton of gluon strings. With the shift
of emphasis from three-parton to multi-parton configurations, the simple option existing
in Jetset 6.3 therefore is no longer included.

A second conceptual weakness of IF is the issue of collinear divergences. In a parton-
shower picture, where a quark or gluon is expected to branch into several reasonably
collimated partons, the independent fragmentation of one single parton or of a bunch of
collinear ones gives quite different outcomes, e.g. with a much larger hadron multiplicity
in the latter case. It is conceivable that a different set of fragmentation functions could be
constructed in the shower case in order to circumvent this problem (local parton–hadron
duality [Dok89] would correspond to having f(z) = δ(z − 1)).

12.4 Other Fragmentation Aspects

Here some further aspects are considered.

12.4.1 Small mass systems

A hadronic event is conventionally subdivided into sets of partons that form separate
colour singlets. These sets are represented by strings, that e.g. stretch from a quark end
via a number of intermediate gluons to an antiquark end. Three string mass regions may
be distinguished for the hadronization.

1. Normal string fragmentation. In the ideal situation, each string has a large invariant
mass. Then the standard iterative fragmentation scheme above works well. In
practice, this approach can be used for all strings above some cut-off mass of a few
GeV.

2. Cluster decay. If a string is produced with a small invariant mass, maybe only
two-body final states are kinematically accessible. The traditional iterative Lund
scheme is then not applicable. We call such a low-mass string a cluster, and consider
it separately from above. The modelling is still intended to give a smooth match on
to the standard string scheme in the high-cluster-mass limit [Nor98].

3. Cluster collapse. This is the extreme case of the above situation, where the string
mass is so small that the cluster cannot decay into two hadrons. It is then assumed
to collapse directly into a single hadron, which inherits the flavour content of the
string endpoints. The original continuum of string/cluster masses is replaced by a
discrete set of hadron masses. Energy and momentum then cannot be conserved
inside the cluster, but must be exchanged with the rest of the event [Nor98].

String systems below a threshold mass are handled by the cluster machinery. In it, an
attempt is first made to produce two hadrons, by having the string break in the middle
by the production of a new qq pair, with flavours and hadron spins selected according
to the normal string rules. If the sum of the hadron masses is larger than the cluster
mass, repeated attempts can be made to find allowed hadrons; the default is two tries. If
an allowed set is found, the angular distribution of the decay products in the cluster rest
framed is picked isotropically near the threshold, but then gradually more elongated along
the string direction, to provide a smooth match to the string description at larger masses.

322

This also includes a forward–backward asymmetry, so that each hadron is preferentially
in the same hemisphere as the respective original quark it inherits.

If the attempts to find two hadrons fail, one single hadron is formed from the given
flavour content. The basic strategy thereafter is to exchange some minimal amount of
energy and momentum between the collapsing cluster and other string pieces in the neigh-
bourhood. The momentum transfer can be in either direction, depending on whether the
hadron is lighter or heavier than the cluster it comes from. When lighter, the excess mo-
mentum is split off and put as an extra ‘gluon’ on the nearest string piece, where ‘nearest’
is defined by a space–time history-based distance measure. When the hadron is heavier,
momentum is instead borrowed from the endpoints of the nearest string piece.

The free parameters of the model can be tuned to data, especially to the significant
asymmetries observed between the production of D and D mesons in π−p collisions, with
hadrons that share some of the π− flavour content very much favoured at large xF in the
π− fragmentation region [Ada93]. These spectra and asymmetries are closely related to
the cluster collapse mechanism, and also to other effects of the colour topology of the
event (‘beam drag’) [Nor98]. The most direct parameters are the choice of compensation
scheme (MSTJ(16)), the number of attempts to find a kinematically valid two-body de-
cay (MSTJ(16)) and the border between cluster and string descriptions (PARJ(32)). Also
many other parameters enter the description, however, such as the effective charm mass
(PMAS(4,1)), the quark constituent masses (PARF(101) - PARF(105)), the beam rem-
nant structure (MSTP(91) - MSTP(94) and PARP(91) - PARP(100)) and the standard
string fragmentation parameters.

The cluster collapse is supposed to be a part of multiparticle production. It is not
intended for exclusive production channels, and may there give quite misleading results.
For instance, a cc quark pair produced in a γγ collision could well be collapsed to a
single J/ψ if the invariant mass is small enough, even though the process γγ → J/ψ in
theory is forbidden by spin–parity–charge considerations. Furthermore, properties such
as strong isospin are not considered in the string fragmentation picture (only its third
component, i.e. flavour conservation), neither when one nor when many particles are
produced. For multiparticle states this should matter little, since the isospin then will be
duly randomized, but properly it would forbid the production of several one- or two-body
states that currently are generated.

12.4.2 Interconnection Effects

The widths of the W, Z and t are all of the order of 2 GeV. A standard model Higgs with
a mass above 200 GeV, as well as many supersymmetric and other beyond the standard
model particles would also have widths in the multi-GeV range. Not far from threshold,
the typical decay times τ = 1/Γ ≈ 0.1 fm � τhad ≈ 1 fm. Thus hadronic decay systems
overlap, between a resonance and the underlying event, or between pairs of resonances,
so that the final state may not contain independent resonance decays.

So far, studies have mainly been performed in the context of W pair production at
LEP2. Pragmatically, one may here distinguish three main eras for such interconnection:

1. Perturbative: this is suppressed for gluon energies ω > Γ by propagator/timescale
effects; thus only soft gluons may contribute appreciably.

2. Nonperturbative in the hadroformation process: normally modelled by a colour
rearrangement between the partons produced in the two resonance decays and in
the subsequent parton showers.

3. Nonperturbative in the purely hadronic phase: best exemplified by Bose–Einstein
effects; see next section.

The above topics are deeply related to the unsolved problems of strong interactions:
confinement dynamics, 1/N2

C effects, quantum mechanical interferences, etc. Thus they
offer an opportunity to study the dynamics of unstable particles, and new ways to probe

323

confinement dynamics in space and time [Gus88, Sjö94], but they also risk to limit or even
spoil precision measurements.

The reconnection scenarios outlined in [Sjö94a] are now available, plus also an option
along the lines suggested in [Gus94]. Currently they can only be invoked in process 25,
e+e− →W+W− → q1q2q3q4, which is the most interesting one for the foreseeable future.
(Process 22, e+e− → γ∗/Z0 γ∗/Z0 → q1q1q2q2 can also be used, but the travel distance is
calculated based only on the Z0 propagator part. Thus, the description in scenarios I, II
and II′ below would not be sensible e.g. for a light-mass γ∗γ∗ pair.) If normally the event
is considered as consisting of two separate colour singlets, q1q2 from the W+ and q3q4

from the W−, a colour rearrangement can give two new colour singlets q1q4 and q3q2. It
therefore leads to a different hadronic final state, although differences usually turn out
to be subtle and difficult to isolate [Nor97]. When also gluon emission is considered, the
number of potential reconnection topologies increases.

Since hadronization is not understood from first principles, it is important to remember
that we deal with model building rather than exact calculations. We will use the standard
Lund string fragmentation model [And83] as a starting point, but have to extend it
considerably. The string is here to be viewed as a Lorentz covariant representation of a
linear confinement field.

The string description is entirely probabilistic, i.e. any negative-sign interference ef-
fects are absent. This means that the original colour singlets q1q2 and q3q4 may transmute
to new singlets q1q4 and q3q2, but that any effects e.g. of q1q3 or q2q4 dipoles are absent.
In this respect, the nonperturbative discussion is more limited in outlook than a corre-
sponding perturbative one. However, note that dipoles such as q1q3 do not correspond to
colour singlets, and can therefore not survive in the long-distance limit of the theory, i.e.
they have to disappear in the hadronization phase.

The imagined time sequence is the following. The W+ and W− fly apart from their
common production vertex and decay at some distance. Around each of these decay ver-
tices, a perturbative parton shower evolves from an original qq pair. The typical distance
that a virtual parton (of mass m ∼ 10 GeV, say, so that it can produce separate jets in
the hadronic final state) travels before branching is comparable with the average W+W−

separation, but shorter than the fragmentation time. Each W can therefore effectively
be viewed as instantaneously decaying into a string spanned between the partons, from a
quark end via a number of intermediate gluons to the antiquark end. The strings expand,
both transversely and longitudinally, at a speed limited by that of light. They eventually
fragment into hadrons and disappear. Before that time, however, the string from the
W+ and the one from the W− may overlap. If so, there is some probability for a colour
reconnection to occur in the overlap region. The fragmentation process is then modified.

The Lund string model does not constrain the nature of the string fully. At one
extreme, the string may be viewed as an elongated bag, i.e. as a flux tube without any
pronounced internal structure. At the other extreme, the string contains a very thin core,
a vortex line, which carries all the topological information, while the energy is distributed
over a larger surrounding region. The latter alternative is the chromoelectric analogue
to the magnetic flux lines in a type II superconductor, whereas the former one is more
akin to the structure of a type I superconductor. We use them as starting points for two
contrasting approaches, with nomenclature inspired by the superconductor analogy.

In scenario I, the reconnection probability is proportional to the space–time volume
over which the W+ and W− strings overlap, with saturation at unit probability. This
probability is calculated as follows. In the rest frame of a string piece expanding along
the ±z direction, the colour field strength is assumed to be given by

Ω(x, t) = exp
{
−(x2 + y2)/2r2

had

}
θ(t− |x|) exp

{
−(t2 − z2)/τ 2

frag

}
. (231)

The first factor gives a Gaussian fall-off in the transverse directions, with a string width
rhad ≈ 0.5 fm of typical hadronic dimensions. The time retardation factor θ(t − |x|)

324

ensures that information on the decay of the W spreads outwards with the speed of light.
The last factor gives the probability that the string has not yet fragmented at a given
proper time along the string axis, with τfrag ≈ 1.5 fm. For a string piece e.g. from the W+

decay, this field strength has to be appropriately rotated, boosted and displaced to the
W+ decay vertex. In addition, since the W+ string can be made up of many pieces, the
string field strength Ω+

max(x, t) is defined as the maximum of all the contributing Ω+’s in
the given point. The probability for a reconnection to occur is now given by

Precon = 1− exp
(
−kI

∫
d3x dt Ω+

max(x, t) Ω−max(x, t)
)
, (232)

where kI is a free parameter. If a reconnection occurs, the space–time point for this
reconnection is selected according to the differential probability Ω+

max(x, t) Ω−max(x, t). This
defines the string pieces involved and the new colour singlets.

In scenario II it is assumed that reconnections can only take place when the core
regions of two string pieces cross each other. This means that the transverse extent of
strings can be neglected, which leads to considerable simplifications compared with the
previous scenario. The position of a string piece at time t is described by a one-parameter
set x(t, α), where 0 ≤ α ≤ 1 is used to denote the position along the string. To find
whether two string pieces i and j from the W+ and W− decays cross, it is sufficient to
solve the equation system x+

i (t, α+) = x−j (t, α−) and to check that this (unique) solution is
in the physically allowed domain. Further, it is required that neither string piece has had
time to fragment, which gives two extra suppression factors of the form exp{−τ 2/τ 2

frag},
with τ the proper lifetime of each string piece at the point of crossing, i.e. as in scenario I.
If there are several string crossings, only the one that occurs first is retained. The II′

scenario is a variant of scenario II, with the requirement that a reconnection is allowed
only if it leads to a reduction of the string length.

Other models include a simplified implementation of the ‘GH’ model [Gus94], where
the reconnection is selected solely based on the criterion of a reduced string length. The
‘instantaneous’ and ‘intermediate’ scenarios are two toy models. In the former (which is
equivalent to that in [Gus88]) the two reconnected systems q1q4 and q3q2 are immediately
formed and then subsequently shower and fragment independently of each other. In the
latter, a reconnection occurs between the shower and fragmentation stages. One has to
bear in mind that the last two ‘optimistic’ (from the connectometry point of view) toy
approaches are oversimplified extremes and are not supposed to correspond to the true
nature. These scenarios may be useful for reference purposes, but are essentially already
excluded by data.

While interconnection effects are primarily viewed as hadronization physics, their im-
plementation is tightly coupled to the event generation of a few specific processes, and not
to the generic handronization machinery. Therefore the relevant main switch MSTP(115)
and parameters PARP(115) - PARP(120) are described in subsection 9.3.

12.4.3 Bose–Einstein effects

A crude option for the simulation of Bose–Einstein effects is included since long, but is
turned off by default. In view of its shortcomings, alternative descriptions have been
introduced that try to overcome at least some of them [Lön95].

The detailed BE physics is not that well understood, see e.g. [Lör89]. What is offered
is an algorithm, more than just a parameterization (since very specific assumptions and
choices have been made), and yet less than a true model (since the underlying physics
picture is rather fuzzy). In this scheme, the fragmentation is allowed to proceed as usual,
and so is the decay of short-lived particles like ρ. Then pairs of identical particles, π+

say, are considered one by one. The Qij value of a pair i and j is evaluated,

Qij =
√

(pi + pj)2 − 4m2 , (233)

325

where m is the common particle mass. A shifted (smaller) Q′ij is then to be found such
that the (infinite statistics) ratio f2(Q) of shifted to unshifted Q distributions is given by
the requested parameterization. The shape may be chosen either exponential or Gaussian,

f2(Q) = 1 + λ exp (−(Q/d)r) , r = 1 or 2 . (234)

(In fact, the distribution has to dip slightly below unity at Q values outside the Bose
enhancement region, from conservation of total multiplicity.) If the inclusive distribution
of Qij values is assumed given just by phase space, at least at small relative momentum
then, with d3p/E ∝ Q2 dQ/

√
Q2 + 4m2, then Q′ij is found as the solution to the equation

∫ Qij

0

Q2 dQ√
Q2 + 4m2

=
∫ Q′ij

0
f2(Q)

Q2 dQ√
Q2 + 4m2

. (235)

The change of Qij can be translated into an effective shift of the three-momenta of the
two particles, if one uses as extra constraint that the total three-momentum of each pair
be conserved in the c.m. frame of the event. Only after all pairwise momentum shifts
have been evaluated, with respect to the original momenta, are these momenta actually
shifted, for each particle by the (three-momentum) sum of evaluated shifts. The total
energy of the event is slightly reduced in the process, which is compensated by an overall
rescaling of all c.m. frame momentum vectors. It can be discussed which are the particles
to involve in this rescaling. Currently the only exceptions to using everything are leptons
and neutrinos coming from resonance decays (such as W’s) and photons radiated by
leptons (also in initial state radiation). Finally, the decay chain is resumed with more
long-lived particles like π0.

Two comments can be made. The Bose–Einstein effect is here interpreted almost as a
classical force acting on the ‘final state’, rather than as a quantum mechanical phenomenon
on the production amplitude. This is not a credo, but just an ansatz to make things
manageable. Also, since only pairwise interactions are considered, the effects associated
with three or more nearby particles tend to get overestimated. (More exact, but also
more time-consuming methods may be found in [Zaj87].) Thus the input λ may have
to be chosen smaller than what one wants to get out. (On the other hand, many of the
pairs of an event contains at least one particle produced in some secondary vertex, like a
D decay. This reduces the fraction of pairs which may contribute to the Bose–Einstein
effects, and thus reduces the potential signal.) This option should therefore be used with
caution, and only as a first approximation to what Bose–Einstein effects can mean.

Probably the largest weakness of the above approach is the issue how to conserve the
total four-momentum. It preserves three-momentum locally, but at the expense of not
conserving energy. The subsequent rescaling of all momenta by a common factor (in the
rest frame of the event) to restore energy conservation is purely ad hoc. For studies of a
single Z0 decay, it can plausibly be argued that such a rescaling does minimal harm. The
same need not hold for a pair of resonances. Indeed, studies [Lön95] show that this global
rescaling scheme, which we will denote BE0, introduces an artificial negative shift in the
reconstructed W mass, making it difficult (although doable) to study the true BE effects
in this case. This is one reason to consider alternatives.

The global rescaling is also running counter to our philosophy that BE effects should
be local. To be more specific, we assume that the energy density of the string is a fixed
quantity. To the extent that a pair of particles have their four-momenta slightly shifted,
the string should act as a ‘commuting vessel’, providing the difference to other particles
produced in the same local region of the string. What this means in reality is still not
completely specified, so further assumptions are necessary. In the following we discuss
four possible algorithms, whereof the last two are based strictly on the local conservation
aspect above, while the first two are attempting a slightly different twist to the locality

326

concept. All are based on calculating an additional shift δrlk for some pairs of particles,
where particles k and l need not be identical bosons. In the end each particle momentum
will then be shifted to p′i = pi +

∑
j 6=i δp

j
i + α

∑
k 6=i δr

k
i , with the parameter α adjusted

separately for each event so that the total energy is conserved.
In the first approach we emulate the criticism of the global event weight methods with

weights always above unity, as being intrinsically unstable. It appears more plausible that
weights fluctuate above and below unity. For instance, the simple pair symmetrization
weight is 1+cos(∆x ·∆p), with the 1+λ exp(−Q2R2) form only obtained after integration
over a Gaussian source. Non-Gaussian sources give oscillatory behaviours

If weights above unity correspond to a shift of pairs towards smaller relative Q values,
the below-unity weights instead give a shift towards larger Q. One therefore is lead to a
picture where very nearby identical particles are shifted closer, those somewhat further
are shifted apart, those even further yet again shifted closer, and so on. Probably the
oscillations dampen out rather quickly, as indicated both by data and by the global model
studies. We therefore simplify by simulating only the first peak and dip. Furthermore, to
include the desired damping and to make contact with our normal generation algorithm
(for simplicity), we retain the Gaussian form, but the standard f2(Q) = 1+λ exp(−Q2R2)
is multiplied by a further factor 1+αλ exp(−Q2R2/9). The factor 1/9 in the exponential,
i.e. a factor 3 difference in the Q variable, is consistent with data and also with what one
might expect from a dampened cos form, but should be viewed more as a simple ansatz
than having any deep meaning.

In the algorithm, which we denote BE3, δrji is then non-zero only for pairs of identical
bosons, and is calculated in the same way as δpji , with the additional factor 1/9 in the
exponential. As explained above, the δrji shifts are then scaled by a common factor α
that ensures total energy conservation. It turns out that the average α needed is ≈ −0.2.
The negative sign is exactly what we want to ensure that δrji corresponds to shifting a
pair apart, while the order of α is consistent with the expected increase in the number
of affected pairs when a smaller effective radius R/3 is used. One shortcoming of the
method, as implemented here, is that the input f2(0) is not quite 2 for λ = 1 but rather
(1 + λ)(1 + αλ) ≈ 1.6. This could be solved by starting off with an input λ somewhat
above unity.

The second algorithm, denoted BE32, is a modification of the BE3 form intended to
give f2(0) = 1 + λ. The ansatz is

f2(Q) =
{

1 + λ exp(−Q2R2)
}{

1 + αλ exp(−Q2R2/9)
(
1− exp(−Q2R2/4)

)}
, (236)

applied to identical pairs. The combination exp(−Q2R2/9) (1− exp(−Q2R2/4)) can be
viewed as a Gaussian, smeared-out representation of the first dip of the cos function. As
a technical trick, the δrji are found as in the BE3 algorithm and thereafter scaled down by
the 1 − exp(−Q2R2/4) factor. (This procedure does not quite reproduce the formalism
of eq. (235), but comes sufficiently close for our purpose, given that the ansatz form in
itself is somewhat arbitrary.) One should note that, even with the above improvement
relative to the BE3 scheme, the observable two-particle correlation is lower at small Q
than in the BE0 algorithm, so some further tuning of λ could be required. In this scheme,
〈α〉 ≈ −0.25.

In the other two schemes, the original form of f2(Q) is retained, and the energy is
instead conserved by picking another pair of particles that are shifted apart appropriately.
That is, for each pair of identical particles i and j, a pair of non-identical particles, k and
l, neither identical to i or j, is found in the neighbourhood of i and j. For each shift δpji , a
corresponding δrlk is found so that the total energy and momentum in the i, j, k, l system is
conserved. However, the actual momentum shift of a particle is formed as the composant
of many contributions, so the above pair compensation mechanism is not perfect. The
mismatch is reflected in a non-unit value α used to rescale the δrlk terms.

327

The k, l pair should be the particles ‘closest’ to the pair affected by the BE shift, in the
spirit of local energy conservation. One option would here have been to ‘look behind the
scenes’ and use information on the order of production along the string. However, once
decays of short-lived particles are included, such an approach would still need arbitrary
further rules. We therefore stay with the simplifying principle of only using the produced
particles.

Looking at W+W− (or Z0Z0) events and a pair i, j with both particles from the same
W, it is not obvious whether the pair k, l should also be selected only from this W or if all
possible pairs should be considered. Below we have chosen the latter as default behaviour,
but the former alternative is also studied below.

One obvious measure of closeness is small invariant mass. A first choice would then
be to pick the combination that minimizes the invariant mass mijkl of all four particles.
However, such a procedure does not reproduce the input f2(Q) shape very well: both the
peak height and peak width are significantly reduced, compared with what happens in
the BE0 algorithm. The main reason is that either of k or l may have particles identical
to itself in its local neighbourhood. The momentum compensation shift of k is at random,
more or less, and therefore tends to smear the BE signal that could be introduced relative
to k’s identical partner. Note that, if k and its partner are very close in Q to start
with, the relative change δQ required to produce a significant BE effect is very small,
approximately δQ ∝ Q. The momentum compensation shift on k can therefore easily
become larger than the BE shift proper.

It is therefore necessary to disfavour momentum compensation shifts that break up
close identical pairs. One alternative would have been to share the momentum conser-
vation shifts suitably inside such pairs. We have taken a simpler course, by introducing
a suppression factor 1 − exp(−Q2

kR
2) for particle k, where Qk is the Q value between k

and its nearest identical partner. The form is fixed such that a Qk = 0 is forbidden and
then the rise matches the shape of the BE distribution itself. Specifically, in the third
algorithm, BEm, the pair k, l is chosen so that the measure

Wijkl =
(1− exp(−Q2

kR
2))(1− exp(−Q2

lR
2))

m2
ijkl

(237)

is maximized. The average α value required to rescale for the effect of multiple shifts is
0.73, i.e. somewhat below unity.

The BEλ algorithm is inspired by the so-called λ measure [And89] (not the be confused
with the λ parameter of f2(Q)). It corresponds to a string length in the Lund string
fragmentation framework. It can be shown that partons in a string are colour-connected
in a way that tends to minimize this measure. The same is true for the ordering of the
produced hadrons, although with large fluctuations. As above, having identical particles
nearby to k, l gives undesirable side effects. Therefore the selection is made so that

Wijkl =
(1− exp(−Q2

kR
2))(1− exp(−Q2

lR
2))

min(12 permutations)(mijmjkmkl,mijmjlmlk, . . .)
(238)

is maximized. The denominator is intended to correspond to exp(λ). For cases where
particles i and j comes from the same string, this would favour compensating the energy
using particles that are close by and in the same string. We find 〈α〉 ≈ 0.73, as above.

The main switches and parameters affecting the Bose–Einstein algorithm are MSTJ(51)
- MSTJ(57) and PARJ(91) - PARJ(96).

328

13 Particles and Their Decays

Particles are the building blocks from which events are constructed. We here use the
word ‘particle’ in its broadest sense, i.e. including partons, resonances, hadrons, and so
on, subgroups we will describe in the following. Each particle is characterized by some
quantities, such as charge and mass. In addition, many of the particles are unstable and
subsequently decay. This section contains a survey of the particle content of the programs,
and the particle properties assumed. In particular, the decay treatment is discussed. Some
particle and decay properties form part already of the hard subprocess description, and
are therefore described in sections 6, 7 and 8.

13.1 The Particle Content

In order to describe both current and potential future physics, a number of different
particles are needed. A list of some particles, along with their codes, is given in section
5.1. Here we therefore emphasize the generality rather than the details.

Four full generations of quarks and leptons are included in the program, although
indications from LEP strongly suggest that only three exist in Nature. The PDG naming
convention for the fourth generation is to repeat the third one but with a prime: b′, t′ τ ′

and ν ′τ . Quarks may appear either singly or in pairs; the latter are called diquarks and
are characterized by their flavour content and their spin. A diquark is always assumed to
be in a colour antitriplet state.

The colour neutral hadrons may be build up from the five lighter coloured quarks (and
diquarks). Six full meson multiplets are included and two baryon ones, see section 12.1.
In addition, K0

S and K0
L are considered as separate particles coming from the ‘decay’ of

K0 and K
0

(or, occasionally, produced directly).
Other particles from the Standard Model include the gluon g, the photon γ, the

intermediate gauge bosons Z0 and W±, and the standard Higgs h0. Non-standard particles
include additional gauge bosons, Z′0 and W′±, additional Higgs bosons H0, A0 and H±,
a leptoquark LQ a horizontal gauge boson R0, technicolor and supersymmetric particles,
and more.

From the point of view of usage inside the programs, particles may be subdivided into
three classes, partly overlapping.

1. A parton is generically any object which may be found in the wave function of the
incoming beams, and may participate in initial- or final-state showers. This includes
what is normally meant by partons, i.e. quarks and gluons, but here also leptons and
photons. In a few cases other particles may be classified as partons in this sense.

2. A resonance is an unstable particle produced as part of the hard process, and where
the decay treatment normally is also part of the hard process. Resonance partial
widths are perturbatively calculable, and therefore it is possible to dynamically
recalculate branching ratios as a function of the mass assigned to a resonance. Res-
onances includes particles like the Z0 and other massive gauge bosons and Higgs
particles, in fact everything with a mass above the b quark and additionally also a
lighter γ∗.

3. Hadrons and their decay products, i.e. mesons and baryons produced either in the
fragmentation process, in secondary decays or as part of the beam remnant treat-
ment, but not directly as part of the hard process (except in a few special cases).
Hadrons may be stable or unstable. Branching ratios are not assumed perturbatively
calculable, and can therefore be set freely. Also leptons and photons produced in
decays belong to this class. In practice, this includes everything up to and including
b quarks in mass (except a light γ∗, see above).

Usually the subdivision above is easy to understand and gives you the control you
would expect. Thus the restriction on the allowed decay modes of a resonance will directly

329

affect the cross section of a process, while this is not the case for an ordinary hadron,
since in the latter case there is no precise theory knowledge on the set of decay modes
and branching ratios.

13.2 Masses, Widths and Lifetimes

13.2.1 Masses

Quark masses are not particularly well defined. In the program it is necessary to make
use of three kinds of masses, kinematical, running current algebra ones and constituent
ones. The first ones are relevant for the kinematics in hard processes, e.g. in gg → cc,
and are partly fixed by such considerations [Nor98]. The second define couplings to Higgs
particles, and also other mass-related couplings in models for physics beyond the standard
model. Both these kinds directly affect cross sections in processes. Constituent masses,
finally, are used to derive the masses of hadrons, for some not yet found ones, and e.g. to
gauge the remainder mass below which the final two hadrons are to be produced in string
fragmentation.

The first set of values are the ones stored in the standard mass array PMAS. The start-
ing values of the running masses are stored in PARF(91) - PARF(96), with the running
calculated in the PYMRUN function. Constituent masses are also stored in the PARF array,
above position 101. We maintain this distinction for the five first flavours, and partly for
top, using the following values by default:
quark kinematical current algebra mass constituent mass

d 0.33 GeV 0.0099 GeV 0.325 GeV

u 0.33 GeV 0.0056 GeV 0.325 GeV

s 0.5 GeV 0.199 GeV 0.5 GeV

c 1.5 GeV 1.35 GeV 1.6 GeV

b 4.8 GeV 4.5 GeV 5.0 GeV

t 175 GeV 165 GeV —
For top no constituent mass is defined, since it does not form hadrons. For hypothetical
fourth generation quarks only one set of mass values is used, namely the one in PMAS.
Constituent masses for diquarks are defined as the sum of the respective quark masses.
The gluon is always assumed massless.

Particle masses, when known, are taken from ref. [PDG96]. Hypothesized particles,
such as fourth generation fermions and Higgs bosons, are assigned some not unreasonable
set of default values, in the sense of where you want to search for them in the not too
distant future. Here it is understood that you will go in and change the default values
according to your own opinions at the beginning of a run.

The total number of hadrons in the program is very large, whereof some are not yet
discovered (like charm and bottom baryons). There the masses are built up, when needed,
from the constituent masses. For this purpose one uses formulae of the type [DeR75]

m = m0 +
∑

i

mi + km2
d

∑

i<j

〈σi · σj〉
mimj

, (239)

i.e. one constant term, a sum over constituent masses and a spin-spin interaction term for
each quark pair in the hadron. The constants m0 and k are fitted from known masses,
treating mesons and baryons separately. For mesons with orbital angular momentum
L = 1 the spin-spin coupling is assumed vanishing, and only m0 is fitted. One may also
define ‘constituent diquarks masses’ using the formula above, with a k value 2/3 that of
baryons. The default values are:

330

multiplet m0 k

pseudoscalars and vectors 0. 0.16 GeV

axial vectors (S = 0) 0.50 GeV 0.

scalars 0.45 GeV 0.

axial vectors (S = 1) 0.55 GeV 0.

tensors 0.60 GeV 0.

baryons 0.11 GeV 0.048 GeV

diquarks 0.077 GeV 0.048 GeV.
Unlike earlier versions of the program, the actual hadron values are hardcoded, i.e. are
unaffected by any change of the charm or bottom quark masses.

13.2.2 Widths

A width is calculated perturbatively for those resonances which appear in the Pythia
hard process generation machinery. The width is used to select masses in hard processes
according to a relativistic Breit–Wigner shape. In many processes the width is allowed
to be ŝ-dependent, see section 7.3.

Other particle masses, as discussed so far, have been fixed at their nominal value. We
now have to consider the mass broadening for short-lived particles such as ρ, K∗ or ∆.
Compared to the Z0, it is much more difficult to describe the ρ resonance shape, since
nonperturbative and threshold effects act to distort the näıve shape. Thus the ρ mass is
limited from below by its decay ρ → ππ, but also from above, e.g. in the decay φ→ ρπ.
Normally thus the allowed mass range is set by the most constraining decay chains. Some
rare decay modes, specifically ρ0 → ηγ and a2 → η′π, are not allowed to have full impact,
however. Instead one accepts an imperfect rendering of the branching ratio, as some low-
mass ρ0/a2 decays of the above kind are rejected in favour of other decay channels. In
some decay chains, several mass choices are coupled, like in a2 → ρπ, where also the a2

has a non-negligible width. Finally, there are some extreme cases, like the f0, which has a
nominal mass below the KK threshold, but a tail extending beyond that threshold, and
therefore a non-negligible branching ratio to the KK channel.

In view of examples like these, no attempt is made to provide a full description. Instead
a simplified description is used, which should be enough to give the general smearing of
events due to mass broadening, but maybe not sufficient for detailed studies of a specific
resonance. By default, hadrons are therefore given a mass distribution according to a
non-relativistic Breit–Wigner

P(m) dm ∝ 1

(m−m0)2 + Γ2/4
dm . (240)

Leptons and resonances not taken care of by the hard process machinery are distributed
according to a relativistic Breit–Wigner

P(m2) dm2 ∝ 1

(m2 −m2
0)2 +m2

0Γ2
dm2 . (241)

Here m0 and Γ are the nominal mass and width of the particle. The Breit–Wigner shape
is truncated symmetrically, |m −m0| < δ, with δ arbitrarily chosen for each particle so
that no problems are encountered in the decay chains. It is possible to switch off the mass
broadening, or to use either a non-relativistic or a relativistic Breit–Wigners everywhere.

The f0 problem has been ‘solved’ by shifting the f0 mass to be slightly above the KK
threshold and have vanishing width. Then kinematics in decays f0 → KK is reasonably
well modelled. The f0 mass is too large in the f0 → ππ channel, but this does not really
matter, since one anyway is far above threshold here.

331

13.2.3 Lifetimes

Clearly the lifetime and the width of a particle are inversely related. For practical applica-
tions, however, any particle with a non-negligible width decays too close to its production
vertex for the lifetime to be of any interest. In the program, the two aspects are therefore
considered separately. Particles with a non-vanishing nominal proper lifetime τ0 = 〈τ〉
are assigned an actual lifetime according to

P(τ) dτ ∝ exp(−τ/τ0) dτ , (242)

i.e. a simple exponential decay is assumed. Since the program uses dimensions where the
speed of light c ≡ 1, and space dimensions are in mm, then actually the unit of cτ0 is mm
and of τ0 itself mm/c ≈ 3.33× 10−12 s.

If a particle is produced at a vertex v = (x, t) with a momentum p = (p, E) and a
lifetime τ , the decay vertex position is assumed to be

v′ = v + τ
p

m
, (243)

where m is the mass of the particle. With the primary interaction (normally) in the
origin, it is therefore possible to construct all secondary vertices in parallel with the
ordinary decay treatment.

The formula above does not take into account any detector effects, such as a magnetic
field. It is therefore possible to stop the decay chains at some suitable point, and leave
any subsequent decay treatment to the detector simulation program. One may select
that particles are only allowed to decay if they have a nominal lifetime τ0 shorter than
some given value or, alternatively, if their decay vertices x′ are inside some spherical or
cylindrical volume around the origin.

13.3 Decays

Several different kinds of decay treatment are used in the program, depending on the
nature of the decay. Not discussed here are the decays of resonances which are handled
as part of the hard process.

13.3.1 Strong and electromagnetic decays

The decays of hadrons containing the ‘ordinary’ u, d and s quarks into two or three
particles are known, and branching ratios may be found in [PDG96]. (At least for the
lowest-lying states; the four L = 1 meson multiplets are considerably less well known.)
We normally assume that the momentum distributions are given by phase space. There
are a few exceptions, where the phase space is weighted by a matrix-element expression,
as follows.

In ω and φ decays to π+π−π0, a matrix element of the form

|M|2 ∝ |pπ+ × pπ−|2 (244)

is used, with the pπ the pion momenta in the rest frame of the decay. (Actually, what is
coded is the somewhat more lengthy Lorentz invariant form of the expression above.)

Consider the decay chain P0 → P1+V → P1+P2+P3, with P representing pseudoscalar
mesons and V a vector one. Here the decay angular distribution of the V in its rest frame
is

|M|2 ∝ cos2 θ02 , (245)

where θ02 is the angle between P0 and P2. The classical example is D→ K∗π → Kππ. If
the P1 is replaced by a γ, the angular distribution in the V decay is instead ∝ sin2 θ02.

332

In Dalitz decays, π0 or η → e+e−γ, the mass m∗ of the e+e− pair is selected according
to

P(m∗2) dm∗2 ∝ dm∗2

m∗2

(
1 +

2m2
e

m∗2

) √
1− 4m2

e

m∗2

(
1− m∗2

m2
π,η

)3
1

(m2
ρ −m∗2)2 +m2

ρΓ
2
ρ

.

(246)
The last factor, the VMD-inspired ρ0 propagator, is negligible for π0 decay. Once the m∗

has been selected, the angular distribution of the e+e− pair is given by

|M|2 ∝ (m∗2−2m2
e)
{

(pγpe+)2 + (pγpe−)2
}

+4m2
e

{
(pγpe+)(pγpe−) + (pγpe+)2 + (pγpe−)2

}
.

(247)
Also a number of simple decays involving resonances of heavier hadrons, e.g. Σ0

c →
Λ+

c π
− or B∗− → B−γ are treated in the same way as the other two-particle decays.

13.3.2 Weak decays of the τ lepton

For the τ lepton, an explicit list of decay channels has been put together, which includes
channels with up to five final-state particles, some of which may be unstable and subse-
quently decay to produce even larger total multiplicities.

The leptonic decays τ− → ντ`
−ν`, where ` is e or µ, are distributed according to the

standard V − A matrix element

|M|2 = (pτpν`)(p`pντ) . (248)

(The corresponding matrix element is also used in µ decays, but normally the µ is assumed
stable.)

In τ decays to hadrons, the hadrons and the ντ are distributed according to phase
space times the factor xν (3 − xν), where xν = 2Eν/mτ in the rest frame of the τ . The
latter factor is the ντ spectrum predicted by the parton level V −A matrix element, and
therefore represents an attempt to take into account that the ντ should take a larger
momentum fraction than given by phase space alone.

The probably largest shortcoming of the τ decay treatment is that no polarization
effects are included, i.e. the τ is always assumed to decay isotropically. Usually this is
not correct, since a τ is produced polarized in Z0 and W± decays. The PYTAUD routine
provides a generic interface to an external τ decay library, such as Tauola [Jad91], where
such effects could be handled (see also MSTJ(28)).

13.3.3 Weak decays of charm hadrons

The charm hadrons have a mass in an intermediate range, where the effects of the näıve
V − A weak decay matrix element is partly but not fully reflected in the kinematics of
final-state particles. Therefore different decay strategies are combined. We start with
hadronic decays, and subsequently consider semileptonic ones.

For the four ‘main’ charm hadrons, D+, D0, D+
s and Λ+

c , a number of branching ratios
are already known. The known branching ratios have been combined with reasonable
guesses, to construct more or less complete tables of all channels. For hadronic decays of
D0 and D+, where rather much is known, all channels have an explicitly listed particle
content. However, only for the two-body decays and some three-body decays is resonance
production properly taken into account. It means that the experimentally measured
branching ratio for a Kππ decay channel, say, is represented by contributions from a
direct Kππ channel as well as from indirect ones, such as K∗π and Kρ. For a channel like
Kππππ, on the other hand, not all possible combinations of resonances (many of which
would have to be off mass shell to have kinematics work out) are included. This is more or

333

less in agreement with the philosophy adopted in the PDG tables [PDG92]. For D+
s and

Λ+
c knowledge is rather incomplete, and only two-body decay channels are listed. Final

states with three or more hadron are only listed in terms of a flavour content.
The way the program works, it is important to include all the allowed decay channels

up to a given multiplicity. Channels with multiplicity higher than this may then be
generated according to a simple flavour combination scheme. For instance, in a D+

s decay,
the normal quark content is ssud, where one s is the spectator quark and the others come
from the weak decay of the c quark. The spectator quark may also be annihilated, like in
D+

s → ud. The flavour content to make up one or two hadrons is therefore present from
the onset. If one decides to generate more hadrons, this means new flavour-antiflavour
pairs have to be generated and combined with the existing flavours. This is done using
the same flavour approach as in fragmentation, section 12.1.

In more detail, the following scheme is used.
1. The multiplicity is first selected. The D+

s and Λ+
c multiplicity is selected according

to a distribution described further below. The program can also be asked to generate
decays of a predetermined multiplicity.

2. One of the non-spectator flavours is selected at random. This flavour is allowed
to ‘fragment’ into a hadron plus a new remaining flavour, using exactly the same
flavour generation algorithm as in the standard jet fragmentation, section 12.1.

3. Step 2 is iterated until only one or two hadrons remain to be generated, depending on
whether the original number of flavours is two or four. In each step one ‘unpaired’
flavour is replaced by another one as a hadron is ‘peeled off’, so the number of
unpaired flavours is preserved.

4. If there are two flavours, these are combined to form the last hadron. If there are
four, then one of the two possible pairings into two final hadrons is selected at
random. To find the hadron species, the same flavour rules are used as when final
flavours are combined in the joining of two jets.

5. If the sum of decay product masses is larger than the mass of the decaying particle,
the flavour selection is rejected and the process is started over at step 1. Normally
a new multiplicity is picked, but for D0 and D+ the old multiplicity is retained.

6. Once an acceptable set of hadrons has been found, these are distributed according
to phase space.

The picture then is one of a number of partons moving apart, fragmenting almost like
jets, but with momenta so low that phase-space considerations are enough to give the
average behaviour of the momentum distribution. Like in jet fragmentation, endpoint
flavours are not likely to recombine with each other. Instead new flavour pairs are created
in between them. One should also note that, while vector and pseudoscalar mesons are
produced at their ordinary relative rates, events with many vectors are likely to fail in
step 5. Effectively, there is therefore a shift towards lighter particles, especially at large
multiplicities.

When a multiplicity is to be picked, this is done according to a Gaussian distribution,
centered at c+nq/4 and with a width

√
c, with the final number rounded off to the nearest

integer. The value for the number of quarks nq is 2 or 4, as described above, and

c = c1 ln
(
m−∑mq

c2

)
, (249)

where m is the hadron mass and c1 and c2 have been tuned to give a reasonable description
of multiplicities. There is always some lower limit for the allowed multiplicity; if a number
smaller than this is picked the choice is repeated. Since two-body decays are explicitly
enumerated for D+

s and Λ+
c , there the minimum multiplicity is three.

Semileptonic branching ratios are explicitly given in the program for all the four par-
ticles discussed here, i.e. it is never necessary to generate the flavour content using the

334

fragmentation description. This does not mean that all branching ratios are known; a fair
amount of guesswork is involved for the channels with higher multiplicities, based on a
knowledge of the inclusive semileptonic branching ratio and the exclusive branching ratios
for low multiplicities.

In semileptonic decays it is not appropriate to distribute the lepton and neutrino
momenta according to phase space. Instead the simple V −A matrix element is used, in
the limit that decay product masses may be neglected and that quark momenta can be
replaced by hadron momenta. Specifically, in the decay H → `+ν`h, where H is a charm
hadron and h and ordinary hadron, the matrix element

|M|2 = (pHp`)(pνph) (250)

is used to distribute the products. It is not clear how to generalize this formula when
several hadrons are present in the final state. In the program, the same matrix element
is used as above, with ph replaced by the total four-momentum of all the hadrons. This
tends to favour a low invariant mass for the hadronic system compared with näıve phase
space.

There are a few charm hadrons, such as Ξc and Ωc, which decay weakly but are so rare
that little is known about them. For these a simplified generic charm decay treatment is
used. For hadronic decays only the quark content is given, and then a multiplicity and a
flavour composition is picked at random, as already described. Semileptonic decays are
assumed to produce only one hadron, so that V −A matrix element can be simply applied.

13.3.4 Weak decays of bottom hadrons

Some exclusive branching ratios now are known for B decays. In this version, the B0,
B+, B0

s and Λ0
b therefore appear in a similar vein to the one outlined above for D+

s and
Λ+

c above. That is, all leptonic channels and all hadronic two-body decay channels are
explicitly listed, while hadronic channels with three or more particles are only given in
terms of a quark content. The Bc is exceptional, in that either the bottom or the charm
quark may decay first, and in that annihilation graphs may be non-negligible. Leptonic
and semileptonic channels are here given in full, while hadronic channels are only listed
in terms of a quark content, with a relative composition as given in [Lus91]. No separate
branching ratios are set for any of the other weakly decaying bottom hadrons, but instead
a pure ‘spectator quark’ model is assumed, where the decay of the b quark is the same in all
hadrons and the only difference in final flavour content comes from the spectator quark.
Compared to the charm decays, the weak decay matrix elements are given somewhat
larger importance in the hadronic decay channels.

In semileptonic decays b→ c`−ν` the c quark is combined with the spectator antiquark
or diquark to form one single hadron. This hadron may be either a pseudoscalar, a vector
or a higher resonance (tensor etc.). The relative fraction of the higher resonances has been
picked to be about 30%, in order to give a leptonic spectrum in reasonable experiment
with data. (This only applies to the main particles B0, B+, B0

s and Λ0
b; for the rest the

choice is according to the standard composition in the fragmentation.) The overall process
is therefore H → h`−ν`, where H is a bottom antimeson or a bottom baryon (remember
that B is the one that contains a b quark), and the matrix element used to distribute
momenta is

|M|2 = (pHpν)(p`ph) . (251)

Again decay product masses have been neglected in the matrix element, but in the branch-
ing ratios the τ−ντ channel has been reduced in rate, compared with e−νe and µ−νµ ones,
according to the expected mass effects. No CKM-suppressed decays b → u`−ν` are cur-
rently included.

In most multibody hadronic decays, e.g. b → cdu, the c quark is again combined
with the spectator flavour to form one single hadron, and thereafter the hadron and the

335

two quark momenta are distributed according to the same matrix element as above, with
`− ↔ d and ν` ↔ u. The invariant mass of the two quarks is calculated next. If this
mass is so low that two hadrons cannot be formed from the system, the two quarks are
combined into one single hadron. Else the same kind of approach as in hadronic charm
decays is adopted, wherein a multiplicity is selected, a number of hadrons are formed and
thereafter momenta are distributed according to phase space. The difference is that here
the charm decay product is distributed according to the V −A matrix element, and only
the rest of the system is assumed isotropic in its rest frame, while in charm decays all
hadrons are distributed isotropically.

Note that the c quark and the spectator are assumed to form one colour singlet and
the du another, separate one. It is thus assumed that the original colour assignments of
the basic hard process are better retained than in charm decays. However, sometimes
this will not be true, and with about 20% probability the colour assignment is flipped
around so that cu forms one singlet. (In the program, this is achieved by changing the
order in which decay products are given.) In particular, the decay b → csc is allowed to
give a cc colour-singlet state part of the time, and this state may collapse to a single J/ψ.
Two-body decays of this type are explicitly listed for B0, B+, B0

s and Λ0
b; while other J/ψ

production channels appear from the flavour content specification.

The B0–B
0

and B0
s–B

0
s systems mix before decay. This is optionally included. With a

probability

Pflip = sin2

(
x τ

2 〈τ〉

)
(252)

a B is therefore allowed to decay like a B, and vice versa. The mixing parameters are by

default xd = 0.7 in the B0–B
0

system and xs = 10 in the B0
s–B

0
s one.

In the past, the generic B meson and baryon decay properties were stored for ‘particle’
85, now obsolete but not yet removed. This particle contains a description of the free b
quark decay, with an instruction to find the spectator flavour according to the particle
code of the actual decaying hadron.

13.3.5 Other decays

For onia spin 1 resonances, decay channels into a pair of leptons are explicitly given.
Hadronic decays of the J/ψ are simulated using the flavour generation model introduced
for charm. For Υ a fraction of the hadronic decays is into qq pairs, while the rest is into
ggg or ggγ, using the matrix elements of eq. (43). The ηc and ηb are both allowed to decay
into a gg pair, which then subsequently fragments. In Υ and ηb decays the partons are
allowed to shower before fragmentation, but energies are too low for showering to have
any impact.

Default branching ratios are given for resonances like the Z0, the W±, the t or the h0.
When Pythia is initialized, these numbers are replaced by branching ratios evaluated
from the given masses. For Z0 and W± the branching ratios depend only marginally on the
masses assumed, while effects are large e.g. for the h0. In fact, branching ratios may vary
over the Breit–Wigner resonance shape, something which is also taken into account in
the PYRESD description. Therefore the simpler resonance treatment of PYDECY is normally
not so useful, and should be avoided. When it is used, a channel is selected according to
the given fixed branching ratios. If the decay is into a qq pair, the quarks are allowed to
shower and subsequently the parton system is fragmented.

336

14 The Fragmentation and Decay Program Elements

In this section we collect information on most of the routines and common block variables
found in the fragmentation and decay descriptions of Pythia, plus a number of related
low-level tasks.

14.1 Definition of Initial Configuration or Variables

With the use of the conventions described for the event record, it is possible to specify any
initial jet/particle configuration. This task is simplified for a number of often occurring
situations by the existence of the filling routines below. It should be noted that many
users do not come in direct contact with these routines, since that is taken care of by
higher-level routines for specific processes, particularly PYEVNT and PYEEVT.

Several calls to the routines can be combined in the specification. In case one call is
enough, the complete fragmentation/decay chain may be simulated at the same time. At
each call, the value of N is updated to the last line used for information in the call, so if
several calls are used, they should be made with increasing IP number, or else N should
be redefined by hand afterwards.

The routine PYJOIN is very useful to define the colour flow in more complicated parton
configurations; thereby one can bypass the not so trivial rules for how to set the K(I,4)
and K(I,5) colour-flow information.

The routine PYGIVE contains a facility to set various commonblock variables in a
controlled and documented fashion.

CALL PY1ENT(IP,KF,PE,THE,PHI)

Purpose: to add one entry to the event record, i.e. either a parton or a particle.
IP : normally line number for the parton/particle. There are two exceptions.

If IP=0, line number 1 is used and PYEXEC is called.
If IP<0, line -IP is used, with status code K(-IP,2)=2 rather than 1; thus a
parton system may be built up by filling all but the last parton of the system
with IP<0.

KF : parton/particle flavour code.
PE : parton/particle energy. If PE is smaller than the mass, the parton/particle is

taken to be at rest.
THE, PHI : polar and azimuthal angle for the momentum vector of the parton/particle.

CALL PY2ENT(IP,KF1,KF2,PECM)

Purpose: to add two entries to the event record, i.e. either a 2-parton system or two
separate particles.

IP : normally line number for the first parton/particle, with the second in line IP+1.
There are two exceptions.
If IP=0, lines 1 and 2 are used and PYEXEC is called.
If IP<0, lines -IP and -IP+1 are used, with status code K(I,1)=3, i.e. with
special colour connection information, so that a parton shower can be generated
by a PYSHOW call, followed by a PYEXEC call, if so desired (only relevant for
partons).

KF1, KF2 : flavour codes for the two partons/particles.
PECM : (= Ecm) the total energy of the system.
Remark: the system is given in the c.m. frame, with the first parton/particle going out

in the +z direction.

337

CALL PY3ENT(IP,KF1,KF2,KF3,PECM,X1,X3)

Purpose: to add three entries to the event record, i.e. either a 3-parton system or three
separate particles.

IP : normally line number for the first parton/particle, with the other two in IP+1
and IP+2. There are two exceptions.
If IP=0, lines 1, 2 and 3 are used and PYEXEC is called.
If IP<0, lines -IP through -IP+2 are used, with status code K(I,1)=3, i.e.
with special colour connection information, so that a parton shower can be
generated by a PYSHOW call, followed by a PYEXEC call, if so desired (only
relevant for partons).

KF1, KF2, KF3: flavour codes for the three partons/particles.
PECM : (Ecm) the total energy of the system.
X1, X3 : xi = 2Ei/Ecm, i.e. twice the energy fraction taken by the i’th parton. Thus

x2 = 2− x1 − x3, and need not be given. Note that not all combinations of xi
are inside the physically allowed region.

Remarks : the system is given in the c.m. frame, in the xz-plane, with the first parton
going out in the +z direction and the third one having px > 0. A system must
be given in the order of colour flow, so qgq and qgq are allowed but qqg not.
Thus x1 and x3 come to correspond to what is normally called x1 and x2, i.e.
the scaled q and q energies.

CALL PY4ENT(IP,KF1,KF2,KF3,KF4,PECM,X1,X2,X4,X12,X14)

Purpose: to add four entries to the event record, i.e. either a 4-parton system or four
separate particles (or, for qqq′q′ events, two 2-parton systems).

IP : normally line number for the first parton/particle, with the other three in lines
IP+1, IP+2 and IP+3. There are two exceptions.
If IP=0, lines 1, 2, 3 and 4 are used and PYEXEC is called.
If IP<0, lines -IP through -IP+3 are used, with status code K(I,1)=3, i.e.
with special colour connection information, so that a parton shower can be
generated by a PYSHOW call, followed by a PYEXEC call, if so desired (only
relevant for partons).

KF1,KF2,KF3,KF4 : flavour codes for the four partons/particles.
PECM : (= Ecm) the total energy of the system.
X1,X2,X4 : xi = 2Ei/Ecm, i.e. twice the energy fraction taken by the i’th parton. Thus

x3 = 2− x1 − x2 − x4, and need not be given.
X12,X14 : xij = 2pipj/E

2
cm, i.e. twice the four-vector product of the momenta for partons

i and j, properly normalized. With the masses known, other xij may be
constructed from the xi and xij given. Note that not all combinations of xi
and xij are inside the physically allowed region.

Remarks: the system is given in the c.m. frame, with the first parton going out in the
+z direction and the fourth parton lying in the xz-plane with px > 0. The
second parton will have py > 0 and py < 0 with equal probability, with the
third parton balancing this py (this corresponds to a random choice between
the two possible stereoisomers). A system must be given in the order of colour
flow, e.g. qggq and qq′q′q.

CALL PYJOIN(NJOIN,IJOIN)

Purpose: to connect a number of previously defined partons into a string configuration.

338

Initially the partons must be given with status codes K(I,1)= 1, 2 or 3. Af-
terwards the partons all have status code 3, i.e. are given with full colour-flow
information. Compared to the normal way of defining a parton system, the
partons need therefore not appear in the same sequence in the event record as
they are assumed to do along the string. It is also possible to call PYSHOW for
all or some of the entries making up the string formed by PYJOIN.

NJOIN: the number of entries that are to be joined by one string.
IJOIN: an one-dimensional array, of size at least NJOIN. The NJOIN first numbers

are the positions of the partons that are to be joined, given in the order the
partons are assumed to appear along the string. If the system consists entirely
of gluons, the string is closed by connecting back the last to the first entry.

Remarks: only one string (i.e. one colour singlet) may be defined per call, but one is at
liberty to use any number of PYJOIN calls for a given event. The program will
check that the parton configuration specified makes sense, and not take any
action unless it does. Note, however, that an initially sensible parton config-
uration may become nonsensical, if only some of the partons are reconnected,
while the others are left unchanged.

CALL PYGIVE(CHIN)

Purpose: to set the value of any variable residing in the commmonblocks PYJETS,
PYDAT1, PYDAT2, PYDAT3, PYDAT4, PYDATR, PYSUBS, PYPARS, PYINT1, PYINT2,
PYINT3, PYINT4, PYINT5, PYINT6, PYINT7, PYINT8, PYMSSM or PYMSRV. This
is done in a more controlled fashion than by directly including the common
blocks in your program, in that array bounds are checked and the old and
new values for the variable changed are written to the output for reference.
An example how PYGIVE can be used to parse input from a file is given in
subsection 3.6.

CHIN : character expression of length at most 100 characters, with requests for vari-
ables to be changed, stored in the form
variable1=value1;variable2=value2;variable3=value3. . . .
Note that an arbitrary number of instructions can be stored in one call if
separated by semicolons, and that blanks may be included anyplace. An ex-
clamation mark is recognized as the beginning of a comment, which is not to be
processed. Normal parsing is resumed at the next semicolon (if any remain).
An example would be
CALL PYGIVE(’MSEL=16!Higgs production;PMAS(25,1)=115.!h0 mass’)
The variablei may be any single variable in the Pythia common blocks, and
the valuei must be of the correct integer, real or character (without extra
quotes) type. Array indices and values must be given explicitly, i.e. cannot
be variables in their own right. The exception is that the first index can be
preceded by a C, signifying that the index should be translated from normal KF
to compressed KC code with a PYCOMP call; this is allowed for the KCHG, PMAS,
MDCY, CHAF and MWID arrays.
If a valuei is omitted, i.e. with the construction variable=, the current value
is written to the output, but the variable itself is not changed.
The writing of info can be switched off by MSTU(13)=0.

Remark : The checks on array bounds are hardwired into this routine. Therefore, if you
change array dimensions and MSTU(3), MSTU(6) and/or MSTU(7), as allowed
by other considerations, these changes will not be known to PYGIVE. Normally
this should not be a problem, however.

339

14.2 The Physics Routines

Once the initial parton/particle configuration has been specified and default parameter
values changed, if so desired, only a PYEXEC call is necessary to simulate the whole frag-
mentation and decay chain. Therefore a normal user will not directly see any of the other
routines in this section. Some of them could be called directly, but the danger of faulty
usage is then non-negligible.

The PYTAUD routine provides an optional interface to an external τ decay library, where
polarization effects could be included. It is up to you to write the appropriate calls, as
explained at the end of this section.

CALL PYEXEC

Purpose: to administrate the fragmentation and decay chain. PYEXEC may be called sev-
eral times, but only entries which have not yet been treated (more precisely,
which have 1 ≤K(I,1)≤ 10) can be affected by further calls. This may apply
if more partons/particles have been added by you, or if particles previously
considered stable are now allowed to decay. The actions that will be taken dur-
ing a PYEXEC call can be tailored extensively via the PYDAT1–PYDAT3 common
blocks, in particular by setting the MSTJ values suitably.

SUBROUTINE PYPREP(IP) : to rearrange parton shower end products (marked with
K(I,1)=3) sequentially along strings; also to (optionally) allow small parton
systems to collapse into two particles or one only, in the latter case with energy
and momentum to be shuffled elsewhere in the event; also to perform checks
that e.g. flavours of colour-singlet systems make sense.

SUBROUTINE PYSTRF(IP) : to generate the fragmentation of an arbitrary colour-singlet
parton system according to the Lund string fragmentation model. One of the
absolutely central routines of Pythia.

SUBROUTINE PYINDF(IP) : to handle the fragmentation of a parton system according
to independent fragmentation models, and implement energy, momentum and
flavour conservation, if so desired. Also the fragmentation of a single parton,
not belonging to a parton system, is considered here (this is of course physical
nonsense, but may sometimes be convenient for specific tasks).

SUBROUTINE PYDECY(IP) : to perform a particle decay, according to known branching
ratios or different kinds of models, depending on our level of knowledge. Var-
ious matrix elements are included for specific processes.

SUBROUTINE PYKFDI(KFL1,KFL2,KFL3,KF) : to generate a new quark or diquark flavour
and to combine it with an existing flavour to give a hadron.

KFL1: incoming flavour.
KFL2: extra incoming flavour, e.g. for formation of final particle, where the

flavours are completely specified. Is normally 0.
KFL3: newly created flavour; is 0 if KFL2 is non-zero.
KF: produced hadron. Is 0 if something went wrong (e.g. inconsistent com-

bination of incoming flavours).
SUBROUTINE PYPTDI(KFL,PX,PY) : to give transverse momentum, e.g. for a qq pair cre-

ated in the colour field, according to independent Gaussian distributions in px
and py.

SUBROUTINE PYZDIS(KFL1,KFL3,PR,Z) : to generate the longitudinal scaling variable z
in jet fragmentation, either according to the Lund symmetric fragmentation
function, or according to a choice of other shapes.

SUBROUTINE PYBOEI : to include Bose–Einstein effects according to a simple parameteri-
zation. By default, this routine is not called. If called from PYEXEC, this is

340

done after the decay of short-lived resonances, but before the decay of long-
lived ones. This means the routine should never be called directly by you, nor
would effects be correctly simulated if decays are switched off. See MSTJ(51)
- MSTJ(57) for switches of the routine.

FUNCTION PYMASS(KF) : to give the mass for a parton/particle.
SUBROUTINE PYNAME(KF,CHAU) : to give the parton/particle name (as a string of type

CHARACTER CHAU*16). The name is read out from the CHAF array.
FUNCTION PYCHGE(KF) : to give three times the charge for a parton/particle. The value

is read out from the KCHG(KC,1) array.
FUNCTION PYCOMP(KF) : to give the compressed parton/particle code KC for a given KF

code, as required to find entry into mass and decay data tables. Also checks
whether the given KF code is actually an allowed one (i.e. known by the pro-
gram), and returns 0 if not. Note that KF may be positive or negative, while
the resulting KC code is never negative.
Internally PYCOMP uses a binary search in a table, with KF codes arranged in
increasing order, based on the KCHG(KC,4) array. This table is constructed
the first time PYCOMP is called, at which time MSTU(20) is set to 1. In case of a
user change of the KCHG(KC,4) array one should reset MSTU(20)=0 to force a
re-initialization at the next PYCOMP call (this is automatically done in PYUPDA
calls). To speed up execution, the latest (KF,KC) pair is kept in memory and
checked before the standard binary search.

SUBROUTINE PYERRM(MERR,MESSAG) : to keep track of the number of errors and warnings
encountered, write out information on them, and abort the program in case of
too many errors.

FUNCTION PYANGL(X,Y) : to calculate the angle from the x and y coordinates.
SUBROUTINE PYLOGO : to write a title page for the Pythia programs. Called by

PYLIST(0).
SUBROUTINE PYTIME(IDATI) : to give the date and time, for use in PYLOGO and else-

where. Since Fortran 77 does not contain a standard way of obtaining this
information, the routine is dummy, to be replaced by you. Some commented-
out examples are given, e.g. for Fortran 90 or the GNU Linux libU77. The
output is given in an integer array ITIME(6), with components year, month,
day, hour, minute and second. If there should be no such information available
on a system, it is acceptable to put all the numbers above to 0.

CALL PYTAUD(ITAU,IORIG,KFORIG,NDECAY)

Purpose: to act as an interface between the standard decay routine PYDECY and a user-
supplied τ lepton decay library such as Tauola [Jad91]. The latter library
would normally know how to handle polarized τ ’s, given the τ helicity as input,
so one task of the interface routine is to construct the τ polarization/helicity
from the information available. Input to the routine (from PYDECY) is provided
in the first three arguments, while the last argument and some event record
information have to be set before return. To use this facility you have to set
the switch MSTJ(28), include your own interface routine PYTAUD and see to it
that the dummy routine PYTAUD is not linked. The dummy routine is there
only to avoid unresolved external references when no user-supplied interface is
linked.

ITAU : line number in the event record where the τ is stored. The four-momentum
of this τ has first been boosted back to the rest frame of the decaying mother
and thereafter rotated to move out along the +z axis. It would have been
possible to also perform a final boost to the rest frame of the τ itself, but

341

this has been avoided so as not to suppress the kinematics aspect of close-
to-threshold production (e.g. in B decays) vs. high-energy production (e.g.
in real W decays). The choice of frame should help the calculation of the
helicity configuration. After the PYTAUD call the τ and its decay products will
automatically be rotated and boosted back. However, seemingly, the event
record does not conserve momentum at this intermediate stage.

IORIG : line number where the mother particle to the τ is stored. Is 0 if the mother is
not stored. This does not have to mean the mother is unknown. For instance,
in semileptonic B decays the mother is a W± with known four-momentum
pW = pτ +pντ , but there is no W line in the event record. When several copies
of the mother is stored (e.g. one in the documentation section of the event
record and one in the main section), IORIG points to the last. If a branchings
like τ → τγ occurs, the ‘grandmother’ is given, i.e. the mother of the direct τ
before branching.

KFORIG : flavour code for the mother particle. Is 0 if the mother is unknown. The mother
would typically be a resonance such as γ∗/Z0 (23), W± (±24), h0 (25), or H±

(±37). Often the helicity choice would be clear just by the knowledge of this
mother species, e.g., W± vs. H±. However, sometimes further complications
may exist. For instance, the KF code 23 represents a mixture of γ∗ and Z0; a
knowledge of the mother mass (in P(IORIG,5)) would here be required to make
the choice of helicities. Further, a W± or Z0 may either be (predominantly)
transverse or longitudinal, depending on the production process under study.

NDECAY : the number of decay products of the τ ; to be given by the user routine. You
must also store the KF flavour codes of those decay products in the posi-
tions K(I,2), N+1≤I≤N+NDECAY, of the event record. The corresponding five-
momentum (momentum, energy and mass) should be stored in the associated
P(I,J) positions, 1≤J≤5. The four-momenta are expected to add up to the
four-momentum of the τ in position ITAU. You should not change the N value
or any of the other K or V values (neither for the τ nor for its decay products)
since this is automatically done in PYDECY.

14.3 The General Switches and Parameters

The common block PYDAT1 contains the main switches and parameters for the fragmen-
tation and decay treatment, but also for some other aspects. Here one may control in
detail what the program is to do, if the default mode of operation is not satisfactory.

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of the program as a whole. Here MSTU and PARU are related to
utility functions, as well as a few parameters of the Standard Model, while MSTJ
and PARJ affect the underlying physics assumptions. Some of the variables in
PYDAT1 are described elsewhere, and are therefore here only reproduced as
references to the relevant sections. This in particular applies to many coupling
constants, which are found in section 9.4, and switches of the older dedicated
e+e− machinery, section 6.3.

MSTU(1) - MSTU(3) : variables used by the event study routines, section 15.1.
MSTU(4) : (D=4000) number of lines available in the common block PYJETS. Should

always be changed if the dimensions of the K and P arrays are changed by
you, but should otherwise never be touched. Maximum allowed value is 10000,
unless MSTU(5) is also changed.

342

MSTU(5) : (D=10000) is used in building up the special colour-flow information stored
in K(I,4) and K(I,5) for K(I,3)= 3, 13 or 14. The generic form for j= 4 or
5 is
K(I,j)= 2×MSTU(5)2×MCFR+MSTU(5)2×MCTO+MSTU(5)×ICFR+ICTO,
with notation as in section 5.2. One should always have MSTU(5)≥MSTU(4).
On a 32 bit machine, values MSTU(5)> 20000 may lead to overflow problems,
and should be avoided.

MSTU(6) : (D=500) number of KC codes available in the KCHG, PMAS, MDCY, and CHAF
arrays; should be changed if these dimensions are changed.

MSTU(7) : (D=8000) number of decay channels available in the MDME, BRAT and KFDP
arrays; should be changed if these dimensions are changed.

MSTU(10) : (D=2) use of parton/particle masses in filling routines (PY1ENT, PY2ENT,
PY3ENT, PY4ENT).

= 0 : assume the mass to be zero.
= 1 : keep the mass value stored in P(I,5), whatever it is. (This may be used

e.g. to describe kinematics with off-mass-shell partons).
= 2 : find masses according to mass tables as usual.

MSTU(11) - MSTU(12) : variables used by the event study routines, section 15.1.
MSTU(13) : (D=1) writing of information on variable values changed by a PYGIVE

call.
= 0 : no information is provided.
= 1 : information is written to standard output.

MSTU(14) : variable used by the event study routines, section 15.1.
MSTU(15) : (D=0) decides how PYLIST shows empty lines, which are interspersed among

ordinary particles in the event record.
= 0 : do not print lines with K(I,1)≤ 0.
= 1 : do not print lines with K(I,1)< 0.
= 2 : print all lines.

MSTU(16) : (D=1) choice of mother pointers for the particles produced by a fragmenting
parton system.

= 1 : all primary particles of a system point to a line with KF = 92 or 93, for
string or independent fragmentation, respectively, or to a line with KF =
91 if a parton system has so small a mass that it is forced to decay into
one or two particles. The two (or more) shower initiators of a showering
parton system point to a line with KF = 94. The entries with KF = 91–94
in their turn point back to the predecessor partons, so that the KF =
91–94 entries form a part of the event history proper.

= 2 : although the lines with KF = 91–94 are present, and contain the correct
mother and daughter pointers, they are not part of the event history
proper, in that particles produced in string fragmentation point directly
to either of the two endpoint partons of the string (depending on the side
they were generated from), particles produced in independent fragmen-
tation point to the respective parton they were generated from, particles
in small mass systems point to either endpoint parton, and shower initia-
tors point to the original on-mass-shell counterparts. Also the daughter
pointers bypass the KF = 91–94 entries. In independent fragmentation,
a parton need not produce any particles at all, and then have daughter
pointers 0.

Note : MSTU(16) should not be changed between the generation of an event and
the translation of this event record with a PYHEPC call, since this may
give an erroneous translation of the event history.

MSTU(17) : (D=0) storage option for MSTU(90) and associated information on z values
for heavy-flavour production.

343

= 0 : MSTU(90) is reset to zero at each PYEXEC call. This is the appropriate
course if PYEXEC is only called once per event, as is normally the case
when you do not yourself call PYEXEC.

= 1 : you have to reset MSTU(90) to zero yourself before each new event. This
is the appropriate course if several PYEXEC calls may appear for one event,
i.e. if you call PYEXEC directly.

MSTU(19) : (D=0) advisory warning for unphysical flavour setups in PY2ENT, PY3ENT or
PY4ENT calls.

= 0 : yes.
= 1 : no; MSTU(19) is reset to 0 in such a call.

MSTU(20) : (D=0) flag for the initialization status of the PYCOMP routine. A value 0
indicates that tables should be (re)initialized, after which it is set 1. In case
you change the KCHG(KC,4) array you should reset MSTU(20)=0 to force a
re-initialization at the next PYCOMP call.

MSTU(21) : (D=2) check on possible errors during program execution. Obviously no
guarantee is given that all errors will be caught, but some of the most trivial
user-caused errors may be found.

= 0 : errors do not cause any immediate action, rather the program will try to
cope, which may mean e.g. that it runs into an infinite loop.

= 1 : parton/particle configurations are checked for possible errors. In case
of problem, an exit is made from the misbehaving subprogram, but the
generation of the event is continued from there on. For the first MSTU(22)
errors a message is printed; after that no messages appear.

= 2 : parton/particle configurations are checked for possible errors. In case of
problem, an exit is made from the misbehaving subprogram, and sub-
sequently from PYEXEC. You may then choose to correct the error, and
continue the execution by another PYEXEC call. For the first MSTU(22)
errors a message is printed, after that the last event is printed and exe-
cution is stopped.

MSTU(22) : (D=10) maximum number of errors that are printed.
MSTU(23) : (I) count of number of errors experienced to date.
MSTU(24) : (R) type of latest error experienced; reason that event was not generated in

full. Is reset at each PYEXEC call.
= 0 : no error experienced.
= 1 : program has reached end of or is writing outside PYJETS memory.
= 2 : unknown flavour code or unphysical combination of codes; may also be

caused by erroneous string connection information.
= 3 : energy or mass too small or unphysical kinematical variable setup.
= 4 : program is caught in an infinite loop.
= 5 : momentum, energy or charge was not conserved (even allowing for ma-

chine precision errors, see PARU(11)); is evaluated only after event has
been generated in full, and does not apply when independent fragmenta-
tion without momentum conservation was used.

= 6 : error call from outside the fragmentation/decay package (e.g. the e+e−

routines).
= 7 : inconsistent particle data input in PYUPDA (MUPDA = 2,3) or other

PYUPDA-related problem.
= 8 : problems in more peripheral service routines.
= 9 : various other problems.

MSTU(25) : (D=1) printing of warning messages.
= 0 : no warnings are written.
= 1 : first MSTU(26) warnings are printed, thereafter no warnings appear.

MSTU(26) : (D=10) maximum number of warnings that are printed.

344

MSTU(27) : (I) count of number of warnings experienced to date.
MSTU(28) : (R) type of latest warning given, with codes parallelling those for MSTU(24),

but of a less serious nature.
MSTU(31) : (I) number of PYEXEC calls in present run.
MSTU(32) - MSTU(33) : variables used by the event study routines, section 15.1.
MSTU(41) - MSTU(63) : switches for event-analysis routines, see section 15.5.
MSTU(70) - MSTU(80) : variables used by the event study routines, section 15.1.
MSTU(90) : number of heavy-flavour hadrons (i.e. hadrons containing charm or bottom)

produced in the fragmentation stage of the current event, for which the posi-
tions in the event record are stored in MSTU(91) - MSTU(98) and the z values
in the fragmentation in PARU(91) - PARU(98). At most eight values will be
stored (normally this is no problem). No z values can be stored for those heavy
hadrons produced when a string has so small mass that it collapses to one or
two particles, nor for those produced as one of the final two particles in the
fragmentation of a string. If MSTU(17)=1, MSTU(90) should be reset to zero
by you before each new event, else this is done automatically.

MSTU(91) - MSTU(98) : the first MSTU(90) positions will be filled with the line numbers
of the heavy-flavour hadrons produced in the current event. See MSTU(90)
for additional comments. Note that the information is corrupted by calls to
PYEDIT with options 0–5 and 21–23; calls with options 11–15 work, however.

MSTU(101) - MSTU(118) : switches related to couplings, see section 9.4.
MSTU(121) - MSTU(125) : internally used in the advanced popcorn code, see subsection

14.3.1.
MSTU(131) - MSTU(140) : internally used in the advanced popcorn code, see subsection

14.3.1.
MSTU(161), MSTU(162) : information used by event-analysis routines, see section 15.5.

PARU(1) : (R) π ≈ 3.141592653589793.
PARU(2) : (R) 2π ≈ 6.283185307179586.
PARU(3) : (D=0.197327) conversion factor for GeV−1 → fm or fm−1 → GeV.
PARU(4) : (D=5.06773) conversion factor for fm → GeV−1 or GeV → fm−1.
PARU(5) : (D=0.389380) conversion factor for GeV−2 → mb or mb−1 → GeV2.
PARU(6) : (D=2.56819) conversion factor for mb → GeV−2 or GeV2 → mb−1.
PARU(11) : (D=0.001) relative error, i.e. non-conservation of momentum and energy di-

vided by total energy, that may be attributable to machine precision problems
before a physics error is suspected (see MSTU(24)=5).

PARU(12) : (D=0.09 GeV2) effective cut-off in squared mass, below which partons may
be recombined to simplify (machine precision limited) kinematics of string
fragmentation. (Default chosen to be of the order of a light quark mass, or
half a typical light meson mass.)

PARU(13) : (D=0.01) effective angular cut-off in radians for recombination of partons,
used in conjunction with PARU(12).

PARU(21) : (I) contains the total energy W of all first generation partons/particles after
a PYEXEC call; to be used by the PYP function for I>0, J= 20–25.

PARU(41) - PARU(63) : parameters for event-analysis routines, see section 15.5.
PARU(91) - PARU(98) : the first MSTU(90) positions will be filled with the fragmenta-

tion z values used internally in the generation of heavy-flavour hadrons —
how these are translated into the actual energies and momenta of the observed
hadrons is a complicated function of the string configuration. The particle
with z value stored in PARU(i) is to be found in line MSTU(i) of the event
record. See MSTU(90) and MSTU(91) - MSTU(98) for additional comments.

PARU(101) - PARU(195) : various coupling constants and parameters related to cou-
plings, see section 9.4.

345

MSTJ(1) : (D=1) choice of fragmentation scheme.
= 0 : no jet fragmentation at all.
= 1 : string fragmentation according to the Lund model.
= 2 : independent fragmentation, according to specification in MSTJ(2) and

MSTJ(3).
MSTJ(2) : (D=3) gluon jet fragmentation scheme in independent fragmentation.

= 1 : a gluon is assumed to fragment like a random d, u or s quark or antiquark.
= 2 : as =1, but longitudinal (see PARJ(43), PARJ(44) and PARJ(59)) and

transverse (see PARJ(22)) momentum properties of quark or antiquark
substituting for gluon may be separately specified.

= 3 : a gluon is assumed to fragment like a pair of a d, u or s quark and
its antiquark, sharing the gluon energy according to the Altarelli-Parisi
splitting function.

= 4 : as =3, but longitudinal (see PARJ(43), PARJ(44) and PARJ(59)) and
transverse (see PARJ(22)) momentum properties of quark and antiquark
substituting for gluon may be separately specified.

MSTJ(3) : (D=0) energy, momentum and flavour conservation options in independent
fragmentation. Whenever momentum conservation is described below, energy
and flavour conservation is also implicitly assumed.

= 0 : no explicit conservation of any kind.
= 1 : particles share momentum imbalance compensation according to their

energy (roughly equivalent to boosting event to c.m. frame). This is
similar to the approach in the Ali et al. program [Ali80].

= 2 : particles share momentum imbalance compensation according to their
longitudinal mass with respect to the imbalance direction.

= 3 : particles share momentum imbalance compensation equally.
= 4 : transverse momenta are compensated separately within each jet, longi-

tudinal momenta are rescaled so that ratio of final jet to initial parton
momentum is the same for all the jets of the event. This is similar to the
approach in the Hoyer et al. program [Hoy79].

= 5 : only flavour is explicitly conserved.
= 6 - 10 : as =1 - 5, except that above several colour singlet systems that fol-

lowed immediately after each other in the event listing (e.g. qqqq) were
treated as one single system, whereas here they are treated as separate
systems.

= -1 : independent fragmentation, where also particles moving backwards with
respect to the jet direction are kept, and thus the amount of energy and
momentum mismatch may be large.

MSTJ(11) : (D=4) choice of longitudinal fragmentation function, i.e. how large a fraction
of the energy available a newly-created hadron takes.

= 1 : the Lund symmetric fragmentation function, see PARJ(41) - PARJ(45).
= 2 : choice of some different forms for each flavour separately, see PARJ(51)

- PARJ(59).
= 3 : hybrid scheme, where light flavours are treated with symmetric Lund

(=1), but charm and heavier can be separately chosen, e.g. according to
the Peterson/SLAC function (=2).

= 4 : the Lund symmetric fragmentation function (=1), for heavy endpoint
quarks modified according to the Bowler (Artru–Mennessier, Morris)
space–time picture of string evolution, see PARJ(46).

= 5 : as =4, but with possibility to interpolate between Bowler and Lund sep-
arately for c and b; see PARJ(46) and PARJ(47).

MSTJ(12) : (D=2) choice of baryon production model.
= 0 : no baryon-antibaryon pair production at all; initial diquark treated as a

346

unit.
= 1 : diquark-antidiquark pair production allowed; diquark treated as a unit.
= 2 : diquark-antidiquark pair production allowed, with possibility for diquark

to be split according to the ‘popcorn’ scheme.
= 3 : as =2, but additionally the production of first rank baryons may be sup-

pressed by a factor PARJ(19).
= 4 : as =2, but diquark vertices suffer an extra suppression of the form 1 −

exp(ρΓ), where ρ ≈ 0.7GeV−2 is stored in PARF(192).
= 5 : Advanced version of the popcorn model. Independent of PARJ(3-7).

Instead depending on PARJ(8-10). When using this option PARJ(1)
needs to enhanced by approx. a factor 2 (i.e. it losses a bit of its normal
meaning), and PARJ(18) is suggested to be set to 0.19. See section 14.3.1
for further details.

MSTJ(13) : (D=0) generation of transverse momentum for endpoint quark(s) of single
quark jet or qq jet system (in multijet events no endpoint transverse momen-
tum is ever allowed for).

= 0 : no transverse momentum for endpoint quarks.
= 1 : endpoint quarks obtain transverse momenta like ordinary qq pairs pro-

duced in the field (see PARJ(21)); for 2-jet systems the endpoints obtain
balancing transverse momenta.

MSTJ(14) : (D=1) treatment of a colour-singlet parton system with a low invariant
mass.

= 0 : no precautions are taken, meaning that problems may occur in PYSTRF
(or PYINDF) later on. Warning messages are issued when low masses
are encountered, however, or when the flavour or colour configuration
appears to be unphysical.

= 1 : small parton systems are allowed to collapse into two particles or, failing
that, one single particle. Normally all small systems are treated this way,
starting with the smallest one, but some systems would require more work
and are left untreated; they include diquark-antidiquark pairs below the
two-particle threshold. See further MSTJ(16) and MSTJ(17).

= -1 : special option for PYPREP calls, where no precautions are taken (as for
=0), but, in addition, no checks are made on the presence of small-mass
systems or unphysical flavour or colour configurations; i.e. PYPREP only
rearranges colour strings.

MSTJ(15) : (D=0) production probability for new flavours.
= 0 : according to standard Lund parameterization, as given by PARJ(1) -

PARJ(20).
= 1 : according to probabilities stored in PARF(201) - PARF(1960); note that

no default values exist here, i.e. PARF must be set by you. The MSTJ(12)
switch can still be used to set baryon production mode, with the modifi-
cation that MSTJ(12)=2 here allows an arbitrary number of mesons to be
produced between a baryon and an antibaryon (since the probability for
diquark→ meson + new diquark is assumed independent of prehistory).

MSTJ(16) : (D=2) mode of cluster treatment (where a cluster is a low-mass string that
can fragment to two particles at the most).

= 0 : old scheme. Cluster decays (to two hadrons) are isotropic. In cluster
collapses (to one hadron), energy-momentum compensation is to/from
the parton or hadron furthest away in mass.

= 1 : intermediate scheme. Cluster decays are anisotropic in a way that is
intended to mimic the Gaussian p⊥ suppression and string ‘area law’
of suppressed rapidity orderings of ordinary string fragmentation. In
cluster collapses, energy-momentum compensation is to/from the string

347

piece most closely moving in the same direction as the cluster. Excess
energy is put as an extra gluon on this string piece, while a deficit is
taken from both endpoints of this string piece as a common fraction of
their original momentum.

= 2 : new default scheme. Essentially as =1 above, except that an energy
deficit is preferentially taken from the endpoint of the string piece that
is moving closest in direction to the cluster.

MSTJ(17) : (D=2) number of attempts made to find two hadrons that have a combined
mass below the cluster mass, and thus allow a cluster to decay to two hadrons
rather than collapse to one. Thus the larger MSTJ(17), the smaller the fraction
of collapses. At least one attempt is always made, and this was the old default
behaviour.

MSTJ(21) : (D=2) form of particle decays.
= 0 : all particle decays are inhibited.
= 1 : a particle declared unstable in the MDCY vector, and with decay channels

defined, may decay within the region given by MSTJ(22). A particle
may decay into partons, which then fragment further according to the
MSTJ(1) value.

= 2 : as =1, except that a qq parton system produced in a decay (e.g. of a B
meson) is always allowed to fragment according to string fragmentation,
rather than according to the MSTJ(1) value (this means that momentum,
energy and charge are conserved in the decay).

MSTJ(22) : (D=1) cut-off on decay length for a particle that is allowed to decay according
to MSTJ(21) and the MDCY value.

= 1 : a particle declared unstable is also forced to decay.
= 2 : a particle is decayed only if its average proper lifetime is smaller than

PARJ(71).
= 3 : a particle is decayed only if the decay vertex is within a distance PARJ(72)

of the origin.
= 4 : a particle is decayed only if the decay vertex is within a cylindrical volume

with radius PARJ(73) in the xy-plane and extent to ±PARJ(74) in the z
direction.

MSTJ(23) : (D=1) possibility of having a shower evolving from a qq pair created as decay
products. This switch only applies to decays handled by PYDECY rather than
PYRESD, and so is of less relevance today.

= 0 : never.
= 1 : whenever the decay channel matrix-element code is MDME(IDC,2)= 4, 32,

33, 44 or 46, the two first decay products (if they are partons) are allowed
to shower, like a colour-singlet subsystem, with maximum virtuality given
by the invariant mass of the pair.

MSTJ(24) : (D=2) particle masses.
= 0 : discrete mass values are used.
= 1 : particles registered as having a mass width in the PMAS vector are given a

mass according to a truncated Breit–Wigner shape, linear in m, eq. (240).
= 2 : as =1, but gauge bosons (actually all particles with |KF| ≤ 100) are

distributed according to a Breit–Wigner quadratic in m, as obtained
from propagators.

= 3 : as =1, but Breit–Wigner shape is always quadratic in m, eq. (241).
MSTJ(26) : (D=2) inclusion of B–B mixing in decays.

= 0 : no.
= 1 : yes, with mixing parameters given by PARJ(76) and PARJ(77). Mixing

decays are not specially marked.
= 2 : yes, as =1, but a B (B) that decays as a B (B) is marked as K(I,1)=12

348

rather than the normal K(I,1)=11.
MSTJ(28) : (D=0) call to an external τ decay library like Tauola. For this option to

be meaningful, it is up to you to write the appropriate interface and include
that in the routine PYTAUD, as explained in section 14.2.

= 0 : not done, i.e. the internal PYDECY treatment is used.
= 1 : done whenever the τ mother particle species can be identified, else the

internal PYDECY treatment is used. Normally the mother particle should
always be identified, but it is possible for you to remove event history
information or to add extra τ ’s directly to the event record, and then the
mother is not known.

= 2 : always done.
MSTJ(38) - MSTJ(50) : switches for time-like parton showers, see section 10.4.
MSTJ(51) : (D=0) inclusion of Bose–Einstein effects.

= 0 : no effects included.
= 1 : effects included according to an exponential parameterization f2(Q) =

1+PARJ(92)× exp(−Q/PARJ(93)), where f2(Q) represents the ratio of
particle production at Q with Bose–Einstein effects to that without, and
the relative momentum Q is defined by Q2(p1, p2) = −(p1− p2)2 = (p1 +
p2)2− 4m2. Particles with width broader than PARJ(91) are assumed to
have time to decay before Bose–Einstein effects are to be considered.

= 2 : effects included according to a Gaussian parameterization f2(Q) =
1+PARJ(92)× exp(−(Q/PARJ(93))2), with notation and comments as
above.

MSTJ(52) : (D=3) number of particle species for which Bose–Einstein correlations are
to be included, ranged along the chain π+, π−, π0, K+, K−, K0

L, K0
S, η and

η′. Default corresponds to including all pions (π+, π−, π0), 7 to including all
Kaons as well, and 9 is maximum.

MSTJ(53) : (D=0) In e+e− → W+W−, e+e− → Z0Z0, or if PARJ(94)> 0 and there are
several strings in the event, apply BE algorithm

= 0 : on all pion pairs.
= 1 : only on pairs were both pions come from the same W/Z/string.
= 2 : only on pairs were the pions come from different W/Z/strings.
= -2 : when calculating balancing shifts for pions from same W/Z/string, only

consider pairs from this W/Z/string.
Note: if colour reconnections has occurred in an event, the distinction between

pions coming from different W/Z’s is lost.
MSTJ(54) : (D=2) Alternative local energy compensation. (Notation in brackets refer

to the one used in [Lön95].)
= 0 : global energy compensation (BE0).
= 1 : compensate with identical pairs by negative BE enhancement with a third

of the radius (BE3).
= 2 : ditto, but with the compensation constrained to vanish at Q = 0, by an

additional 1− exp(−Q2R2/4) factor (BE32).
= -1 : compensate with pair giving the smallest invariant mass (BEm).
= -2 : compensate with pair giving the smallest string length (BEλ).

MSTJ(55) : (D=0) Calculation of difference vector.
= 0 : in the lab frame.
= 1 : in the c.m. of the given pair.

MSTJ(56) : (D=0) In e+e− → W+W− or e+e− → Z0Z0 include distance between
W/Z’s.

= 0 : radius is the same for all pairs.
= 1 : radius for pairs from different W/Z’s is R+ δRWW (R+ δRZZ), where δR

is the generated distance between the decay vertices. (When considering

349

W or Z pairs with an energy well above threshold, this should give more
realistic results.)

MSTJ(57) : (D=1) Penalty for shifting particles with close-by identical neighbours in
local energy compensation, MSTJ(54) < 0.

= 0 : no penalty.
= 1 : penalty.

MSTJ(91) : (I) flag when generating gluon jet with options MSTJ(2)= 2 or 4 (then =1,
else =0).

MSTJ(92) : (I) flag that a qq or gg pair or a ggg triplet created in PYDECY should be
allowed to shower, is 0 if no pair or triplet, is the entry number of the first
parton if a pair indeed exists, is the entry number of the first parton, with a
− sign, if a triplet indeed exists.

MSTJ(93) : (I) switch for PYMASS action. Is reset to 0 in PYMASS call.
= 0 : ordinary action.
= 1 : light (d, u, s, c, b) quark masses are taken from PARF(101) - PARF(105)

rather than PMAS(1,1) - PMAS(5,1). Diquark masses are given as sum
of quark masses, without spin splitting term.

= 2 : as =1. Additionally the constant terms PARF(121) and PARF(122) are
subtracted from quark and diquark masses, respectively.

MSTJ(101) - MSTJ(121) : switches for e+e− event generation, see section 6.3.

PARJ(1) : (D=0.10) is P(qq)/P(q), the suppression of diquark-antidiquark pair produc-
tion in the colour field, compared with quark–antiquark production.

PARJ(2) : (D=0.30) is P(s)/P(u), the suppression of s quark pair production in the field
compared with u or d pair production.

PARJ(3) : (D=0.4) is (P(us)/P(ud))/(P(s)/P(d)), the extra suppression of strange di-
quark production compared with the normal suppression of strange quarks.

PARJ(4) : (D=0.05) is (1/3)P(ud1)/P(ud0), the suppression of spin 1 diquarks compared
with spin 0 ones (excluding the factor 3 coming from spin counting).

PARJ(5) : (D=0.5) parameter determining relative occurrence of baryon production by
BMB and by BB configurations in the simple popcorn baryon production
model, roughly P(BMB)/(P(BB) + P(BMB)) = PARJ(5)/(0.5+PARJ(5)).
This and subsequent baryon parameters are modified in the advanced popcorn
scenario, see subsection 14.3.1.

PARJ(6) : (D=0.5) extra suppression for having a ss pair shared by the B and B of a
BMB situation.

PARJ(7) : (D=0.5) extra suppression for having a strange meson M in a BMB config-
uration.

PARJ(8) - PARJ(10) : used in the advanced popcorn scenario, see subsection 14.3.1.
PARJ(11) - PARJ(17) : parameters that determine the spin of mesons when formed in

fragmentation or decays.
PARJ(11) : (D=0.5) is the probability that a light meson (containing u and d

quarks only) has spin 1 (with 1-PARJ(11) the probability for spin 0).
PARJ(12) : (D=0.6) is the probability that a strange meson has spin 1.
PARJ(13) : (D=0.75) is the probability that a charm or heavier meson has spin 1.
PARJ(14) : (D=0.) is the probability that a spin = 0 meson is produced with an

orbital angular momentum 1, for a total spin = 1.
PARJ(15) : (D=0.) is the probability that a spin = 1 meson is produced with an

orbital angular momentum 1, for a total spin = 0.
PARJ(16) : (D=0.) is the probability that a spin = 1 meson is produced with an

orbital angular momentum 1, for a total spin = 1.
PARJ(17) : (D=0.) is the probability that a spin = 1 meson is produced with an

orbital angular momentum 1, for a total spin = 2.

350

Note : the end result of the numbers above is that, with i = 11, 12 or 13,
depending on flavour content,
P(S = 0, L = 0, J = 0) = (1− PARJ(i))× (1− PARJ(14)),
P(S = 0, L = 1, J = 1) = (1− PARJ(i))× PARJ(14),
P(S = 1, L = 0, J = 1) =

PARJ(i)× (1− PARJ(15)− PARJ(16)− PARJ(17)),
P(S = 1, L = 1, J = 0) = PARJ(i)× PARJ(15),
P(S = 1, L = 1, J = 1) = PARJ(i)× PARJ(16),
P(S = 1, L = 1, J = 2) = PARJ(i)× PARJ(17),
where S is the quark ‘true’ spin and J is the total spin, usually called
the spin s of the meson.

PARJ(18) : (D=1.) is an extra suppression factor multiplying the ordinary SU(6) weight
for spin 3/2 baryons, and hence a means to break SU(6) in addition to the dy-
namic breaking implied by PARJ(2), PARJ(3), PARJ(4), PARJ(6) and PARJ(7).

PARJ(19) : (D=1.) extra baryon suppression factor, which multiplies the ordinary
diquark-antidiquark production probability for the breakup closest to the
endpoint of a string, but leaves other breaks unaffected. Is only used for
MSTJ(12)=3.

PARJ(21) : (D=0.36 GeV) corresponds to the width σ in the Gaussian px and py trans-
verse momentum distributions for primary hadrons. See also PARJ(22) -
PARJ(24).

PARJ(22) : (D=1.) relative increase in transverse momentum in a gluon jet generated
with MSTJ(2)= 2 or 4.

PARJ(23), PARJ(24) : (D=0.01, 2.) a fraction PARJ(23) of the Gaussian transverse
momentum distribution is taken to be a factor PARJ(24) larger than input in
PARJ(21). This gives a simple parameterization of non-Gaussian tails to the
Gaussian shape assumed above.

PARJ(25) : (D=1.) extra suppression factor for η production in fragmentation; if an η
is rejected a new flavour pair is generated and a new hadron formed.

PARJ(26) : (D=0.4) extra suppression factor for η′ production in fragmentation; if an η′

is rejected a new flavour pair is generated and a new hadron formed.
PARJ(31) : (D=0.1 GeV) gives the remaining W+ below which the generation of a single

jet is stopped. (It is chosen smaller than a pion mass, so that no hadrons
moving in the forward direction are missed.)

PARJ(32) : (D=1. GeV) is, with quark masses added, used to define the minimum
allowable energy of a colour-singlet parton system.

PARJ(33) - PARJ(34) : (D=0.8 GeV, 1.5 GeV) are, together with quark masses, used
to define the remaining energy below which the fragmentation of a parton
system is stopped and two final hadrons formed. PARJ(33) is normally used,
except for MSTJ(11)=2, when PARJ(34) is used.

PARJ(36) : (D=2.) represents the dependence on the mass of the final quark pair for
defining the stopping point of the fragmentation. Is strongly correlated to the
choice of PARJ(33) - PARJ(35).

PARJ(37) : (D=0.2) relative width of the smearing of the stopping point energy.
PARJ(39) : (D=0.08 GeV−2) refers to the probability for reverse rapidity ordering of the

final two hadrons, according to eq. (226), for MSTJ(11)=2 (for other MSTJ(11)
values PARJ(42) is used).

PARJ(41), PARJ(42) : (D=0.3, 0.58 GeV−2) give the a and b parameters of the sym-
metric Lund fragmentation function for MSTJ(11)=1, 4 and 5 (and MSTJ(11)=3
for ordinary hadrons).

PARJ(43), PARJ(44) : (D=0.5, 0.9 GeV−2) give the a and b parameters as above for
the special case of a gluon jet generated with IF and MSTJ(2)= 2 or 4.

PARJ(45) : (D=0.5) the amount by which the effective a parameter in the Lund flavour

351

dependent symmetric fragmentation function is assumed to be larger than the
normal a when diquarks are produced. More specifically, referring to eq. (213),
aα =PARJ(41) when considering the fragmentation of a quark and = PARJ(41)
+ PARJ(45) for the fragmentation of a diquark, with corresponding expression
for aβ depending on whether the newly created object is a quark or diquark (for
an independent gluon jet generated with MSTJ(2)= 2 or 4, replace PARJ(41)
by PARJ(43)). In the popcorn model, a meson created in between the baryon
and antibaryon has aα = aβ =PARJ(41) + PARJ(45).

PARJ(46), PARJ(47) : (D=2*1.) modification of the Lund symmetric fragmentation
for heavy endpoint quarks according to the recipe by Bowler, available when
MSTJ(11)= 4 or 5 is selected. The shape is given by eq. (216). If MSTJ(11)=4
then rQ =PARJ(46) for both c and b, while if MSTJ(11)=5 then rc =PARJ(46)
and rb =PARJ(47). PARJ(46) and PARJ(47) thus provide a possibility to
interpolate between the ‘pure’ Bowler shape, r = 1, and the normal Lund
one, r = 0. The additional modifications made in PARJ(43) - PARJ(45) are
automatically taken into account, if necessary.

PARJ(51) - PARJ(55) : (D=3*0.77, −0.05, −0.005) give a choice of four possible ways
to parameterize the fragmentation function for MSTJ(11)=2 (and MSTJ(11)=3
for charm and heavier). The fragmentation of each flavour KF may be chosen
separately; for a diquark the flavour of the heaviest quark is used. With
c =PARJ(50+KF), the parameterizations are:
0 ≤ c ≤ 1 : Field-Feynman, f(z) = 1− c+ 3c(1− z)2;
−1 ≤ c < 0 : Peterson/SLAC, f(z) = 1/(z(1− 1/z − (−c)/(1− z))2);
c > 1 : power peaked at z = 0, f(z) = (1− z)c−1;
c < −1 : power peaked at z = 1, f(z) = z−c−1.

PARJ(59) : (D=1.) replaces PARJ(51) - PARJ(53) for gluon jet generated with
MSTJ(2)= 2 or 4.

PARJ(61) - PARJ(63) : (D=4.5, 0.7, 0.) parameterizes the energy dependence of the
primary multiplicity distribution in phase-space decays. The former two cor-
respond to c1 and c2 of eq. (249), while the latter allows a further additive
term in the multiplicity specifically for onium decays.

PARJ(64) : (0.003 GeV) minimum kinetic energy in decays (safety margin for numerical
precision errors). When violated, typically new masses would be selected if
particles have a Breit-Wigner width, or a new decay channel where that is
relevant.

PARJ(65) : (D=0.5 GeV) mass which, in addition to the spectator quark or diquark
mass, is not assumed to partake in the weak decay of a heavy quark in a
hadron. This parameter was mainly intended for top decay and is currently
not in use.

PARJ(66) : (D=0.5) relative probability that colour is rearranged when two singlets are
to be formed from decay products. Only applies for MDME(IDC,2)= 11–30, i.e.
low-mass phase-space decays.

PARJ(71) : (D=10 mm) maximum average proper lifetime cτ for particles allowed to
decay in the MSTJ(22)=2 option. With the default value, K0

S, Λ, Σ−, Σ+, Ξ−,
Ξ0 and Ω− are stable (in addition to those normally taken to be stable), but
charm and bottom do still decay.

PARJ(72) : (D=1000 mm) maximum distance from the origin at which a decay is allowed
to take place in the MSTJ(22)=3 option.

PARJ(73) : (D=100 mm) maximum cylindrical distance ρ =
√
x2 + y2 from the origin

at which a decay is allowed to take place in the MSTJ(22)=4 option.
PARJ(74) : (D=1000 mm) maximum z distance from the origin at which a decay is

allowed to take place in the MSTJ(22)=4 option.

PARJ(76) : (D=0.7) mixing parameter xd = ∆M/Γ in B0–B
0

system.

352

PARJ(77) : (D=10.) mixing parameter xs = ∆M/Γ in B0
s–B

0
s system.

PARJ(80) - PARJ(90) : parameters for time-like parton showers, see section 10.4.
PARJ(91) : (D=0.020 GeV) minimum particle width in PMAS(KC,2), above which par-

ticle decays are assumed to take place before the stage where Bose–Einstein
effects are introduced.

PARJ(92) : (D=1.) nominal strength of Bose–Einstein effects for Q = 0, see MSTJ(51).
This parameter, often denoted λ, expresses the amount of incoherence in parti-
cle production. Due to the simplified picture used for the Bose–Einstein effects,
in particular for effects from three nearby identical particles, the actual λ of
the simulated events may be larger than the input value.

PARJ(93) : (D=0.20 GeV) size of the Bose–Einstein effect region in terms of the Q
variable, see MSTJ(51). The more conventional measure, in terms of the
radius R of the production volume, is given by R = h̄/PARJ(93)≈ 0.2
fm×GeV/PARJ(93)=PARU(3)/PARJ(93).

PARJ(94) : (D=0.0 GeV) Increase radius for pairs from different W/Z/strings.
< 0 : if MSTJ(56) = 1, the radius for pairs from different W/Z’s is increased

to R + δRWW + PARU(3)/abs(PARJ(94)).
> 0 : the radius for pairs from different strings is increased to

R + PARU(3)/PARJ(94).
PARJ(95) : (R) Set to the energy imbalance after the BE algorithm, before rescaling of

momenta.
PARJ(96) : (R) Set to the α needed to retain energy-momentum conservation in each

event for relevant models.
PARJ(121) - PARJ(171) : parameters for e+e− event generation, see section 6.3.
PARJ(180) - PARJ(195) : various coupling constants and parameters related to cou-

plings, see section 9.4.

14.3.1 The advanced popcorn code for baryon production

In section 12.1.3 a new advanced popcorn code for baryon production model was presented,
based on [Edé97]. It partly overwrites and redefines the meaning of some of the parameters
above. Therefore the full description of these new options are given separately in this
section, together with a listing of the new routines involved.

In order to use the new options, a few possibilities are open.
• Use of the old diquark and popcorn models, MSTJ(12) = 1 and 2, is essentially

unchanged. Note, however, that PARJ(19) is available for an ad-hoc suppression of
first-rank baryon production.
• Use of the old popcorn model with new SU(6) weighting:

• Set MSTJ(12)=3.
• Increase PARJ(1) by approximately a factor 1.2 to retain about the same ef-

fective baryon production rate as in MSTJ(12)=2.
• Note: the new SU(6) weighting e.g. implies that the total production rate of

charm and bottom baryons is reduced.
• Use of the old flavour model with new SU(6) treatment and modified fragmentation

function for diquark vertices (which softens baryon spectra):
• Set MSTJ(12)=4.
• Increase PARJ(1) by about a factor 1.7 and PARJ(5) by about a factor 1.2 to

restore the baryon and popcorn rates of the MSTJ(12)=2 default.
• Use of the new flavour model (automatically with modified diquark fragmentation

function.)
• Set MSTJ(12)=5.
• Increase PARJ(1) by approximately a factor 2.

353

• Change PARJ(18) from 1 to approx. 0.19.
• Instead of PARJ(3) - PARJ(7), tune PARJ(8), PARJ(9), PARJ(10) and
PARJ(18). (Here PARJ(10) is used only in collisions having remnants of baryon
beam particles.)
• Note: the proposed parameter values are based on a global fit to all baryon

production rates. This e.g. means that the proton rate is lower than in the
MSTJ(12)=2 option, with current data somewhere in between. The PARJ(1)
value would have to be about 3 times higher in MSTJ(12)=5 than in =2 to have
the same total baryon production rate (=proton+neutron), but then other
baryon rates would not match at all.

• The new options MSTJ(12)=4 and =5 (and, to some extent, =3) soften baryon spectra
in such a way that PARJ(45) (the change of a for diquarks in the Lund symmetric
fragmentation function) is available for a retune. It affects i.e. baryon-antibaryon
rapidity correlations and the baryon excess over antibaryons in quark jets.

The changes in and additions to the commonblocks are as follows.
MSTU(121) - MSTU(125) : Internal flags and counters; only MSTU(123) may be touched

by you.
MSTU(121) : Popcorn meson counter.
MSTU(122) : Points at the proper diquark production weights, to distinguish be-

tween ordinary popcorn and rank 0 diquark systems. Only needed if
MSTJ(12)=5.

MSTU(123) : Initialization flag. If MSTU(123) is 0 in a PYKFDI call, PYKFIN is
called and MSTU(123) set to 1. Would need to be reset by you if flavour
parameters are changed in the middle of a run.

MSTU(124) : First parton flavour in decay call, stored to easily find random flavour
partner in a popcorn system.

MSTU(125) : Maximum number of popcorn mesons allowed in decay flavour gen-
eration. If a larger popcorn system passes the fake string suppressions,
the error KF=0 is returned and the flavour generation for the decay is
restarted.

MSTU(131) - MSTU(140) : Store of popcorn meson flavour codes in decay algorithm.
Purely internal.

MSTJ(12) : (D=2) Main switch for choice of baryon production model. Suppression of
rank 1 baryons by a parameter PARJ(19) is no longer governed by the MSTJ(12)
switch, but instead turned on by setting PARJ(19)<1. Three new options are
available:

= 3 : as =2, but additionally the production of first rank baryons may be sup-
pressed by a factor PARJ(19).

= 4 : as =2, but diquark vertices suffers an extra suppression of the form 1 −
exp(ρΓ), where ρ ≈ 0.7GeV−2 is stored in PARF(192).

= 5 : Advanced version of the popcorn model. Independent of PARJ(3-7).
Instead depending on PARJ(8-10). When using this option PARJ(1)
needs to enhanced by approx. a factor 2 (i.e. it losses a bit of its normal
meaning), and PARJ(18) is suggested to be set to 0.19.

PARJ(8), PARJ(9) : (D=0.6, 1.2 GeV−1) The new popcorn parameters βu and δβ =
βs − βu. Used to suppress popcorn mesons of total invariant mass M⊥ by
exp(−βq ∗M⊥). Larger PARJ(9) leads to a stronger suppression of popcorn
systems surrounded by an ss pair, and also a little stronger suppression of
strangeness in diquarks.

PARJ(10) : (D=0.6 GeV−1) Corresponding parameter for suppression of leading rank
mesons of transverse mass M⊥ in the fragmentation of diquark jets, used if

354

MSTJ(12)=5. The treatment of original diquarks is flavour independent, i.e.
PARJ(10) is used even if the diquark contains s or heavier quarks.

PARF(131) - PARF(190) : Different diquark and popcorn weights, calculated in PYKFIN,
which is automatically called from PYKFDI.

PARF(131) : Popcorn ratio BMB/BB in the old model.
PARF(132-134) : Leading rank meson ratio MB/B in the old model, for original

diquark with 0, 1 and 2 s-quarks, respectively.
PARF(135-137) : Colour fluctuation quark ratio, i.e. the relative probability that

the heavier quark in a diquark fits into the baryon at the opposite side
of the popcorn meson. For sq, original sq and original cq diquarks, re-
spectively.

PARF(138) : The extra suppression of strange colour fluctuation quarks, due to the
requirement of surrounding a popcorn meson. (In the old model, it is
simply PARJ(6).)

PARF(139) : Preliminary suppression of a popcorn meson in the new model. A
system of N popcorn mesons is started with weight proportional to
PARF(139)N . It is then tested against the correct weight, derived from
the mass of the system. For strange colour fluctuation quarks, the weight
is PARF(138)*PARF(139).

PARF(140) : Preliminary suppression of leading rank mesons in diquark strings,
irrespective of flavour. Corresponds to PARF(139).

PARF(141-145) : Maximal SU(6) factors for different types of diquarks.
PARF(146) : Σ/Λ suppression if MSTJ(12)=5, derived from PARJ(18).
PARF(151-190) : Production ratios for different diquarks. Stored in four groups,

handling q → BB, q → BM...B, qq → MB and finally qq → MB in
the case of original diquarks. In each group is stored:

1 : s/u colour fluctuation ratio.
2,3 : s/u ratio for the vertex quark if the colour fluctuation quark
is light or strange, respectively.
4 : q/q′ vertex quark ratio if the colour fluctuation quark is light
and = q.
5-7 : (spin 1)/(spin 0) ratio for su, us and ud, where the first flavour
is the colour fluctuation quark.
8-10 : Unused.

PARF(191) : (D=0.2) Non-constituent mass in GeV of a ud0 diquark. Used in combi-
nation with diquark constituent mass differences to derive relative production
rates for different diquark flavours in the MSTJ(12)=5 option.

PARF(192) : (D=0.5) Parameter for the low-Γ suppression of diquark vertices in the
MSTJ(12)≥ 4 options. PARF(192) represents e−ρ, i.e. the suppression is of the
form 1-PARF(192)Γ, Γ in GeV2.

PARF(193,194) : (I) Store of some popcorn weights used by the present popcorn system.
PARF(201-1400) : (I) Weights for every possible popcorn meson construction in the

MSTJ(12)=5 option. Calculated from input parameters and meson masses in
PYKFIN. When q1q2 → M + q1q3, the weights for M and the new diquark de-
pends not only on q1 and q2. It is also important if this is a ‘true’ popcorn
system, or a system which started with a diquark at the string end, and if M
is the final meson of the popcorn system, i.e. if the q1q3 diquark will go into a
baryon or not. With five possible flavours for q1 and q2 this gives 80 different
situations when selecting M and q3. However, quarks heavier than s only exist
in the string endpoints, and if more popcorn mesons are to be produced, the
q1q3 diquark does not influence the weights and the q1 dependence reduces to
what β factor (PARJ(8-10)) that is used. Then 40 distinct situations remains,

355

i.e.:
‘true popcorn’ final meson q1 q2

YES YES d,u,s d,u,s
NO <s,s d,u,s

NO YES d,u,s,>s d,u,s,c,b
NO 1 case d,u,s,c,b

This table also shows the order in which the situations are stored. E.g. situa-
tion no. 1 is ‘YES,YES,d,d’, situation no.11 is ‘YES,NO,< s,u’.
In every situation q3 can be d, u or s. if q3 = q2 there are in the program
three possible flavour mixing states available for the meson. This gives five
possible meson flavours, and for each one of them there are six possible L, S
spin states. Thus 30 PARF positions are reserved for each situation, and these
are used as follows:
For each spin multiplet (in the same order as in PARF(1-60)) five positions
are reserved. First are stored the weights for the the q3 6= q2 mesons, with q3

in increasing order. If q2 > s, this occupies three spots, and the final two are
unused. If q2 ≤ s, the final three spots are used for the diagonal states when
q3 = q2.

In summary, all commonblock variables are completely internal, except MSTU(123),
MSTJ(12), PARJ(8) - PARJ(10) and PARF(191), PARF(192). Among these, PARF(191)
and PARF(192) should not need to be changed. MSTU(123) should be 0 when starting,
and reset to 0 whenever changing a switch or parameter which influences flavour weight
With MSTJ(12)=4, PARJ(5) may need to increase. With MSTJ(12)=5, a preliminary
tune suggests PARJ(8) = 0.6, PARJ(9) = 1.2, PARJ(10) = 0.6, PARJ(1) = 0.20 and
PARJ(18)=0.19.

Three new subroutines are added, but are only needed for internal use.
SUBROUTINE PYKFIN : to calculate a large set of diquark and popcorn weights from input

parameters. Is called from PYKFDI if MSTU(123)=0. Sets MSTU(123) to 1.
SUBROUTINE PYNMES(KFDIQ) : to calculate number of popcorn mesons to be generated

in a popcorn system, or the number of leading rank mesons when fragment-
ing a diquark string. Stores the number in MSTU(121). Always returns 0 if
MSTJ(12)< 2. Returns 0 or 1 if MSTJ(12)< 5.

KFDIQ : Flavour of the diquark in a diquark string. If starting a popcorn system
inside a string, KFDIQ is 0.

SUBROUTINE PYDCYK(KFL1,KFL2,KFL3,KF) : to generate flavours in the phase space
model of hadron decays, and in cluster decays. Is essentially the same as
a PYKFDI call, but also takes into account the effects of string dynamics in
flavour production in the MSTJ(12)≥ 4 options. This is done in order to get a
reasonable interpretation of the input parameters also for hadron decays with
these options.

KFL1,KFL2,KFL3,KF : See SUBROUTINE PYKFDI.

Internally the diquark codes have been extended to store the necessary further popcorn
information. As before, an initially existing diquark has a code of the type 1000qa+100qb+
2s+ 1, where qa > qb. Diquarks created in the fragmentation process now have the longer
code 10000qc + 1000qa + 100qb + 2s+ 1, i.e. one further digit is set. Here qc is the curtain
quark, i.e. the flavour of the quark-antiquark pair that is shared between the baryon
and the antibaryon, either qa or qb. The non-curtain quark, the other of qa and qb, may
have its antiquark partner in a popcorn meson. In case there are no popcorn mesons
this information is not needed, but is still set at random to be either of qa and qb. The
extended code is used internally in PYSTRF and PYDECY and in some routines called by
them, but is not visible in any event listings.

356

14.4 Further Parameters and Particle Data

The PYUPDA routine is the main tool for updating particle data tables. The following
common blocks are maybe of a more peripheral interest, with the exception of the MDCY
array, which allows a selective inhibiting of particle decays, and setting masses of not yet
discovered particles, such as PMAS(25,1), the (Standard Model) Higgs mass.

CALL PYUPDA(MUPDA,LFN)

Purpose: to give you the ability to update particle data, or to keep several versions of
modified particle data for special purposes (e.g. bottom studies).

MUPDA : gives the type of action to be taken.
= 1 : write a table of particle data, that you then can edit at leisure. For ordi-

nary listing of decay data, PYLIST(12) should be used, but that listing
could not be read back in by the program.
For each compressed flavour code KC = 1–500, one line is written con-
taining the corresponding uncompressed KF flavour code (1X,I9) in
KCHG(KC,4), the particle and antiparticle names (2X,A16,2X,A16) in
CHAF, the electric (I3), colour charge (I3) and particle/antiparticle dis-
tinction (I3) codes in KCHG, the mass (F12.5), the mass width (F12.5),
maximum broadening (F12.5) and average proper lifetime (1P,E13.5) in
PMAS, the resonance width treatment (I3) in MWID and the on/off decay
switch (I3) in MDCY(KC,1).
After a KC line follows one line for each possible decay channel, containing
the MDME codes (10X,2I5), the branching ratio (F12.6) in BRAT, and the
KFDP codes for the decay products (5I10), with trailing 0’s if the number
of decay products is smaller than 5.

= 2 : read in particle data, as written with =1 and thereafter edited by you, and
use this data subsequently in the current run. This also means e.g. the
mapping between the full KF and compressed KC flavour codes. Reading
is done with fixed format, which means that you have to preserve the
format codes described for =1 during the editing. A number of checks
will be made to see if input looks reasonable, with warnings if not. If
some decay channel is said not to conserve charge, it should be taken
seriously. Warnings that decay is kinematically unallowed need not be as
serious, since that particular decay mode may not be switched on unless
the particle mass is increased.

= 3 : read in particle data, like option 2, but use it as a complement to rather
than a replacement of existing data. The input file should therefore only
contain new particles and particles with changed data. New particles
are added to the bottom of the KC and decay channel tables. Changed
particles retain their KC codes and hence the position of particle data,
but their old decay channels are removed, this space is recuperated, and
new decay channels are added at the end. Thus also the decay channel
numbers of unchanged particles are affected.

= 4 : write current particle data as data lines, which can be edited into BLOCK
DATA PYDATA for a permanent replacement of the particle data. This
option is intended for the program author only, not for you.

LFN : the file number which the data should be written to or read from. You must
see to it that this file is properly opened for read or write (since the definition
of file names is platform dependent).

357

COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)

Purpose: to give access to a number of flavour treatment constants or parameters and
particle/parton data. Particle data is stored by compressed code KC rather
than by the full KF code. You are reminded that the way to know the KC value
is to use the PYCOMP function, i.e. KC = PYCOMP(KF).

KCHG(KC,1) : three times particle/parton charge for compressed code KC.
KCHG(KC,2) : colour information for compressed code KC.

= 0 : colour-singlet particle.
= 1 : quark or antidiquark.
= -1 : antiquark or diquark.
= 2 : gluon.

KCHG(KC,3) : particle/antiparticle distinction for compressed code KC.
= 0 : the particle is its own antiparticle.
= 1 : a nonidentical antiparticle exists.

KCHG(KC,4) : equals the uncompressed particle code KF (always with a positive sign).
This gives the inverse mapping of what is provided by the PYCOMP routine.

PMAS(KC,1) : particle/parton mass m (in GeV) for compressed code KC.
PMAS(KC,2) : the total width Γ (in GeV) of an assumed symmetric Breit–Wigner mass

shape for compressed particle code KC.
PMAS(KC,3) : the maximum deviation (in GeV) from the PMAS(KC,1) value at which the

Breit–Wigner shape above is truncated. Is used in ordinary particle decays,
but not in the resonance treatment; cf. the CKIN variables.

PMAS(KC,4) : the average lifetime τ for compressed particle code KC, with cτ in mm, i.e.
τ in units of about 3.33× 10−12 s.

PARF(1) - PARF(60) : give a parameterization of the dd–uu–ss flavour mixing in pro-
duction of flavour-diagonal mesons. Numbers are stored in groups of 10, for
the six multiplets pseudoscalar, vector, axial vector (S = 0), scalar, axial vec-
tor (S = 1) and tensor, in this order; see section 12.1.2. Within each group,
the first two numbers determine the fate of a dd flavour state, the second two
that of a uu one, the next two that of an ss one, while the last four are unused.
Call the numbers of a pair p1 and p2. Then the probability to produce the
state with smallest KF code is 1 − p1, the probability for the middle one is
p1 − p2 and the probability for the one with largest code is p2, i.e. p1 is the
probability to produce either of the two ‘heavier’ ones.

PARF(61) - PARF(80) : give flavour SU(6) weights for the production of a spin 1/2
or spin 3/2 baryon from a given diquark–quark combination. Should not be
changed.

PARF(91) - PARF(96) : (D = 0.0099, 0.0056, 0.199, 1.35, 4.5, 165 GeV) default nominal
quark masses, used to give the starting value for running masses calculated in
PYMRUN.

PARF(101) - PARF(105) : contain d, u, s, c and b constituent masses, in the past used
in mass formulae for undiscovered hadrons, and should not be changed.

PARF(111), PARF(112) : (D=0.0, 0.11 GeV) constant terms in the mass formulae for
heavy mesons and baryons, respectively (with diquark getting 2/3 of baryon).

PARF(113), PARF(114) : (D=0.16, 0.048 GeV) factors which, together with Clebsch-
Gordan coefficients and quark constituent masses, determine the mass splitting
due to spin-spin interactions for heavy mesons and baryons, respectively. The
latter factor is also used for the splitting between spin 0 and spin 1 diquarks.

PARF(115) - PARF(118) : (D=0.50, 0.45, 0.55, 0.60 GeV), constant mass terms, added
to the constituent masses, to get the mass of heavy mesons with orbital angular

358

momentum L = 1. The four numbers are for pseudovector mesons with quark
spin 0, and for scalar, pseudovector and tensor mesons with quark spin 1,
respectively.

PARF(121), PARF(122) : (D=0.1, 0.2 GeV) constant terms, which are subtracted for
quark and diquark masses, respectively, in defining the allowed phase space in
particle decays into partons (e.g. B0 → cdud).

PARF(201) - PARF(1960) : (D=1760*0) relative probabilities for flavour production in
the MSTJ(15)=1 option; to be defined by you before any Pythia calls. (The
standard meaning is changed in the advanced baryon popcorn code, described
in subsection 14.3.1, where many of the PARF numbers are used for other pur-
poses.)
The index in PARF is of the compressed form
120 + 80×KTAB1+25×KTABS+KTAB3.
Here KTAB1 is the old flavour, fixed by preceding fragmentation history, while
KTAB3 is the new flavour, to be selected according to the relevant relative
probabilities (except for the very last particle, produced when joining two jets,
where both KTAB1 and KTAB3 are known). Only the most frequently ap-
pearing quarks/diquarks are defined, according to the code 1 = d, 2 = u,
3 = s, 4 = c, 5 = b, 6 = t (obsolete!), 7 = dd1, 8 = ud0, 9 = ud1, 10 = uu1,
11 = sd0, 12 = sd1, 13 = su0, 14 = su1, 15 = ss1, 16 = cd0, 17 = cd1, 18 = cu0,
19 = cu1, 20 = cs0, 21 = cs1, 22 = cc1. These are thus the only possibilities
for the new flavour to be produced; for an occasional old flavour not on this
list, the ordinary relative flavour production probabilities will be used.
Given the initial and final flavour, the intermediate hadron that is produced
is almost fixed. (Initial and final diquark here corresponds to ‘popcorn’ pro-
duction of mesons intermediate between a baryon and an antibaryon). The
additional index KTABS gives the spin type of this hadron, with
0 = pseudoscalar meson or Λ-like spin 1/2 baryon,
1 = vector meson or Σ-like spin 1/2 baryon,
2 = tensor meson or spin 3/2 baryon.
(Some meson multiplets, not frequently produced, are not accessible by this
parameterization.)
Note that some combinations of KTAB1, KTAB3 and KTABS do not cor-
respond to a physical particle (a Λ-like baryon must contain three differ-
ent quark flavours, a Σ-like one at least two), and that you must see to
it that the corresponding PARF entries are vanishing. One additional com-
plication exist when KTAB3 and KTAB1 denote the same flavour content
(normally KTAB3=KTAB1, but for diquarks the spin freedom may give
KTAB3=KTAB1±1): then a flavour neutral meson is to be produced, and
here dd, uu and ss states mix (heavier flavour states do not, and these are
therefore no problem). For these cases the ordinary KTAB3 value gives the
total probability to produce either of the mesons possible, while KTAB3=23
gives the relative probability to produce the lightest meson state (π0, ρ0, a0

2),
KTAB3=24 relative probability for the middle meson (η, ω, f0

2), and KTAB3 =
25 relative probability for the heaviest one (η′, φ, f ′02). Note that, for simplic-
ity, these relative probabilities are assumed the same whether initial and final
diquark have the same spin or not; the total probability may well be assumed
different, however.
As a general comment, the sum of PARF values for a given KTAB1 need not
be normalized to unity, but rather the program will find the sum of relevant
weights and normalize to that. The same goes for the KTAB3=23–25 weights.
This makes it straightforward to use one common setup of PARF values and
still switch between different MSTJ(12) baryon production modes, with the

359

exception of the advanced popcorn scenarios.

VCKM(I,J) : squared matrix elements of the Cabibbo-Kobayashi-Maskawa flavour mix-
ing matrix.

I : up type generation index, i.e. 1 = u, 2 = c, 3 = t and 4 = t′.
J : down type generation index, i.e. 1 = d, 2 = s, 3 = b and 4 = b′.

COMMON/PYDAT3/MDCY(500,3),MDME(8000,2),BRAT(8000),KFDP(8000,5)

Purpose: to give access to particle decay data and parameters. In particular, the
MDCY(KC,1) variables may be used to switch on or off the decay of a given
particle species, and the MDME(IDC,1) ones to switch on or off an individual
decay channel of a particle. For quarks, leptons and gauge bosons, a number
of decay channels are included that are not allowed for on-mass-shell particles,
see MDME(IDC,2)=102. These channels are not directly used to perform de-
cays, but rather to denote allowed couplings in a more general sense, and to
switch on or off such couplings, as described elsewhere. Particle data is stored
by compressed code KC rather than by the full KF code. You are reminded
that the way to know the KC value is to use the PYCOMP function, i.e. KC =
PYCOMP(KF).

MDCY(KC,1) : switch to tell whether a particle with compressed code KC may be allowed
to decay or not.

= 0 : the particle is not allowed to decay.
= 1 : the particle is allowed to decay (if decay information is defined below for

the particle).
Warning: these values may be overwritten for resonances in a PYINIT call, based

on the MSTP(41) option you have selected. If you want to allow resonance
decays in general but switch off the decay of one particular resonance,
this is therefore better done after the PYINIT call.

MDCY(KC,2) : gives the entry point into the decay channel table for compressed particle
code KC. Is 0 if no decay channels have been defined.

MDCY(KC,3) : gives the total number of decay channels defined for compressed particle
code KC, independently of whether they have been assigned a non-vanishing
branching ratio or not. Thus the decay channels are found in positions
MDCY(KC,2) to MDCY(KC,2)+MDCY(KC,3)-1.

MDME(IDC,1) : on/off switch for individual decay channel IDC. In addition, a channel
may be left selectively open; this has some special applications in the event
generation machinery. Effective branching ratios are automatically recalcu-
lated for the decay channels left open. Also process cross sections are affected;
see section 7.6.2. If a particle is allowed to decay by the MDCY(KC,1) value,
at least one channel must be left open by you. A list of decay channels with
current IDC numbers may be obtained with PYLIST(12).

= -1 : this is a non-Standard Model decay mode, which by default is assumed
not to exist. Normally, this option is used for decays involving fourth
generation or H± particles.

= 0 : channel is switched off.
= 1 : channel is switched on.
= 2 : channel is switched on for a particle but off for an antiparticle. It is also

on for a particle which is its own antiparticle, i.e. here it means the same
as =1.

= 3 : channel is switched on for an antiparticle but off for a particle. It is off
for a particle which is its own antiparticle.

360

= 4 : in the production of a pair of equal or charge conjugate resonances in
Pythia, say h0 → W+W−, either one of the resonances is allowed to
decay according to this group of channels, but not both. If the two par-
ticles of the pair are different, the channel is on. For ordinary particles,
not resonances, this option only means that the channel is switched off.

= 5 : as =4, but an independent group of channels, such that in a pair of equal
or charge conjugate resonances the decay of either resonance may be
specified independently. If the two particles in the pair are different, the
channel is off. For ordinary particles, not resonances, this option only
means that the channel is switched off.

Warning: the two values -1 and 0 may look similar, but in fact are quite different.
In neither case the channel so set is generated, but in the latter case the
channel still contributes to the total width of a resonance, and thus affects
both simulated line shape and the generated cross section when Pythia
is run. The value 0 is appropriate to a channel we assume exists, even if
we are not currently simulating it, while -1 should be used for channels
we believe do not exist. In particular, you are warned unwittingly to set
fourth generation channels 0 (rather than -1), since by now the support
for a fourth generation is small.

Remark: all the options above may be freely mixed. The difference, for those cases
where both make sense, between using values 2 and 3 and using 4 and
5 is that the latter automatically include charge conjugate states, e.g.
h0 →W+W− → e+νedu or due−νe, but the former only one of them. In
calculations of the joint branching ratio, this makes a factor 2 difference.

Example: to illustrate the above options, consider the case of a W+W− pair. One
might then set the following combination of switches for the W:
channel value comment

ud 1 allowed for W+ and W− in any combination,

us 0 never produced but contributes to W width,

cd 2 allowed for W+ only,

cs 3 allowed for W− only, i.e. properly W− → cs,

tb 0 never produced but contributes to W width

if the channel is kinematically allowed,

νee
+ 4 allowed for one of W+ or W−, but not both,

νµµ
+ 4 allowed for one of W+ or W−, but not both,

and not in combination with νee
+,

νττ
+ 5 allowed for the other W, but not both,

νχχ
− −1 not produced and does not contribute to W width.

A W+W− final state ud + cs is allowed, but not its charge conjugate
ud + cs, since the latter decay mode is not allowed for a W+. The
combination νee

+ + ν̄ττ
− is allowed, since the two channels belong to

different groups, but not νee
+ + ν̄µµ

−, where both belong to the same.
Both ud+ν̄ττ

− and ud+νττ
+ are allowed, since there is no clash. The full

rulebook, for this case, is given by eq. (111). A term r2
i means channel

i is allowed for W+ and W− simultaneously, a term rirj that channels
i and j may be combined, and a term 2rirj that channels i and j may
be combined two ways, i.e. that also a charge conjugate combination is
allowed.

MDME(IDC,2) : information on special matrix-element treatment for decay channel IDC.
Is mainly intended for the normal-particle machinery in PYDECY, so many of

361

the codes are superfluous in the more sophisticated resonance decay treatment
by PYRESD, see section 2.1.2. In addition to the outline below, special rules
apply for the order in which decay products should be given, so that matrix
elements and colour flow is properly treated. One such example is the weak
matrix elements, which only will be correct if decay products are given in the
right order. The program does not police this, so if you introduce channels of
your own and use these codes, you should be guided by the existing particle
data.

= 0 : no special matrix-element treatment; partons and particles are copied
directly to the event record, with momentum distributed according to
phase space.

= 1 : ω and φ decays into three pions, eq. (244).
= 2 : π0 or η Dalitz decay to γe+e−, eq. (246).
= 3 : used for vector meson decays into two pseudoscalars, to signal non-

isotropic decay angle according to eq. (245), where relevant.
= 4 : decay of a spin 1 onium resonance to three gluons or to a photon and

two gluons, eq. (43). The gluons may subsequently develop a shower if
MSTJ(23)=1.

= 11 : phase-space production of hadrons from the quarks available.
= 12 : as =11, but for onia resonances, with the option of modifying the multi-

plicity distribution separately.
= 13 : as =11, but at least three hadrons to be produced (useful when the two-

body decays are given explicitly).
= 14 : as =11, but at least four hadrons to be produced.
= 15 : as =11, but at least five hadrons to be produced.
= 22 - 30 : phase-space production of hadrons from the quarks available, with

the multiplicity fixed to be MDME(IDC,2)-20, i.e. 2–10.
= 31 : two or more quarks and particles are distributed according to phase space.

If three or more products, the last product is a spectator quark, i.e. sitting
at rest with respect to the decaying hadron.

= 32 : a qq or gg pair, distributed according to phase space (in angle), and
allowed to develop a shower if MSTJ(23)=1.

= 33 : a triplet qXq, where X is either a gluon or a colour-singlet particle; the
final particle (q) is assumed to sit at rest with respect to the decaying
hadron, and the two first particles (q and X) are allowed to develop a
shower if MSTJ(23)=1. Nowadays superfluous.

= 41 : weak decay, where particles are distributed according to phase space,
multiplied by a factor from the expected shape of the momentum spec-
trum of the direct product of the weak decay (the ντ in τ decay).

= 42 : weak decay matrix element for quarks and leptons. Products may be
given either in terms of quarks or hadrons, or leptons for some channels.
If the spectator system is given in terms of quarks, it is assumed to
collapse into one particle from the onset. If the virtual W decays into
quarks, these quarks are converted to particles, according to phase space
in the W rest frame, as in =11. Is intended for τ , charm and bottom.

= 43 : as =42, but if the W decays into quarks, these will either appear as jets
or, for small masses, collapse into a one- or two-body system. Nowadays
superfluous.

= 44 : weak decay matrix element for quarks and leptons, where the spectator
system may collapse into one particle for a small invariant mass. If
the first two decay products are a qq′ pair, they may develop a parton
shower if MSTJ(23)=1. Was intended for top and beyond, but is nowadays
superfluous.

362

= 46 : W (KF = 89) decay into qq′ or `ν` according to relative probabilities given
by couplings (as stored in the BRAT vector) times a dynamical phase-space
factor given by the current W mass. In the decay, the correct V − A
angular distribution is generated if the W origin is known (heavy quark
or lepton). This is therefore the second step of a decay with MDME=45. A
qq′ pair may subsequently develop a shower if MSTJ(23)=1. Was intended
for top and beyond, but is nowadays superfluous.

= 48 : as =42, but require at least three decay products.
= 50 : (default behaviour, also obtained for any other code value apart from

the ones listed below) do not include any special threshold factors. That
is, a decay channel is left open even if the sum of daughter nominal
masses is above the mother actual mass, which is possible if at least one
of the daughters can be pushed off the mass shell. Is intended for decay
treatment in PYRESD with PYWIDT calls, and has no special meaning for
ordinary PYDECY calls.

= 51 : a step threshold, i.e. a channel is switched off when the sum of daughter
nominal masses is above the mother actual mass. Is intended for decay
treatment in PYRESD with PYWIDT calls, and has no special meaning for
ordinary PYDECY calls.

= 52 : a β-factor threshold, i.e.
√

(1−m2
1/m

2 −m2
2/m

2)2 − 4m2
1m

2
2/m

4, assum-
ing that the values stored in PMAS(KC,2) and BRAT(IDC) did not include
any threshold effects at all. Is intended for decay treatment in PYRESD
with PYWIDT calls, and has no special meaning for ordinary PYDECY calls.

= 53 : as =52, but assuming that PMAS(KC,2) and BRAT(IDC) did include the
threshold effects, so that the weight should be the ratio of the β value
at the actual mass to that at the nominal one. Is intended for decay
treatment in PYRESD with PYWIDT calls, and has no special meaning for
ordinary PYDECY calls.

= 101 : this is not a proper decay channel, but only to be considered as a con-
tinuation line for the decay product listing of the immediately preceding
channel. Since the KFDP array can contain five decay products per chan-
nel, with this code it is possible to define channels with up to ten decay
products. It is not allowed to have several continuation lines after each
other.

= 102 : this is not a proper decay channel for a decaying particle on the mass shell
(or nearly so), and is therefore assigned branching ratio 0. For a particle
off the mass shell, this decay mode is allowed, however. By including
this channel among the others, the switches MDME(IDC,1) may be used
to allow or forbid these channels in hard processes, with cross sections
to be calculated separately. As an example, γ → uu is not possible for a
massless photon, but is an allowed channel in e+e− annihilation.

BRAT(IDC) : give branching ratios for the different decay channels. In principle, the
sum of branching ratios for a given particle should be unity. Since the pro-
gram anyway has to calculate the sum of branching ratios left open by the
MDME(IDC,1) values and normalize to that, you need not explicitly ensure this
normalization, however. (Warnings are printed in PYUPDA(2) or PYUPDA(3)
calls if the sum is not unity, but this is entirely intended as a help for finding
user mistypings.) For decay channels with MDME(IDC,2)> 80 the BRAT values
are dummy.

KFDP(IDC,J) : contain the decay products in the different channels, with five positions
J= 1–5 reserved for each channel IDC. The decay products are given follow-
ing the standard KF code for partons and particles, with 0 for trailing empty

363

positions. Note that the MDME(IDC+1,2)=101 option allows you to double the
maximum number of decay product in a given channel from 5 to 10, with the
five latter products stored KFDP(IDC+1,J).

COMMON/PYDAT4/CHAF(500,2)
CHARACTER CHAF*16

Purpose: to give access to character type variables.

CHAF(KC,1) : particle name according to KC code.
CHAF(KC,2) : antiparticle name according to KC code when an antiparticle exists, else

blank.

14.5 Miscellaneous Comments

The previous sections have dealt with the subroutine options and variables one at a time.
This is certainly important, but for a full use of the capabilities of the program, it is also
necessary to understand how to make different pieces work together. This is something
that cannot be explained fully in a manual, but must also be learnt by trial and error. This
section contains some examples of relationships between subroutines, common blocks and
parameters. It also contains comments on issues that did not fit in naturally anywhere
else, but still might be useful to have on record.

14.5.1 Interfacing to detector simulation

Very often, the output of the program is to be fed into a subsequent detector simulation
program. It therefore becomes necessary to set up an interface between the PYJETS
common block and the detector model. Preferrably this should be done via the HEPEVT
standard common block, see section 5.4, but sometimes this may not be convenient. If a
PYEDIT(2) call is made, the remaining entries exactly correspond to those an ideal detector
could see: all non-decayed particles, with the exception of neutrinos. The translation of
momenta should be trivial (if need be, a PYROBO call can be made to rotate the ‘preferred’
z direction to whatever is the longitudinal direction of the detector), and so should the
translation of particle codes. In particular, if the detector simulation program also uses
the standard Particle Data Group codes, no conversion at all is needed. The problem
then is to select which particles are allowed to decay, and how decay vertex information
should be used.

Several switches regulate which particles are allowed to decay. First, the master switch
MSTJ(21) can be used to switch on/off all decays (and it also contains a choice of how
fragmentation should be interfaced). Second, a particle must have decay modes defined
for it, i.e. the corresponding MDCY(KC,2) and MDCY(KC,3) entries must be non-zero for
compressed code KC = PYCOMP(KF). This is true for all colour neutral particles except
the neutrinos, the photon, the proton and the neutron. (This statement is actually not
fully correct, since irrelevant ‘decay modes’ with MDME(IDC,2)=102 exist in some cases.)
Third, the individual switch in MDCY(KC,1) must be on. Of all the particles with decay
modes defined, only µ±, π±, K± and K0

L are by default considered stable.
Finally, if MSTJ(22) does not have its default value 1, checks are also made on the

lifetime of a particle before it is allowed to decay. In the simplest alternative, MSTJ(22)=2,
the comparison is based on the average lifetime, or rather cτ , measured in mm. Thus if
the limit PARJ(71) is (the default) 10 mm, then decays of K0

S, Λ, Σ−, Σ+, Ξ−, Ξ0 and
Ω− are all switched off, but charm and bottom still decay. No cτ values below 1 µm
are defined. With the two options MSTJ(22)= 3 or 4, a spherical or cylindrical volume is
defined around the origin, and all decays taking place inside this volume are ignored.

364

Whenever a particle is in principle allowed to decay, i.e. MSTJ(21) and MDCY on, an
proper lifetime is selected once and for all and stored in V(I,5). The K(I,1) is then also
changed to 4. For MSTJ(22)=1, such a particle will also decay, but else it could remain
in the event record. It is then possible, at a later stage, to expand the volume inside
which decays are allowed, and do a new PYEXEC call to have particles fulfilling the new
conditions (but not the old) decay. As a further option, the K(I,1) code may be put to
5, signalling that the particle will definitely decay in the next PYEXEC call, at the vertex
position given (by you) in the V vector.

This then allows the Pythia decay routines to be used inside a detector simulation
program, as follows. For a particle which did not decay before entering the detector, its
point of decay is still well defined (in the absence of deflections by electric or magnetic
fields), eq. (243). If it interacts before that point, the detector simulation program is left
to handle things. If not, the V vector is updated according to the formula above, K(I,1)
is set to 5, and PYEXEC is called, to give a set of decay products, that can again be tracked.

A further possibility is to force particles to decay into specific decay channels; this
may be particularly interesting for charm or bottom physics. The choice of channels left
open is determined by the values of the switches MDME(IDC,1) for decay channel IDC
(use PYLIST(12) to obtain the full listing). One or several channels may be left open; in
the latter case effective branching ratios are automatically recalculated without the need
for your intervention. It is also possible to differentiate between which channels are left
open for particles and which for antiparticles. Lifetimes are not affected by the exclusion
of some decay channels. Note that, whereas forced decays can enhance the efficiency for
several kinds of studies, it can also introduce unexpected biases, in particular when events
may contain several particles with forced decays, cf. section 7.6.2.

14.5.2 Parameter values

A non-trivial question is to know which parameter values to use. The default values
stored in the program are based on comparisons with LEP e+e− → Z0 data at around
91 GeV [LEP90], using a parton-shower picture followed by string fragmentation. Some
examples of more recent parameter sets are found in [Kno96]. If fragmentation is indeed
a universal phenomenon, as we would like to think, then the same parameters should
also apply at other energies and in other processes. The former aspect, at least, seems
to be borne out by comparisons with lower-energy PETRA/PEP data and higher-energy
LEP2 data. Note, however, that the choice of parameters is intertwined with the choice of
perturbative QCD description. If instead matrix elements are used, a best fit to 30 GeV
data would require the values PARJ(21)=0.40, PARJ(41)=1.0 and PARJ(42)=0.7. With
matrix elements one does not expect an energy independence of the parameters, since the
effective minimum invariant mass cut-off is then energy dependent, i.e. so is the amount
of soft gluon emission effects lumped together with the fragmentation parameters. This
is indeed confirmed by the LEP data. A mismatch in the perturbative QCD treatment
could also lead to small differences between different processes.

It is often said that the string fragmentation model contains a wealth of parameters.
This is certainly true, but it must be remembered that most of these deal with flavour
properties, and to a large extent factorize from the treatment of the general event shape.
In a fit to the latter it is therefore usually enough to consider the parameters of the per-
turbative QCD treatment, like Λ in αs and a shower cut-off Q0 (or αs itself and ymin, if
matrix elements are used), the a and b parameter of the Lund symmetric fragmentation
function (PARJ(41) and PARJ(42)) and the width of the transverse momentum distribu-
tion (σ =PARJ(21)). In addition, the a and b parameters are very strongly correlated by
the requirement of having the correct average multiplicity, such that in a typical χ2 plot,
the allowed region corresponds to a very narrow but very long valley, stretched diagonally
from small (a,b) pairs to large ones. As to the flavour parameters, these are certainly

365

many more, but most of them are understood qualitiatively within one single framework,
that of tunnelling pair production of flavours.

Since the use of independent fragmentation has fallen in disrespect, it should be
pointed out that the default parameters here are not particularly well tuned to the data.
This especially applies if one, in addition to asking for independent fragmentation, also
asks for another setup of fragmentation functions, i.e. other than the standard Lund
symmetric one. In particular, note that most fits to the popular Peterson/SLAC heavy-
flavour fragmentation function are based on the actual observed spectrum. In a Monte
Carlo simulation, one must then start out with something harder, to compensate for the
energy lost by initial-state photon radiation and gluon bremsstrahlung. Since indepen-
dent fragmentation is not collinear safe (i.e, the emission of a collinear gluon changes the
properties of the final event), the tuning is strongly dependent on the perturbative QCD
treatment chosen. All the parameters needed for a tuning of independent fragmentation
are available, however.

14.6 Examples

A 10 GeV u quark jet going out along the +z axis is generated with

CALL PY1ENT(0,2,10D0,0D0,0D0)

Note that such a single jet is not required to conserve energy, momentum or flavour. In
the generation scheme, particles with negative pz are produced as well, but these are
automatically rejected unless MSTJ(3)=-1. While frequently used in former days, the
one-jet generation option is not of much current interest.

In e.g. a leptoproduction event a typical situation could be a u quark going out in
the +z direction and a ud0 target remnant essentially at rest. (Such a process can be
simulated by Pythia, but here we illustrate how to do part of it yourself.) The simplest
procedure is probably to treat the process in the c.m. frame and boost it to the lab frame
afterwards. Hence, if the c.m. energy is 20 GeV and the boost βz = 0.996 (corresponding
to xB = 0.045), then

CALL PY2ENT(0,2,2101,20D0)
CALL PYROBO(0,0,0D0,0D0,0D0,0D0,0.996D0)

The jets could of course also be defined and allowed to fragment in the lab frame with

CALL PY1ENT(-1,2,223.15D0,0D0,0D0)
CALL PY1ENT(2,12,0.6837D0,3.1416D0,0D0)
CALL PYEXEC

Note here that the target diquark is required to move in the backwards direction with
E−pz = mp(1−xB) to obtain the correct invariant mass for the system. This is, however,
only an artefact of using a fixed diquark mass to represent a varying target remnant mass,
and is of no importance for the fragmentation. If one wants a nicer-looking event record,
it is possible to use the following

CALL PY1ENT(-1,2,223.15D0,0D0,0D0)
MSTU(10)=1
P(2,5)=0.938D0*(1D0-0.045D0)
CALL PY1ENT(2,2101,0D0,0D0,0D0)
MSTU(10)=2
CALL PYEXEC

A 30 GeV uug event with Eu = 8 GeV and Eu = 14 GeV is simulated with

366

CALL PY3ENT(0,2,21,-2,30D0,2D0*8D0/30D0,2D0*14D0/30D0)

The event will be given in a standard orientation with the u quark along the +z axis
and the u in the ±z,+x half plane. Note that the flavours of the three partons have to
be given in the order they are found along a string, if string fragmentation options are
to work. Also note that, for 3-jet events, and particularly 4-jet ones, not all setups of
kinematical variables x lie within the kinematically allowed regions of phase space.

All common block variables can obviously be changed by including the corresponding
common block in the user-written main program. Alternatively, the routine PYGIVE can
be used to feed in values, with some additional checks on array bounds then performed.
A call

CALL PYGIVE(’MSTJ(21)=3;PMAS(C663,1)=210.;CHAF(401,1)=funnyino;’//
&’PMAS(21,4)=’)

will thus change the value of MSTJ(21) to 3, the value of PMAS(PYCOMP(663),1) =
PMAS(136,1) to 210., the value of CHAF(401,1) to ’funnyino’, and print the current
value of PMAS(21,4). Since old and new values of parameters changed are written to out-
put, this may offer a convenient way of documenting non-default values used in a given
run. On the other hand, if a variable is changed back and forth frequently, the resulting
voluminous output may be undesirable, and a direct usage of the common blocks is then
to be recommended (the output can also be switched off, see MSTU(13)).

A general rule of thumb is that none of the physics routines (PYSTRF, PYINDF, PYDECY,
etc.) should ever be called directly, but only via PYEXEC. This routine may be called
repeatedly for one single event. At each call only those entries that are allowed to fragment
or decay, and have not yet done so, are treated. Thus

CALL PY2ENT(1,1,-1,20D0) ! fill 2 partons without fragmenting
MSTJ(1)=0 ! inhibit jet fragmentation
MSTJ(21)=0 ! inhibit particle decay
MDCY(PYCOMP(111),1)=0 ! inhibit pi0 decay
CALL PYEXEC ! will not do anything
MSTJ(1)=1 !
CALL PYEXEC ! partons will fragment, no decays
MSTJ(21)=2 !
CALL PYEXEC ! particles decay, except pi0
CALL PYEXEC ! nothing new can happen
MDCY(PYCOMP(111),1)=1 !
CALL PYEXEC ! pi0:s decay

A partial exception to the rule above is PYSHOW. Its main application is for internal
use by PYEEVT, PYDECY, and PYEVNT, but it can also be directly called by you. Note that
a special format for storing colour-flow information in K(I,4) and K(I,5) must then be
used. For simple cases, the PY2ENT can be made to take care of that automatically, by
calling with the first argument negative.

CALL PY2ENT(-1,1,-2,80D0) ! store d ubar with colour flow
CALL PYSHOW(1,2,80D0) ! shower partons
CALL PYEXEC ! subsequent fragmentation/decay

For more complicated configurations, PYJOIN should be used.
It is always good practice to list one or a few events during a run to check that the

program is working as intended. With

CALL PYLIST(1)

367

all particles will be listed and in addition total charge, momentum and energy of sta-
ble entries will be given. For string fragmentation these quantities should be conserved
exactly (up to machine precision errors), and the same goes when running independent
fragmentation with one of the momentum conservation options. PYLIST(1) gives a format
that comfortably fits in an 80 column window, at the price of not giving the complete
story. With PYLIST(2) a more extensive listing is obtained, and PYLIST(3) also gives
vertex information. Further options are available, like PYLIST(12), which gives a list of
particle data.

An event, as stored in the PYJETS common block, will contain the original partons and
the whole decay chain, i.e. also particles which subsequently decayed. If parton showers
are used, the amount of parton information is also considerable: first the on-shell partons
before showers have been considered, then a K(I,1)=22 line with total energy of the
showering subsystem, after that the complete shower history tree-like structure, starting
off with the same initial partons (now off-shell), and finally the end products of the shower
rearranged along the string directions. This detailed record is useful in many connections,
but if one only wants to retain the final particles, superfluous information may be removed
with PYEDIT. Thus e.g.

CALL PYEDIT(2)

will leave you with the final charged and neutral particles, except for neutrinos.
The information in PYJETS may be used directly to study an event. Some useful

additional quantities derived from these, such as charge and rapidity, may easily be found
via the PYK and PYP functions. Thus electric charge =PYP(I,6) (as integer, three times
charge =PYK(I,6)) and true rapidity y with respect to the z axis = PYP(I,17).

A number of utility (MSTU, PARU) and physics (MSTJ, PARJ) switches and parameters
are available in common block PYDAT1. All of these have sensible default values. Particle
data is stored in common blocks PYDAT2, PYDAT3 and PYDAT4. Note that the data in the
arrays KCHG, PMAS, MDCY CHAF and MWID is not stored by KF code, but by the compressed
code KC. This code is not to be learnt by heart, but instead accessed via the conversion
function PYCOMP, KC = PYCOMP(KF).

In the particle tables, the following particles are considered stable: the photon, e±,
µ±, π±, K±, K0

L, p, p, n, n and all the neutrinos. It is, however, always possible to inhibit
the decay of any given particle by putting the corresponding MDCY value zero or negative,
e.g. MDCY(PYCOMP(310),1)=0 makes K0

S and MDCY(PYCOMP(3122),1)=0 Λ stable. It is
also possible to select stability based on the average lifetime (see MSTJ(22)), or based on
whether the decay takes place within a given spherical or cylindrical volume around the
origin.

The Field-Feynman jet model [Fie78] is available in the program by changing the
following values: MSTJ(1)=2 (independent fragmentation), MSTJ(3)=-1 (retain parti-
cles with pz < 0; is not mandatory), MSTJ(11)=2 (choice of longitudinal fragmenta-
tion function, with the a parameter stored in PARJ(51) - PARJ(53)), MSTJ(12)=0 (no
baryon production), MSTJ(13)=1 (give endpoint quarks p⊥ as quarks created in the field),
MSTJ(24)=0 (no mass broadening of resonances), PARJ(2)=0.5 (s/u ratio for the produc-
tion of new qq pairs), PARJ(11)=PARJ(12)=0.5 (probability for mesons to have spin 1)
and PARJ(21)=0.35 (width of Gaussian transverse momentum distribution). In addition
only d, u and s single quark jets may be generated following the FF recipe. Today the FF
‘standard jet’ concept is probably dead and buried, so the numbers above should more
be taken as an example of the flexibility of the program, than as something to apply in
practice.

A wide range of independent fragmentation options are implemented, to be accessed
with the master switch MSTJ(1)=2. In particular, with MSTJ(2)=1 a gluon jet is assumed
to fragment like a random d, d, u, u, s or s jet, while with MSTJ(2)=3 the gluon is split
into a dd, uu or ss pair of jets sharing the energy according to the Altarelli-Parisi splitting

368

function. Whereas energy, momentum and flavour is not explicitly conserved in indepen-
dent fragmentation, a number of options are available in MSTJ(3) to ensure this ‘post
facto’, e.g. MSTJ(3)=1 will boost the event to ensure momentum conservation and then
(in the c.m. frame) rescale momenta by a common factor to obtain energy conservation,
whereas MSTJ(3)=4 rather uses a method of stretching the jets in longitudinal momentum
along the respective jet axis to keep angles between jets fixed.

369

15 Event Study and Analysis Routines

After an event has been generated, one may wish to list it, or process it further in various
ways. The first section below describes some simple study routines of this kind, while the
subsequent ones describe more sophisticated analysis routines.

To describe the complicated geometries encountered in multihadronic events, a number
of event measures have been introduced. These measures are intended to provide a global
view of the properties of a given event, wherein the full information content of the event
is condensed into one or a few numbers. A steady stream of such measures are proposed
for different purposes. Many are rather specialized or never catch on, but a few become
standards, and are useful to have easy access to. Pythia therefore contains a number of
routines that can be called for any event, and that will directly access the event record
to extract the required information.

In the presentation below, measures have been grouped in three kinds. The first con-
tains simple event shape quantities, such as sphericity and thrust. The second is jet finding
algorithms. The third is a mixed bag of particle multiplicities and compositions, factorial
moments and energy–energy correlations, put together in a small statistics package.

None of the measures presented here are Lorentz invariant. The analysis will be
performed in whatever frame the event happens to be given in. It it therefore up to you
to decide whether the frame in which events were generated is the right one, or whether
events beforehand should be boosted, e.g. to the c.m. frame. You can also decide which
particles you want to have affected by the analysis.

15.1 Event Study Routines

After a PYEVNT call, or another similar physics routine call, the event generated is stored in
the PYJETS common block, and whatever physical variable is desired may be constructed
from this record. An event may be rotated, boosted or listed, and particle data may be
listed or modified. Via the functions PYK and PYP the values of some frequently appearing
variables may be obtained more easily. As described in subsequent sections, also more
detailed event shape analyses may be performed simply.

CALL PYROBO(IMI,IMA,THE,PHI,BEX,BEY,BEZ)

Purpose: to perform rotations and Lorentz boosts (in that order, if both in the same
call) of jet/particle momenta and vertex position variables.

IMI, IMA : range of entries affected by transformation, IMI≤I≤IMA. If 0 or below, IMI
defaults to 1 and IMA to N. Lower and upper bounds given by positive MSTU(1)
and MSTU(2) override the IMI and IMA values, and also the 1 to N constraint.

THE, PHI : standard polar coordinates θ, ϕ, giving the rotated direction of a momentum
vector initially along the +z axis.

BEX, BEY, BEZ : gives the direction and size β of a Lorentz boost, such that a particle
initially at rest will have p/E =β afterwards.

Remark: all entries in the range IMI–IMA (or modified as described above) are affected,
unless the status code of an entry is K(I,1)≤ 0.

CALL PYEDIT(MEDIT)

Purpose: to exclude unstable or undetectable jets/particles from the event record. One
may also use PYEDIT to store spare copies of events (specifically initial parton
configuration) that can be recalled to allow e.g. different fragmentation schemes
to be run through with one and the same parton configuration. Finally, an

370

event which has been analyzed with PYSPHE, PYTHRU or PYCLUS (see section
15.5) may be rotated to align the event axis with the z direction.

MEDIT : tells which action is to be taken.
= 0 : empty (K(I,1)=0) and documentation (K(I,1)>20) lines are removed.

The jets/particles remaining are compressed in the beginning of the
PYJETS common block and the N value is updated accordingly. The event
history is lost, so that information stored in K(I,3), K(I,4) and K(I,5)
is no longer relevant.

= 1 : as =0, but in addition all jets/particles that have fragmented/decayed
(K(I,1)>10) are removed.

= 2 : as =1, but also all neutrinos and unknown particles (i.e. compressed code
KC= 0) are removed.

= 3 : as =2, but also all uncharged, colour neutral particles are removed, leaving
only charged, stable particles (and unfragmented partons, if fragmenta-
tion has not been performed).

= 5 : as =0, but also all partons which have branched or been rearranged in a
parton shower and all particles which have decayed are removed, leaving
only the fragmenting parton configuration and the final-state particles.

= 11 : remove lines with K(I,1)<0. Update event history information (in
K(I,3) - K(I,5)) to refer to remaining entries.

= 12 : remove lines with K(I,1)=0. Update event history information (in
K(I,3) - K(I,5)) to refer to remaining entries.

= 13 : remove lines with K(I,1)= 11, 12 or 15, except for any line with
K(I,2)=94. Update event history information (in K(I,3) - K(I,5)) to
refer to remaining entries. In particular, try to trace origin of daughters,
for which the mother is decayed, back to entries not deleted.

= 14 : remove lines with K(I,1)= 13 or 14, and also any line with K(I,2)=94.
Update event history information (in K(I,3) - K(I,5)) to refer to re-
maining entries. In particular, try to trace origin of rearranged jets back
through the parton-shower history to the shower initiator.

= 15 : remove lines with K(I,1)>20. Update event history information (in
K(I,3) - K(I,5)) to refer to remaining entries.

= 16 : try to reconstruct missing daughter pointers of decayed particles from the
mother pointers of decay products. These missing pointers typically come
from the need to use K(I,4) and K(I,5) also for colour flow information.

= 21 : all partons/particles in current event record are stored (as a spare copy)
in bottom of common block PYJETS (is e.g. done to save original partons
before calling PYEXEC).

= 22 : partons/particles stored in bottom of event record with =21 are placed in
beginning of record again, overwriting previous information there (so that
e.g. a different fragmentation scheme can be used on the same partons).
Since the copy at bottom is unaffected, repeated calls with =22 can be
made.

= 23 : primary partons/particles in the beginning of event record are marked as
not fragmented or decayed, and number of entries N is updated accord-
ingly. Is simpe substitute for =21 plus =22 when no fragmentation/decay
products precede any of the original partons/particles.

= 31 : rotate largest axis, determined by PYSPHE, PYTHRU or PYCLUS, to sit along
the z direction, and the second largest axis into the xz plane. For PYCLUS
it can be further specified to +z axis and xz plane with x > 0, respec-
tively. Requires that one of these routines has been called before.

= 32 : mainly intended for PYSPHE and PYTHRU, this gives a further alignment of
the event, in addition to the one implied by =31. The ‘slim’ jet, defined

371

as the side (z > 0 or z < 0) with the smallest summed p⊥ over square
root of number of particles, is rotated into the +z hemisphere. In the
opposite hemisphere (now z < 0), the side of x > 0 and x < 0 which
has the largest summed |pz| is rotated into the z < 0, x > 0 quadrant.
Requires that PYSPHE or PYTHRU has been called before.

Remark: all entries 1 through N are affected by the editing. For options 0–5 lower and
upper bounds can be explicitly given by MSTU(1) and MSTU(2).

CALL PYLIST(MLIST)

Purpose: to list an event, jet or particle data, or current parameter values.
MLIST : determines what is to be listed.

= 0 : writes a title page with program version number and last date of change;
is mostly for internal use.

= 1 : gives a simple list of current event record, in an 80 column format suitable
for viewing directly in a terminal window. For each entry, the following
information is given: the entry number I, the parton/particle name (see
below), the status code (K(I,1)), the flavour code KF (K(I,2)), the line
number of the mother (K(I,3)), and the three-momentum, energy and
mass (P(I,1) - P(I,5)). If MSTU(3) is non-zero, lines immediately after
the event record proper are also listed. A final line contains information
on total charge, momentum, energy and invariant mass.
The particle name is given by a call to the routine PYNAME. For an entry
which has decayed/fragmented (K(I,1)= 11–20), this particle name is
given within parentheses. Similarly, a documentation line (K(I,1)= 21–
30) has the name enclosed in expression signs (!. . . !) and an event/jet
axis information line the name within inequality signs (<. . .>). If the
last character of the name is a ‘?’, it is a signal that the complete name
has been truncated to fit in, and can therefore not be trusted; this is
very rare. For partons which have been arranged along strings (K(I,1)=
1, 2, 11 or 12), the end of the parton name column contains information
about the colour string arrangement: an A for the first entry of a string,
an I for all intermediate ones, and a V for the final one (a poor man’s
rendering of a vertical doublesided arrow, l).
It is possible to insert lines just consisting of sequences of ====== to
separate different sections of the event record, see MSTU(70) - MSTU(80).

= 2 : gives a more extensive list of the current event record, in a 132 col-
umn format, suitable for wide terminal windows. For each entry, the
following information is given: the entry number I, the parton/particle
name (with padding as described for =1), the status code (K(I,1)), the
flavour code KF (K(I,2)), the line number of the mother (K(I,3)), the
decay product/colour-flow pointers (K(I,4), K(I,5)), and the three-
momentum, energy and mass (P(I,1) - P(I,5)). If MSTU(3) is non-
zero, lines immediately after the event record proper are also listed. A
final line contains information on total charge, momentum, energy and
invariant mass. Lines with only ====== may be inserted as for =1.

= 3 : gives the same basic listing as =2, but with an additional line for each
entry containing information on production vertex position and time
(V(I,1) - V(I,4)) and, for unstable particles, proper lifetime (V(I,5)).

= 5 : gives a simple listing of the event record stored in the HEPEVT common
block. This is mainly intended as a tool to check how conversion with the
PYHEPC routine works. The listing does not contain vertex information,

372

and the flavour code is not displayed as a name.
= 7 : gives a simple listing of the parton-level event record for an external

process, as stored in the HEPEUP common block. This is mainly intended
as a tool to check how reading from HEPEUP input works. The listing
does not contain lifetime or spin information, and the flavour code is not
displayed as a name. It also does not show other HEPEUP numbers, such
as the event weight.

= 11 : provides a simple list of all parton/particle codes defined in the program,
with KF code and corresponding particle name. The list is grouped by
particle kind, and only within each group in ascending order.

= 12 : provides a list of all parton/particle and decay data used in the pro-
gram. Each parton/particle code is represented by one line containing
KF flavour code, KC compressed code, particle name, antiparticle name
(where appropriate), electrical and colour charge and peresence or not of
an antiparticle (stored in KCHG), mass, resonance width and maximum
broadening, average proper lifetime (in PMAS) and whether the particle
is considered stable or not (in MDCY). Immediately after a particle, each
decay channel gets one line, containing decay channel number (IDC read
from MDCY), on/off switch for the channel, matrix element type (MDME),
branching ratio (BRAT), and decay products (KFDP). The MSTU(1) and
MSTU(2) flags can be used to set the range of KF codes for which parti-
cles are listed.

= 13 : gives a list of current parameter values for MSTU, PARU, MSTJ and PARJ,
and the first 200 entries of PARF. This is useful to keep check of which
default values were changed in a given run.

Remark: for options 1–3 and 12 lower and upper bounds of the listing can be explicitly
given by MSTU(1) and MSTU(2).

KK = PYK(I,J)

Purpose: to provide various integer-valued event data. Note that many of the options
available (in particular I> 0, J≥ 14) which refer to event history will not work
after a PYEDIT call. Further, the options 14–18 depend on the way the event
history has been set up, so with the explosion of different allowed formats these
options are no longer as safe as they may have been. For instance, option 16
can only work if MSTU(16)=2.

I=0, J= : properties referring to the complete event.
= 1 : N, total number of lines in event record.
= 2 : total number of partons/particles remaining after fragmentation and de-

cay.
= 6 : three times the total charge of remaining (stable) partons and particles.

I>0, J= : properties referring to the entry in line no. I of the event record.
= 1 - 5 : K(I,1) - K(I,5), i.e. parton/particle status KS, flavour code KF and

origin/decay product/colour-flow information.
= 6 : three times parton/particle charge.
= 7 : 1 for a remaining entry, 0 for a decayed, fragmented or documentation

entry.
= 8 : KF code (K(I,2)) for a remaining entry, 0 for a decayed, fragmented or

documentation entry.
= 9 : KF code (K(I,2)) for a parton (i.e. not colour neutral entry), 0 for a

particle.
= 10 : KF code (K(I,2)) for a particle (i.e. colour neutral entry), 0 for a parton.

373

= 11 : compressed flavour code KC.
= 12 : colour information code, i.e. 0 for colour neutral, 1 for colour triplet, -1

for antitriplet and 2 for octet.
= 13 : flavour of ‘heaviest’ quark or antiquark (i.e. with largest code) in hadron

or diquark (including sign for antiquark), 0 else.
= 14 : generation number. Beam particles or virtual exchange particles are

generation 0, original jets/particles generation 1 and then 1 is added for
each step in the fragmentation/decay chain.

= 15 : line number of ancestor, i.e. predecessor in first generation (generation 0
entries are disregarded).

= 16 : rank of a hadron in the jet it belongs to. Rank denotes the ordering
in flavour space, with hadrons containing the original flavour of the jet
having rank 1, increasing by 1 for each step away in flavour ordering. All
decay products inherit the rank of their parent. Whereas the meaning
of a first-rank hadron in a quark jet is always well-defined, the definition
of higher ranks is only meaningful for independently fragmenting quark
jets. In other cases, rank refers to the ordering in the actual simulation,
which may be of little interest.

= 17 : generation number after a collapse of a parton system into one particle,
with 0 for an entry not coming from a collapse, and -1 for entry with
unknown history. A particle formed in a collapse is generation 1, and
then one is added in each decay step.

= 18 : number of decay/fragmentation products (only defined in a collective
sense for fragmentation).

= 19 : origin of colour for showering parton, 0 else.
= 20 : origin of anticolour for showering parton, 0 else.
= 21 : position of colour daughter for showering parton, 0 else.
= 22 : position of anticolour daughter for showering parton, 0 else.

PP = PYP(I,J)

Purpose: to provide various real-valued event data. Note that some of the options
available (I> 0, J= 20–25), which are primarily intended for studies of systems
in their respective c.m. frame, requires that a PYEXEC call has been made for
the current initial parton/particle configuration, but that the latest PYEXEC
call has not been followed by a PYROBO one.

I=0, J= : properties referring to the complete event.
= 1 - 4 : sum of px, py, pz and E, respectively, for the stable remaining entries.
= 5 : invariant mass of the stable remaining entries.
= 6 : sum of electric charge of the stable remaining entries.

I>0, J= : properties referring to the entry in line no. I of the event record.
= 1 - 5 : P(I,1) - P(I,5), i.e. normally px, py, pz, E and m for jet/particle.
= 6 : electric charge e.
= 7 : squared momentum |p|2 = p2

x + p2
y + p2

z.
= 8 : absolute momentum |p|.
= 9 : squared transverse momentum p2

⊥ = p2
x + p2

y.
= 10 : transverse momentum p⊥.
= 11 : squared transverse mass m2

⊥ = m2 + p2
x + p2

y.
= 12 : transverse mass m⊥.
= 13 - 14 : polar angle θ in radians (between 0 and π) or degrees, respectively.
= 15 - 16 : azimuthal angle ϕ in radians (between −π and π) or degrees, respec-

tively.

374

= 17 : true rapidity y = (1/2) ln((E + pz)/(E − pz)).
= 18 : rapidity yπ obtained by assuming that the particle is a pion when calcu-

lating the energy E, to be used in the formula above, from the (assumed
known) momentum p.

= 19 : pseudorapidity η = (1/2) ln((p+ pz)/(p− pz)).
= 20 : momentum fraction xp = 2|p|/W , where W is the total energy of the

event, i.e. of the initial jet/particle configuration.
= 21 : xF = 2pz/W (Feynman-x if system is studied in the c.m. frame).
= 22 : x⊥ = 2p⊥/W .
= 23 : xE = 2E/W .
= 24 : z+ = (E + pz)/W .
= 25 : z− = (E − pz)/W .

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes that regulate the behaviour of the
event study routines. The main reference for PYDAT1 is in section 14.3.

MSTU(1),MSTU(2) : (D=0,0) can be used to replace the ordinary lower and upper limits
(normally 1 and N) for the action of PYROBO, and most PYEDIT and PYLIST
calls. Are reset to 0 in a PYEXEC call.

MSTU(3) : (D=0) number of lines with extra information added after line N. Is reset to
0 in a PYEXEC call, or in an PYEDIT call when particles are removed.

MSTU(11) : (D=6) file number to which all program output is directed. It is your re-
sponsibility to see to it that the corresponding file is also opened for output.

MSTU(12) : (D=1) writing of title page (version number and last date of change for
Pythia) on output file.

= 0 : not done.
= 1 : title page is written at first occasion, at which time MSTU(12) is set =0.

MSTU(32) : (I) number of entries stored with PYEDIT(21) call.
MSTU(33) : (I) if set 1 before a PYROBO call, the V vectors (in the particle range to be

rotated/boosted) are set 0 before the rotation/boost. MSTU(33) is set back to
0 in the PYROBO call.

MSTU(70) : (D=0) the number of lines consisting only of equal signs (======) that are in-
serted in the event listing obtained with PYLIST(1), PYLIST(2) or PYLIST(3),
so as to distinguish different sections of the event record on output. At most
10 such lines can be inserted; see MSTU(71) - MSTU(80). Is reset at PYEDIT
calls with arguments 0–5.

MSTU(71) - MSTU(80) : line numbers below which lines consisting only of equal signs
(======) are inserted in event listings. Only the first MSTU(70) of the 10
allowed positions are enabled.

15.2 Event Shapes

In this section we study general event shape variables: sphericity, thrust, Fox-Wolfram
moments, and jet masses. These measures are implemented in the routines PYSPHE,
PYTHRU, PYFOWO and PYJMAS, respectively.

Each event is assumed characterized by the particle four-momentum vectors pi =
(pi, Ei), with i = 1, 2, · · · , n an index running over the particles of the event.

375

15.2.1 Sphericity

The sphericity tensor is defined as [Bjo70]

Sαβ =

∑

i

pαi p
β
i

∑

i

|pi|2
, (253)

where α, β = 1, 2, 3 corresponds to the x, y and z components. By standard diagonaliza-
tion of Sαβ one may find three eigenvalues λ1 ≥ λ2 ≥ λ3, with λ1 + λ2 + λ3 = 1. The
sphericity of the event is then defined as

S =
3

2
(λ2 + λ3) , (254)

so that 0 ≤ S ≤ 1. Sphericity is essentially a measure of the summed p2
⊥ with respect to

the event axis; a 2-jet event corresponds to S ≈ 0 and an isotropic event to S ≈ 1.
The aplanarity A, with definition A = 3

2
λ3, is constrained to the range 0 ≤ A ≤ 1

2
.

It measures the transverse momentum component out of the event plane: a planar event
has A ≈ 0 and an isotropic one A ≈ 1

2
.

Eigenvectors vj can be found that correspond to the three eigenvalues λj of the spheric-
ity tensor. The v1 one is called the sphericity axis (or event axis, if it is clear from the
context that sphericity has been used), while the sphericity event plane is spanned by v1

and v2.
The sphericity tensor is quadratic in particle momenta. This means that the sphericity

value is changed if one particle is split up into two collinear ones which share the original
momentum. Thus sphericity is not an infrared safe quantity in QCD perturbation theory.
A useful generalization of the sphericity tensor is

S(r)αβ =

∑

i

|pi|r−2 pαi p
β
i

∑

i

|pi|r
, (255)

where r is the power of the momentum dependence. While r = 2 thus corresponds to
sphericity, r = 1 corresponds to linear measures calculable in perturbation theory [Par78]:

S(1)αβ =

∑

i

pαi p
β
i

|pi|∑

i

|pi|
. (256)

Eigenvalues and eigenvectors may be defined exactly as before, and therefore also
equivalents of S and A. These have no standard names; we may call them linearized
sphericity Slin and linearized aplanarity Alin. Quantities derived from the linear matrix
that are standard in the literature are instead the combinations [Ell81]

C = 3(λ1λ2 + λ1λ3 + λ2λ3) , (257)

D = 27λ1λ2λ3 . (258)

Each of these is constrained to be in the range between 0 and 1. Typically, C is used to
measure the 3-jet structure and D the 4-jet one, since C is vanishing for a perfect 2-jet
event and D is vanishing for a planar event. The C measure is related to the second
Fox-Wolfram moment (see below), C = 1−H2.

376

Noninteger r values may also be used, and corresponding generalized sphericity and
aplanarity measures calculated. While perturbative arguments favour r = 1, we know that
the fragmentation ‘noise’, e.g. from transverse momentum fluctuations, is proportionately
larger for low momentum particles, and so r > 1 should be better for experimental event
axis determinations. The use of too large an r value, on the other hand, puts all the
emphasis on a few high-momentum particles, and therefore involves a loss of information.
It should then come as no surprise that intermediate r values, of around 1.5, gives the best
performance for event axis determinations in 2-jet events, where the theoretical meaning of
the event axis is well-defined. The gain in accuracy compared with the more conventional
choices r = 2 or r = 1 is rather modest, however.

15.2.2 Thrust

The quantity thrust T is defined by [Bra64]

T = max
|n|=1

∑

i

|n · pi|
∑

i

|pi|
, (259)

and the thrust axis v1 is given by the n vector for which maximum is attained. The
allowed range is 1/2 ≤ T ≤ 1, with a 2-jet event corresponding to T ≈ 1 and an isotropic
event to T ≈ 1/2.

In passing, we note that this is not the only definition found in the literature. The
definitions agree for events studied in the c.m. frame and where all particles are detected.
However, a definition like

T = 2 max
|n|=1

∣∣∣∣∣
∑

i

θ(n · pi) pi

∣∣∣∣∣
∑

i

|pi|
= 2 max

θi=0,1

∣∣∣∣∣
∑

i

θi pi

∣∣∣∣∣
∑

i

|pi|
(260)

(where θ(x) is the step function, θ(x) = 1 if x > 0, else θ(x) = 0) gives different results
than the one above if e.g. only charged particles are detected. It would even be possible
to have T > 1; to avoid such problems, often an extra fictitious particle is introduced to
balance the total momentum [Bra79].

Eq. (259) may be rewritten as

T = max
εi=±1

∣∣∣∣∣
∑

i

εi pi

∣∣∣∣∣
∑

i

|pi|
. (261)

(This may also be viewed as applying eq. (260) to an event with 2n particles, n carrying
the momenta pi and n the momenta −pi, thus automatically balancing the momentum.)
To find the thrust value and axis this way, 2n−1 different possibilities would have to be
tested. The reduction by a factor of 2 comes from T being unchanged when all εi → −εi.
Therefore this approach rapidly becomes prohibitive. Other exact methods exist, which
‘only’ require about 4n2 combinations to be tried.

In the implementation in Pythia, a faster alternative method is used, in which the
thrust axis is iterated from a starting direction n(0) according to

n(j+1) =

∑

i

ε(n(j) · pi) pi
∣∣∣∣∣
∑

i

ε(n(j) · pi) pi

∣∣∣∣∣

(262)

377

(where ε(x) = 1 for x > 0 and ε(x) = −1 for x < 0). It is easy to show that the related
thrust value will never decrease, T (j+1) ≥ T (j). In fact, the method normally converges
in 2–4 iterations. Unfortunately, this convergence need not be towards the correct thrust
axis but is occasionally only towards a local maximum of the thrust function [Bra79]. We
know of no foolproof way around this complication, but the danger of an error may be
lowered if several different starting axes n(0) are tried and found to agree. These n(0) are
suitably constructed from the n′ (by default 4) particles with the largest momenta in the
event, and the 2n

′−1 starting directions
∑
i εi pi constructed from these are tried in falling

order of the corresponding absolute momentum values. When a predetermined number
of the starting axes have given convergence towards the same (best) thrust axis this one
is accepted.

In the plane perpendicular to the thrust axis, a major [MAR79] axis and value may
be defined in just the same fashion as thrust, i.e.

Ma = max
|n|=1,n·v1=0

∑

i

|n · pi|
∑

i

|pi|
. (263)

In a plane more efficient methods can be used to find an axis than in three dimensions
[Wu79], but for simplicity we use the same method as above. Finally, a third axis, the
minor axis, is defined perpendicular to the thrust and major ones, and a minor value Mi

is calculated just as thrust and major. The difference between major and minor is called
oblateness, O = Ma −Mi. The upper limit on oblateness depends on the thrust value in
a not so simple way. In general O ≈ 0 corresponds to an event symmetrical around the
thrust axis and high O to a planar event.

As in the case of sphericity, a generalization to arbitrary momentum dependence may
easily be obtained, here by replacing the pi in the formulae above by |pi|r−1 pi. This
possibility is included, although so far it has not found any experimental use.

15.2.3 Fox-Wolfram moments

The Fox-Wolfram moments Hl, l = 0, 1, 2, . . ., are defined by [Fox79]

Hl =
∑

i,j

|pi| |pj|
E2

vis

Pl(cos θij) , (264)

where θij is the opening angle between hadrons i and j and Evis the total visible energy
of the event. Note that also autocorrelations, i = j, are included. The Pl(x) are the
Legendre polynomials,

P0(x) = 1 ,

P1(x) = x ,

P2(x) =
1

2
(3x2 − 1) ,

P3(x) =
1

2
(5x3 − 3x) ,

P4(x) =
1

8
(35x4 − 30x2 + 3) . (265)

To the extent that particle masses may be neglected, H0 ≡ 1. It is customary to normalize
the results to H0, i.e. to give Hl0 = Hl/H0. If momentum is balanced then H1 ≡ 0. 2-jet
events tend to give Hl ≈ 1 for l even and ≈ 0 for l odd.

378

15.2.4 Jet masses

The particles of an event may be divided into two classes. For each class a squared invari-
ant mass may be calculated, M2

1 and M2
2 . If the assignment of particles is adjusted such

that the sum M2
1 +M2

2 is minimized, the two masses thus obtained are called heavy and
light jet mass, MH and ML. It has been shown that these quantities are well behaved in
perturbation theory [Cla79]. In e+e− annihilation, the heavy jet mass obtains a contribu-
tion from qqg 3-jet events, whereas the light mass is non-vanishing only when 4-jet events
also are included. In the c.m. frame of an event one has the limits 0 ≤M2

H ≤ E2
cm/3.

In general, the subdivision of particles tends to be into two hemispheres, separated by
a plane perpendicular to an event axis. As with thrust, it is time-consuming to find the
exact solution. Different approximate strategies may therefore be used. In the program,
the sphericity axis is used to perform a fast subdivision into two hemispheres, and thus
into two preliminary jets. Thereafter one particle at a time is tested to determine whether
the sum M2

1 + M2
2 would be decreased if that particle were to be assigned to the other

jet. The procedure is stopped when no further significant change is obtained. Often the
original assignment is retained as it is, i.e. the sphericity axis gives a good separation.
This is not a full guarantee, since the program might get stuck in a local minimum which
is not the global one.

15.3 Cluster Finding

Global event measures, like sphericity or thrust, can only be used to determine the jet axes
for back-to-back 2-jet events. To determine the individual jet axes in events with three
or more jets, or with two (main) jets which are not back-to-back, cluster algorithms are
customarily used. In these, nearby particles are grouped together into a variable number
of clusters. Each cluster has a well-defined direction, given by a suitably weighted average
of the constituent particle directions.

The cluster algorithms traditionally used in e+e− and in pp physics differ in several
respects. The former tend to be spherically symmetric, i.e. have no preferred axis in space,
and normally all particles have to be assigned to some jet. The latter pick the beam axis
as preferred direction, and make use of variables related to this choice, such as rapidity
and transverse momentum; additionally only a fraction of all particles are assigned to
jets.

This reflects a difference in the underlying physics: in pp collisions, the beam remnants
found at low transverse momenta are not related to any hard processes, and therefore only
provide an unwanted noise to many studies. (Of course, also hard processes may produce
particles at low transverse momenta, but at a rate much less than that from soft or semi-
hard processes.) Further, the kinematics of hard processes is, to a good approximation,
factorized into the hard subprocess itself, which is boost invariant in rapidity, and parton-
distribution effects, which determine the overall position of a hard scattering in rapidity.
Hence rapidity, azimuthal angle and transverse momentum is a suitable coordinate frame
to describe hard processes in.

In standard e+e− annihilation events, on the other hand, the hard process c.m. frame
tends to be almost at rest, and the event axis is just about randomly distributed in space,
i.e. with no preferred rôle for the axis defined by the incoming e±. All particle production
is initiated by and related to the hard subprocess. Some of the particles may be less easy
to associate to a specific jet, but there is no compelling reason to remove any of them
from consideration.

This does not mean that the separation above is always required. 2γ events in e+e−

may have a structure with ‘beam jets’ and ‘hard scattering’ jets, for which the pp type
algorithms might be well suited. Conversely, a heavy particle produced in pp collisions
could profitably be studied, in its own rest frame, with e+e− techniques.

379

In the following, particles are only characterized by their three-momenta or, alter-
natively, their energy and direction of motion. No knowledge is therefore assumed of
particle types, or even of mass and charge. Clearly, the more is known, the more so-
phisticated clustering algorithms can be used. The procedure then also becomes more
detector-dependent, and therefore less suitable for general usage.

Pythia contains two cluster finding routines. PYCLUS is of the e+e− type and PYCELL
of the pp one. Each of them allows some variations of the basic scheme.

15.3.1 Cluster finding in an e+e− type of environment

The usage of cluster algorithms for e+e− applications started in the late 1970’s. A number
of different approaches were proposed [Bab80], see review in [Mor98]. Of these, we will
here only discuss those based on binary joining. In this kind of approach, initially each
final-state particle is considered to be a cluster. Using some distance measure, the two
nearest clusters are found. If their distance is smaller than some cut-off value, the two
clusters are joined into one. In this new configuration, the two clusters that are now
nearest are found and joined, and so on until all clusters are separated by a distance
larger than the cut-off. The clusters remaining at the end are often also called jets. Note
that, in this approach, each single particle belongs to exactly one cluster. Also note that
the resulting jet picture explicitly depends on the cut-off value used. Normally the number
of clusters is allowed to vary from event to event, but occasionally it is more useful to
have the cluster algorithm find a predetermined number of jets (like 3).

The obvious choice for a distance measure is to use squared invariant mass, i.e. for
two clusters i and j to define the distance to be

m2
ij = (Ei + Ej)

2 − (pi + pj)
2 . (266)

(Equivalently, one could have used the invariant mass as measure rather than its square;
this is just a matter of convenience.) In fact, a number of people (including one of
the authors) tried this measure long ago and gave up on it, since it turns out to have
severe instability problems. The reason is well understood: in general, particles tend to
cluster closer in invariant mass in the region of small momenta. The clustering process
therefore tends to start in the center of the event, and only subsequently spread outwards
to encompass also the fast particles. Rather than clustering slow particles around the
fast ones (where the latter näıvely should best represent the jet directions), the invariant
mass measure will tend to cluster fast particles around the slow ones.

Another instability may be seen by considering the clustering in a simple 2-jet event.
By the time that clustering has reached the level of three clusters, the ‘best’ the clustering
algorithm can possibly have achieved, in terms of finding three low-mass clusters, is to
have one fast cluster around each jet, plus a third slow cluster in the middle. In the
last step this third cluster would be joined with one of the fast ones, to produce two
final asymmetric clusters: one cluster would contain all the slow particles, also those that
visually look like belonging to the opposite jet. A simple binary joining process, with no
possibility to reassign particles between clusters, is therefore not likely to be optimal.

The solution adopted [Sjö83] is to reject invariant mass as distance measure. Instead a
jet is defined as a collection of particles which have a limited transverse momentum with
respect to a common jet axis, and hence also with respect to each other. This picture is
clearly inspired by the standard fragmentation picture, e.g. in string fragmentation. A
distance measure dij between two particles (or clusters) with momenta pi and pj should
thus not depend critically on the longitudinal momenta but only on the relative transverse
momentum. A number of such measures were tried, and the one eventually selected was

d2
ij =

1

2
(|pi| |pj| − pi · pj) 4 |pi| |pj|

(|pi|+ |pj|)2
=

4 |pi|2 |pj|2 sin2(θij/2)

(|pi|+ |pj|)2
. (267)

380

For small relative angle θij, where 2 sin(θij/2) ≈ sin θij and cos θij ≈ 1, this measure
reduces to

dij ≈ |pi × pj|
|pi + pj| , (268)

where ‘×’ represents the cross product. We therefore see that dij in this limit has the
simple physical interpretation as the transverse momentum of either particle with respect
to the direction given by the sum of the two particle momenta. Unlike the approximate
expression, however, dij does not vanish for two back-to-back particles, but is here more
related to the invariant mass between them.

The basic scheme is of the binary joining type, i.e. initially each particle is assumed to
be a cluster by itself. Then the two clusters with smallest relative distance dij are found
and, if dij < djoin, with djoin some predetermined distance, the two clusters are joined to
one, i.e. their four-momenta are added vectorially to give the energy and momentum of
the new cluster. This is repeated until the distance between any two clusters is > djoin.
The number and momenta of these final clusters then represent our reconstruction of the
initial jet configuration, and each particle is assigned to one of the clusters.

To make this scheme workable, two further ingredients are necessary, however. Firstly,
after two clusters have been joined, some particles belonging to the new cluster may
actually be closer to another cluster. Hence, after each joining, all particles in the event
are reassigned to the closest of the clusters. For particle i, this means that the distance
dij to all clusters j in the event has to be evaluated and compared. After all particles have
been considered, and only then, are cluster momenta recalculated to take into account
any reassignments. To save time, the assignment procedure is not iterated until a stable
configuration is reached, but, since all particles are reassigned at each step, such an
iteration is effectively taking place in parallel with the cluster joining. Only at the very
end, when all dij > djoin, is the reassignment procedure iterated to convergence — still
with the possibility to continue the cluster joining if some dij should drop below djoin due
to the reassignment.

Occasionally, it may occur that the reassignment step leads to an empty cluster, i.e.
one to which no particles are assigned. Since such a cluster has a distance dij = 0 to
any other cluster, it is automatically removed in the next cluster joining. However, it
is possible to run the program in a mode where a minimum number of jets is to be
reconstructed. If this minimum is reached with one cluster empty, the particle is found
which has largest distance to the cluster it belongs to. That cluster is then split into
two, namely the large-distance particle and a remainder. Thereafter the reassignment
procedure is continued as before.

Secondly, the large multiplicities normally encountered means that, if each particle
initially is to be treated as a separate cluster, the program will become very slow. There-
fore a smaller number of clusters, for a normal e+e− event typically 8–12, is constructed
as a starting point for the iteration above, as follows. The particle with the highest mo-
mentum is found, and thereafter all particles within a distance dij < dinit from it, where
dinit � djoin. Together these are allowed to form a single cluster. For the remaining
particles, not assigned to this cluster, the procedure is iterated, until all particles have
been used up. Particles in the central momentum region, |p| < 2dinit are treated sep-
arately; if their vectorial momentum sum is above 2dinit they are allowed to form one
cluster, otherwise they are left unassigned in the initial configuration. The value of dinit,
as long as reasonably small, has no physical importance, in that the same final cluster
configuration will be found as if each particle initially is assumed to be a cluster by itself:
the particles clustered at this step are so nearby anyway that they almost inevitably must
enter the same jet; additionally the reassignment procedure allows any possible ‘mistake’
to be corrected in later steps of the iteration.

Thus the jet reconstruction depends on one single parameter, djoin, with a clearcut
physical meaning of a transverse momentum ‘jet-resolution power’. Neglecting smearing

381

from fragmentation, dij between two clusters of equal energy corresponds to half the
invariant mass of the two original partons. If one only wishes to reconstruct well separated
jets, a large djoin should be chosen, while a small djoin would allow the separation of close
jets, at the cost of sometimes artificially dividing a single jet into two. In particular, b
quark jets may here be a nuisance. The value of djoin to use for a fixed jet-resolution power
in principle should be independent of the c.m. energy of events, although fragmentation
effects may give a contamination of spurious extra jets that increases slowly with Ecm for
fixed djoin. Therefore a djoin = 2.5 GeV was acceptable at PETRA/PEP, while 3–4 GeV
may be better for applications at LEP and beyond.

This completes the description of the main option of the PYCLUS routine. Variations
are possible. One such is to skip the reassignment step, i.e. to make use only of the simple
binary joining procedure, without any possibility to reassign particles between jets. (This
option is included mainly as a reference, to check how important reassignment really is.)
The other main alternative is to replace the distance measure used above with the one
used in the JADE algorithm [JAD86].

The JADE cluster algorithm is an attempt to save the invariant mass measure. The
distance measure is defined to be

yij =
2EiEj(1− cos θij)

E2
vis

. (269)

Here Evis is the total visible energy of the event. The usage of E2
vis in the denominator

rather than E2
cm tends to make the measure less sensitive to detector acceptance correc-

tions; in addition the dimensionless nature of yij makes it well suited for a comparison of
results at different c.m. energies. For the subsequent discussions, this normalization will
be irrelevant, however.

The yij measure is very closely related to the squared mass distance measure: the two
coincide (up to the difference in normalization) if mi = mj = 0. However, consider a pair
of particles or clusters with non-vanishing individual masses and a fixed pair mass. Then,
the larger the net momentum of the pair, the smaller the yij measure. This somewhat
tends to favour clustering of fast particles, and makes the algorithm less unstable than
the one based on true invariant mass.

The successes of the JADE algorithm are well known: one obtains a good agreement
between the number of partons generated on the matrix-element (or parton-shower) level
and the number of clusters reconstructed from the hadrons, such that QCD aspects like the
running of αs can be studied with a small dependence on fragmentation effects. Of course,
the insensitivity to fragmentation effects depends on the choice of fragmentation model.
Fragmentation effects are small in the string model, but not necessarily in independent
fragmentation scenarios. Although independent fragmentation in itself is not credible,
this may be seen as a signal for caution.

One should note that the JADE measure still suffers from some of the diseases of the
simple mass measure (without reassignments), namely that particles which go in opposite
directions may well be joined into the same cluster. Therefore, while the JADE algorithm
is a good way to find the number of jets, it is inferior to the standard dij measure for a
determination of jet directions and energies [Bet92]. The dij measure also gives narrower
jets, which agree better with the visual impression of jet structure.

Later, the ‘Durham algorithm’ was introduced [Cat91], which works as the JADE one
but with a distance measure

ỹij =
2 min(E2

i , E
2
j)(1− cos θij)

E2
cm

. (270)

Like the dij measure, this is a transverse momentum, but ỹij has the geometrical inter-
pretation as the transverse momentum of the softer particle with respect to the direction

382

of the harder one, while dij is the transverse momentum of either particle with respect
to the common direction given by the momentum vector sum. The two definitions agree
when one cluster is much softer than the other, so the soft gluon exponentiation proven
for the Durham measure also holds for the dij one.

The main difference therefore is that the standard PYCLUS option allows reassignments,
while the Durham algorithm does not. The latter is therefore more easily calculable
on the perturbative parton level. This point is sometimes overstressed, and one could
give counterexamples why reassignments in fact may bring better agreement with the
underlying perturbative level. In particular, without reassignments, one will make the
recombination that seems the ‘best’ in the current step, even when that forces you to
make ‘worse’ choices in subsequent steps. With reassignments, it is possible to correct for
mistakes due to the too local sensitivity of a simple binary joining scheme.

15.3.2 Cluster finding in a pp type of environment

The PYCELL cluster finding routines is of the kind pioneered by UA1 [UA183], and com-
monly used in pp physics. It is based on a choice of pseudorapidity η, azimuthal angle ϕ
and transverse momentum p⊥ as the fundamental coordinates. This choice is discussed in
the introduction to cluster finding above, with the proviso that the theoretically preferred
true rapidity has to be replaced by pseudorapidity, to make contact with the real-life
detector coordinate system.

A fix detector grid is assumed, with the pseudorapidity range |η| < ηmax and the full
azimuthal range each divided into a number of equally large bins, giving a rectangular
grid. The particles of an event impinge on this detector grid. For each cell in (η,ϕ) space,
the transverse energy (normally ≈ p⊥) which enters that cell is summed up to give a total
cell E⊥ flow.

Clearly the model remains very primitive in a number of respects, compared with a
real detector. There is no magnetic field allowed for, i.e. also charged particles move in
straight tracks. The dimensions of the detector are not specified; hence the positions of
the primary vertex and any secondary vertices are neglected when determining which cell
a particle belongs to. The rest mass of particles is not taken into account, i.e. what is used

is really p⊥ =
√
p2
x + p2

y, while in a real detector some particles would decay or annihilate,

and then deposit additional amounts of energy.
To take into account the energy resolution of the detector, it is possible to smear the

E⊥ contents, bin by bin. This is done according to a Gaussian, with a width assumed
proportional to the

√
E⊥ of the bin. The Gaussian is cut off at zero and at some prede-

termined multiple of the unsmeared E⊥, by default twice it. Alternatively, the smearing
may be performed in E rather than in E⊥. To find the E, it is assumed that the full
energy of a cell is situated at its center, so that one can translate back and forth with
E = E⊥ cosh ηcenter.

The cell with largest E⊥ is taken as a jet initiator if its E⊥ is above some threshold.
A candidate jet is defined to consist of all cells which are within some given radius R
in the (η,ϕ) plane, i.e. which have (η − ηinitiator)

2 + (ϕ − ϕinitiator)
2 < R2. Coordinates

are always given with respect to the center of the cell. If the summed E⊥ of the jet is
above the required minimum jet energy, the candidate jet is accepted, and all its cells are
removed from further consideration. If not, the candidate is rejected. The sequence is
now repeated with the remaining cell of highest E⊥, and so on until no single cell fulfils
the jet initiator condition.

The number of jets reconstructed can thus vary from none to a maximum given by
purely geometrical considerations, i.e. how many circles of radius R are needed to cover
the allowed (η,ϕ) plane. Normally only a fraction of the particles are assigned to jets.

One could consider to iterate the jet assignment process, using the E⊥-weighted center
of a jet to draw a new circle of radius R. In the current algorithm there is no such iteration

383

step. For an ideal jet assignment it would also be necessary to improve the treatment
when two jet circles partially overlap.

A final technical note. A natural implementation of a cell finding algorithm is based
on having a two-dimensional array of E⊥ values, with dimensions to match the detector
grid. Very often most of the cells would then be empty, in particular for low-multiplicity
events in fine-grained calorimeters. Our implementation is somewhat atypical, since cells
are only reserved space (contents and position) when they are shown to be non-empty.
This means that all non-empty cells have to be looped over to find which are within the
required distance R of a potential jet initiator. The algorithm is therefore faster than the
ordinary kind if the average cell occupancy is low, but slower if it is high.

15.4 Event Statistics

All the event-analysis routines above are defined on an event-by-event basis. Once found,
the quantities are about equally often used to define inclusive distributions as to select
specific classes of events for continued study. For instance, the thrust routine might be
used either to find the inclusive T distribution or to select events with T < 0.9. Other
measures, although still defined for the individual event, only make sense to discuss in
terms of averages over many events. A small set of such measures is found in PYTABU.
This routine has to be called once after each event to accumulate statistics, and once in
the end to print the final tables. Of course, among the wealth of possibilities imaginable,
the ones collected here are only a small sample, selected because the authors at some
point have found a use for them.

15.4.1 Multiplicities

Three options are available to collect information on multiplicities in events. One gives the
flavour content of the final state in hard interaction processes, e.g. the relative composition
of dd/uu/ss/cc/bb in e+e− annihilation events. Additionally it gives the total parton
multiplicity distribution at the end of parton showering. Another gives the inclusive rate
of all the different particles produced in events, either as intermediate resonances or as
final-state particles. The number is subdivided into particles produced from fragmentation
(primary particles) and those produced in decays (secondary particles).

The third option tabulates the rate of exclusive final states, after all allowed decays
have occurred. Since only events with up to 8 final-state particles are analyzed, this is
clearly not intended for the study of complete high-energy events. Rather the main ap-
plication is for an analysis of the decay modes of a single particle. For instance, the decay
data for D mesons is given in terms of channels that also contain unstable particles, such
as ρ and η, which decay further. Therefore a given final state may receive contributions
from several tabulated decay channels; e.g. Kππ from K∗π and Kρ, and so on.

15.4.2 Energy-Energy Correlation

The Energy-Energy Correlation is defined by [Bas78]

EEC(θ) =
∑

i<j

2EiEj
E2

vis

δ(θ − θij) , (271)

and its Asymmetry by

EECA(θ) = EEC(π − θ)− EEC(θ) . (272)

Here θij is the opening angle between the two particles i and j, with energies Ei and
Ej. In principle, normalization should be to Ecm, but if not all particles are detected

384

it is convenient to normalize to the total visible energy Evis. Taking into account the
autocorrelation term i = j, the total EEC in an event then is unity. The δ function
peak is smeared out by the finite bin width ∆θ in the histogram, i.e., it is replaced by a
contribution 1/∆θ to the bin which contains θij.

The formulae above refer to an individual event, and are to be averaged over all events
to suppress statistical fluctuations, and obtain smooth functions of θ.

15.4.3 Factorial moments

Factorial moments may be used to search for intermittency in events [Bia86]. The whole
field has been much studied in past years, and a host of different measures have been
proposed. We only implement one of the original prescriptions.

To calculate the factorial moments, the full rapidity (or pseudorapidity) and azimuthal
ranges are subdivided into bins of successively smaller size, and the multiplicity distri-
butions in bins is studied. The program calculates pseudorapidity with respect to the z
axis; if desired, one could first find an event axis, e.g. the sphericity or thrust axis, and
subsequently rotate the event to align this axis with the z direction.

The full rapidity range |y| < ymax (or pseudorapidity range |η| < ηmax) and azimuthal
range 0 < ϕ < 2π are subdivided into my and mϕ equally large bins. In fact, the
whole analysis is performed thrice: once with mϕ = 1 and the y (or η) range gradually
divided into 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 bins, once with my = 1 and the ϕ
range subdivided as above, and finally once with my = mϕ according to the same binary
sequence. Given the multiplicity nj in bin j, the i:th factorial moment is defined by

Fi = (mymϕ)i−1
∑

j

nj(nj − 1) · · · (nj − i+ 1)

n(n− 1) · · · (n− i+ 1)
. (273)

Here n =
∑
j nj is the total multiplicity of the event within the allowed y (or η) limits.

The calculation is performed for the second through the fifth moments, i.e. F2 through
F5.

The Fi as given here are defined for the individual event, and have to be averaged over
many events to give a reasonably smooth behaviour. If particle production is uniform
and uncorrelated according to Poissonian statistics, one expects 〈Fi〉 ≡ 1 for all moments
and all bin sizes. If, on the other hand, particles are locally clustered, factorial moments
should increase when bins are made smaller, down to the characteristic dimensions of the
clustering.

15.5 Routines and Common Block Variables

The six routines PYSPHE, PYTHRU, PYCLUS, PYCELL, PYJMAS and PYFOWO give you the possi-
bility to find some global event shape properties. The routine PYTABU performs a statistical
analysis of a number of different quantities like particle content, factorial moments and
the energy–energy correlation.

Note that, by default, all remaining partons/particles except neutrinos are used in the
analysis. Neutrinos may be included with MSTU(41)=1. Also note that axes determined
are stored in PYJETS, but are not proper four-vectors and, as a general rule (with some
exceptions), should therefore not be rotated or boosted.

CALL PYSPHE(SPH,APL)

Purpose: to diagonalize the momentum tensor, i.e. find the eigenvalues λ1 > λ2 > λ3,
with sum unity, and the corresponding eigenvectors.

385

Momentum power dependence is given by PARU(41); default corresponds to
sphericity, PARU(41)=1. gives measures linear in momenta. Which particles
(or partons) are used in the analysis is determined by the MSTU(41) value.

SPH : 3
2
(λ2 + λ3), i.e. sphericity (for PARU(41)=2.).

= -1. : analysis not performed because event contained less than two particles
(or two exactly back-to-back particles, in which case the two transverse
directions would be undefined).

APL : 3
2
λ3, i.e. aplanarity (for PARU(41)=2.).

= -1. : as SPH=-1.
Remark: the lines N+1 through N+3 (N-2 through N for MSTU(43)=2) in PYJETS will,

after a call, contain the following information:
K(N+i,1) = 31;
K(N+i,2) = 95;
K(N+i,3) : i, the axis number, i = 1, 2, 3;
K(N+i,4), K(N+i,5) = 0;
P(N+i,1) - P(N+i,3) : the i’th eigenvector, x, y and z components;
P(N+i,4) : λi, the i’th eigenvalue;
P(N+i,5) = 0;
V(N+i,1) - V(N+i,5) = 0.
Also, the number of particles used in the analysis is given in MSTU(62).

CALL PYTHRU(THR,OBL)

Purpose: to find the thrust, major and minor axes and corresponding projected mo-
mentum quantities, in particular thrust and oblateness. The performance of
the program is affected by MSTU(44), MSTU(45), PARU(42) and PARU(48). In
particular, PARU(42) gives the momentum dependence, with the default value
=1 corresponding to linear dependence. Which particles (or partons) are used
in the analysis is determined by the MSTU(41) value.

THR : thrust (for PARU(42)=1.).
= -1. : analysis not performed because event contained less than two particles.
= -2. : remaining space in PYJETS (partly used as working area) not large enough

to allow analysis.
OBL : oblateness (for PARU(42)=1.).

= -1., -2. : as for THR.
Remark: the lines N+1 through N+3 (N-2 through N for MSTU(43)=2) in PYJETS will,

after a call, contain the following information:
K(N+i,1) = 31;
K(N+i,2) = 96;
K(N+i,3) : i, the axis number, i = 1, 2, 3;
K(N+i,4), K(N+i,5) = 0;
P(N+i,1) - P(N+i,3) : the thrust, major and minor axis, respectively, for
i = 1, 2 and 3;
P(N+i,4) : corresponding thrust, major and minor value;
P(N+i,5) = 0;
V(N+i,1) - V(N+i,5) = 0.
Also, the number of particles used in the analysis is given in MSTU(62).

CALL PYCLUS(NJET)

Purpose: to reconstruct an arbitrary number of jets using a cluster analysis method
based on particle momenta.

386

Three different distance measures are available, see section 15.3. The choice
is controlled by MSTU(46). The distance scale djoin, above which two clusters
may not be joined, is normally given by PARU(44). In general, djoin may be
varied to describe different ‘jet-resolution powers’; the default value, 2.5 GeV,
is fairly well suited for e+e− physics at 30–40 GeV. With the alternative mass
distance measure, PARU(44) can be used to set the absolute maximum cluster
mass, or PARU(45) to set the scaled one, i.e. in y = m2/E2

cm, where Ecm is the
total invariant mass of the particles being considered.
It is possible to continue the cluster search from the configuration already
found, with a new higher djoin scale, by selecting MSTU(48) properly. In
MSTU(47) one can also require a minimum number of jets to be reconstructed;
combined with an artificially large djoin this can be used to reconstruct a pre-
determined number of jets.
Which particles (or partons) are used in the analysis is determined by the
MSTU(41) value, whereas assumptions about particle masses is given by
MSTU(42). The parameters PARU(43) and PARU(48) regulate more technical
details (for events at high energies and large multiplicities, however, the choice
of a larger PARU(43) may be necessary to obtain reasonable reconstruction
times).

NJET : the number of clusters reconstructed.
= -1 : analysis not performed because event contained less than MSTU(47) (nor-

mally 1) particles, or analysis failed to reconstruct the requested number
of jets.

= -2 : remaining space in PYJETS (partly used as working area) not large enough
to allow analysis.

Remark: if the analysis does not fail, further information is found in MSTU(61) -
MSTU(63) and PARU(61) - PARU(63). In particular, PARU(61) contains the
invariant mass for the system analyzed, i.e. the number used in determining
the denominator of y = m2/E2

cm. PARU(62) gives the generalized thrust, i.e.
the sum of (absolute values of) cluster momenta divided by the sum of par-
ticle momenta (roughly the same as multicity [Bra79]). PARU(63) gives the
minimum distance d (in p⊥ or m) between two clusters in the final cluster
configuration, 0 in case of only one cluster.
Further, the lines N+1 through N+NJET (N-NJET+1 through N for MSTU(43)=2)
in PYJETS will, after a call, contain the following information:
K(N+i,1) = 31;
K(N+i,2) = 97;
K(N+i,3) : i, the jet number, with the jets arranged in falling order of abso-
lute momentum;
K(N+i,4) : the number of particles assigned to jet i;
K(N+i,5) = 0;
P(N+i,1) - P(N+i,5) : momentum, energy and invariant mass of jet i;
V(N+i,1) - V(N+i,5) = 0.
Also, for a particle which was used in the analysis, K(I,4)= i, where I is the
particle number and i the number of the jet it has been assigned to. Unde-
cayed particles not used then have K(I,4)=0. An exception is made for lines
with K(I,1)=3 (which anyhow are not normally interesting for cluster search),
where the colour-flow information stored in K(I,4) is left intact.
MSTU(3) is only set equal to the number of jets for positive NJET and
MSTU(43)=1.

CALL PYCELL(NJET)

387

Purpose: to provide a simpler cluster routine more in line with what is currently used
in the study of high-p⊥ collider events.
A detector is assumed to stretch in pseudorapidity between -PARU(51) and
+PARU(51) and be segmented in MSTU(51) equally large η (pseudorapidity)
bins and MSTU(52) ϕ (azimuthal) bins. Transverse energy E⊥ for undecayed
entries are summed up in each bin. For MSTU(53) non-zero, the energy is
smeared by calorimetric resolution effects, cell by cell. This is done accord-
ing to a Gaussian distribution; if MSTU(53)=1 the standard deviation for the
E⊥ is PARU(55)×√E⊥, if MSTU(53)=2 the standard deviation for the E is
PARU(55)×√E, E⊥ and E expressed in GeV. The Gaussian is cut off at 0 and
at a factor PARU(56) times the correct E⊥ or E. Cells with an E⊥ below a
given threshold PARU(58) are removed from further consideration; by default
PARU(58)=0. and thus all cells are kept.
All bins with E⊥ >PARU(52) are taken to be possible initiators of jets, and
are tried in falling E⊥ sequence to check whether the total E⊥ summed over

cells no more distant than PARU(54) in
√

(∆η)2 + (∆ϕ)2 exceeds PARU(53).
If so, these cells define one jet, and are removed from further consideration.
Contrary to PYCLUS, not all particles need be assigned to jets. Which particles
(or partons) are used in the analysis is determined by the MSTU(41) value.

NJET : the number of jets reconstructed (may be 0).
= -2 : remaining space in PYJETS (partly used as working area) not large enough

to allow analysis.
Remark: the lines N+1 through N+NJET (N-NJET+1 through N for MSTU(43)=2) in PYJETS

will, after a call, contain the following information:
K(N+i,1) = 31;
K(N+i,2) = 98;
K(N+i,3) : i, the jet number, with the jets arranged in falling order in E⊥;
K(N+i,4) : the number of particles assigned to jet i;
K(N+i,5) = 0;
V(N+i,1) - V(N+i,5) = 0.
Further, for MSTU(54)=1
P(N+i,1), P(N+i,2) = position in η and ϕ of the center of the jet initiator
cell, i.e. geometrical center of jet;
P(N+i,3), P(N+i,4) = position in η and ϕ of the E⊥-weighted center of the
jet, i.e. the center of gravity of the jet;
P(N+i,5) = sum E⊥ of the jet;
while for MSTU(54)=2
P(N+i,1) - P(N+i,5) : the jet momentum vector, constructed from the
summed E⊥ and the η and ϕ of the E⊥-weighted center of the jet as
(px, py, pz, E,m) = E⊥(cosϕ, sinϕ, sinh η, cosh η, 0);
and for MSTU(54)=3
P(N+i,1) - P(N+i,5) : the jet momentum vector, constructed by adding
vectorially the momentum of each cell assigned to the jet, assuming that all the
E⊥ was deposited at the center of the cell, and with the jet mass in P(N+i,5)
calculated from the summed E and p as m2 = E2 − p2

x − p2
y − p2

z.
Also, the number of particles used in the analysis is given in MSTU(62), and
the number of cells hit in MSTU(63).
MSTU(3) is only set equal to the number of jets for positive NJET and
MSTU(43)=1.

CALL PYJMAS(PMH,PML)

388

Purpose: to reconstruct high and low jet mass of an event. A simplified algorithm is
used, wherein a preliminary division of the event into two hemispheres is done
transversely to the sphericity axis. Then one particle at a time is reassigned
to the other hemisphere if that reduces the sum of squares of the two jet
masses, m2

H+m2
L. The procedure is stopped when no further significant change

(see PARU(48)) is obtained. Often, the original assignment is retained as it
is. Which particles (or partons) are used in the analysis is determined by
the MSTU(41) value, whereas assumptions about particle masses is given by
MSTU(42).

PMH : heavy jet mass (in GeV).
= -2. : remaining space in PYJETS (partly used as working area) not large enough

to allow analysis.
PML : light jet mass (in GeV).

= -2. : as for PMH=-2.
Remark: After a successful call, MSTU(62) contains the number of particles used in the

analysis, and PARU(61) the invariant mass of the system analyzed. The latter
number is helpful in constructing scaled jet masses.

CALL PYFOWO(H10,H20,H30,H40)

Purpose: to do an event analysis in terms of the Fox-Wolfram moments. The moments
Hi are normalized to the lowest one, H0. Which particles (or partons) are used
in the analysis is determined by the MSTU(41) value.

H10 : H1/H0. Is = 0 if momentum is balanced.
H20 : H2/H0.
H30 : H3/H0.
H40 : H4/H0.
Remark: the number of particles used in the analysis is given in MSTU(62).

CALL PYTABU(MTABU)

Purpose: to provide a number of event-analysis options which can be be used on each
new event, with accumulated statistics to be written out on request. When
errors are quoted, these refer to the uncertainty in the average value for the
event sample as a whole, rather than to the spread of the individual events,
i.e. errors decrease like one over the square root of the number of events
analyzed. For a correct use of PYTABU, it is not permissible to freely mix
generation and analysis of different classes of events, since only one set of
statistics counters exists. A single run may still contain sequential ‘subruns’,
between which statistics is reset. Whenever an event is analyzed, the number
of particles/partons used is given in MSTU(62).

MTABU : determines which action is to be taken. Generally, a last digit equal to 0
indicates that the statistics counters for this option is to be reset; since the
counters are reset (by DATA statements) at the beginning of a run, this is not
used normally. Last digit 1 leads to an analysis of current event with respect
to the desired properties. Note that the resulting action may depend on how
the event generated has been rotated, boosted or edited before this call. The
statistics accumulated is output in tabular form with last digit 2, while it is
dumped in the PYJETS common block for last digit 3. The latter option may
be useful for interfacing to graphics output.

Warning: this routine cannot be used on weighted events, i.e. in the statistics calculation
all events are assumed to come with the same weight.

389

= 10 : statistics on parton multiplicity is reset.
= 11 : the parton content of the current event is analyzed, classified according

to the flavour content of the hard interaction and the total number of par-
tons. The flavour content is assumed given in MSTU(161) and MSTU(162);
these are automatically set e.g. in PYEEVT and PYEVNT calls.

= 12 : gives a table on parton multiplicity distribution.
= 13 : stores the parton multiplicity distribution of events in /PYJETS/, using

the following format:
N = total number of different channels found;
K(I,1) = 32;
K(I,2) = 99;
K(I,3), K(I,4) = the two flavours of the flavour content;
K(I,5) = total number of events found with flavour content of K(I,3)
and K(I,4);
P(I,1) - P(I,5) = relative probability to find given flavour content and
a total of 1, 2, 3, 4 or 5 partons, respectively;
V(I,1) - V(I,5) = relative probability to find given flavour content and
a total of 6–7, 8–10, 11–15, 16–25 or above 25 partons, respectively.
In addition, MSTU(3)=1 and
K(N+1,1) = 32;
K(N+1,2) = 99;
K(N+1,5) = number of events analyzed.

= 20 : statistics on particle content is reset.
= 21 : the particle/parton content of the current event is analyzed, also for parti-

cles which have subsequently decayed and partons which have fragmented
(unless this has been made impossible by a preceding PYEDIT call). Par-
ticles are subdivided into primary and secondary ones, the main principle
being that primary particles are those produced in the fragmentation of
a string, while secondary come from decay of other particles.

= 22 : gives a table of particle content in events.
= 23 : stores particle content in events in /PYJETS/, using the following format:

N = number of different particle species found;
K(I,1) = 32;
K(I,2) = 99;
K(I,3) = particle KF code;
K(I,5) = total number of particles and antiparticles of this species;
P(I,1) = average number of primary particles per event;
P(I,2) = average number of secondary particles per event;
P(I,3) = average number of primary antiparticles per event;
P(I,4) = average number of secondary antiparticles per event;
P(I,5) = average total number of particles or antiparticles per event.
In addition, MSTU(3)=1 and
K(N+1,1) = 32;
K(N+1,2) = 99;
K(N+1,5) = number of events analyzed;
P(N+1,1) = average primary multiplicity per event;
P(N+1,2) = average final multiplicity per event;
P(N+1,3) = average charged multiplicity per event.

= 30 : statistics on factorial moments is reset.
= 31 : analyzes the factorial moments of the multiplicity distribution in differ-

ent bins of rapidity and azimuth. Which particles (or partons) are used
in the analysis is determined by the MSTU(41) value. The selection be-
tween usage of true rapidity, pion rapidity or pseudorapidity is regulated

390

by MSTU(42). The z axis is assumed to be event axis; if this is not desir-
able find an event axis e.g. with PYSPHE or PYTHRU and use PYEDIT(31).
Maximum (pion-, pseudo-) rapidity, which sets the limit for the rapidity
plateau or the experimental acceptance, is given by PARU(57).

= 32 : prints a table of the first four factorial moments for various bins of pseu-
dorapidity and azimuth. The moments are properly normalized so that
they would be unity (up to statistical fluctuations) for uniform and un-
correlated particle production according to Poissonian statistics, but in-
creasing for decreasing bin size in case of ‘intermittent’ behaviour. The
error on the average value is based on the actual statistical sample (i.e.
does not use any assumptions on the distribution to relate errors to the
average values of higher moments). Note that for small bin sizes, where
the average multiplicity is small and the factorial moment therefore only
very rarely is non-vanishing, moment values may fluctuate wildly and the
errors given may be too low.

= 33 : stores the factorial moments in /PYJETS/, using the format:
N = 30, with I = i = 1–10 corresponding to results for slicing the rapidity
range in 2i−1 bins, I = i = 11–20 to slicing the azimuth in 2i−11 bins,
and I = i = 21–30 to slicing both rapidity and azimuth, each in 2i−21

bins;
K(I,1) = 32;
K(I,2) = 99;
K(I,3) = number of bins in rapidity;
K(I,4) = number of bins in azimuth;
P(I,1) = rapidity bin size;
P(I,2) - P(I,5) = 〈F2〉–〈F5〉, i.e. mean of second, third, fourth and
fifth factorial moment;
V(I,1) = azimuthal bin size;
V(I,2) - V(I,5) = statistical errors on 〈F2〉–〈F5〉.
In addition, MSTU(3) = 1 and
K(31,1) = 32;
K(31,2) = 99;
K(31,5) = number of events analyzed.

= 40 : statistics on energy–energy correlation is reset.
= 41 : the energy–energy correlation EEC of the current event is analyzed.

Which particles (or partons) are used in the analysis is determined by
the MSTU(41) value. Events are assumed given in their c.m. frame. The
weight assigned to a pair i and j is 2EiEj/E

2
vis, where Evis is the sum

of energies of all analyzed particles in the event. Energies are deter-
mined from the momenta of particles, with mass determined according
to the MSTU(42) value. Statistics is accumulated for the relative angle
θij, ranging between 0 and 180 degrees, subdivided into 50 bins.

= 42 : prints a table of the energy–energy correlation EEC and its asymmetry
EECA, with errors. The definition of errors is not unique. In our ap-
proach each event is viewed as one observation, i.e. an EEC and EECA
distribution is obtained by summing over all particle pairs of an event,
and then the average and spread of this event-distribution is calculated in
the standard fashion. The quoted error is therefore inversely proportional
to the square root of the number of events. It could have been possible
to view each single particle pair as one observation, which would have
given somewhat lower errors, but then one would also be forced to do a
complicated correction procedure to account for the pairs in an event not
being uncorrelated (two hard jets separated by a given angle typically

391

corresponds to several pairs at about that angle). Note, however, that
in our approach the squared error on an EECA bin is smaller than the
sum of the squares of the errors on the corresponding EEC bins (as it
should be). Also note that it is not possible to combine the errors of two
nearby bins by hand from the information given, since nearby bins are
correlated (again a trivial consequence of the presence of jets).

= 43 : stores the EEC and EECA in /PYJETS/, using the format:
N = 25;
K(I,1) = 32;
K(I,2) = 99;
P(I,1) = EEC for angles between I-1 and I, in units of 3.6◦;
P(I,2) = EEC for angles between 50-I and 51-I, in units of 3.6◦;
P(I,3) = EECA for angles between I-1 and I, in units of 3.6◦;
P(I,4), P(I,5) : lower and upper edge of angular range of bin I, ex-
pressed in radians;
V(I,1) - V(I,3) : errors on the EEC and EECA values stored in
P(I,1) - P(I,3) (see =42 for comments);
V(I,4), V(I,5) : lower and upper edge of angular range of bin I, ex-
pressed in degrees.
In addition, MSTU(3)=1 and
K(26,1) = 32;
K(26,2) = 99;
K(26,5) = number of events analyzed.

= 50 : statistics on complete final states is reset.
= 51 : analyzes the particle content of the final state of the current event record.

During the course of the run, statistics is thus accumulated on how often
different final states appear. Only final states with up to 8 particles
are analyzed, and there is only reserved space for up to 200 different
final states. Most high energy events have multiplicities far above 8,
so the main use for this tool is to study the effective branching ratios
obtained with a given decay model for e.g. charm or bottom hadrons.
Then PY1ENT may be used to generate one decaying particle at a time,
with a subsequent analysis by PYTABU. Depending on at what level this
studied is to be carried out, some particle decays may be switched off,
like π0.

= 52 : gives a list of the (at most 200) channels with up to 8 particles in the
final state, with their relative branching ratio. The ordering is according
to multiplicity, and within each multiplicity according to an ascending
order of KF codes. The KF codes of the particles belonging to a given
channel are given in descending order.

= 53 : stores the final states and branching ratios found in /PYJETS/, using the
format:
N = number of different explicit final states found (at most 200);
K(I,1) = 32;
K(I,2) = 99;
K(I,5) = multiplicity of given final state, a number between 1 and 8;
P(I,1) - P(I,5), V(I,1) - V(I,3) : the KF codes of the up to 8
particles of the given final state, converted to real numbers, with trailing
zeroes for positions not used;
V(I,5) : effective branching ratio for the given final state.
In addition, MSTU(3)=1 and
K(N+1,1) = 32;
K(N+1,2) = 99;

392

K(N+1,5) = number of events analyzed;
V(N+1,5) = summed branching ratio for finals states not given above,
either because they contained more than 8 particles or because all 200
channels have been used up.

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of fragmentation and event analysis routines. Most parameters
are described in section 14.3; here only those related to the event-analysis
routines are described.

MSTU(41) : (D=2) partons/particles used in the event-analysis routines PYSPHE, PYTHRU,
PYCLUS, PYCELL, PYJMAS, PYFOWO and PYTABU (PYTABU(11) excepted).

= 1 : all partons/particles that have not fragmented/decayed.
= 2 : ditto, with the exception of neutrinos and unknown particles.
= 3 : only charged, stable particles, plus any partons still not fragmented.

MSTU(42) : (D=2) assumed particle masses, used in calculating energies E2 = p2 +m2,
as subsequently used in PYCLUS, PYJMAS and PYTABU (in the latter also for
pseudorapidity, pion rapidity or true rapidity selection).

= 0 : all particles are assumed massless.
= 1 : all particles, except the photon, are assumed to have the charged pion

mass.
= 2 : the true masses are used.

MSTU(43) : (D=1) storing of event-analysis information (mainly jet axes), in PYSPHE,
PYTHRU, PYCLUS and PYCELL.

= 1 : stored after the event proper, in positions N+1 through N+MSTU(3). If sev-
eral of the routines are used in succession, all but the latest information
is overwritten.

= 2 : stored with the event proper, i.e. at the end of the event listing, with N
updated accordingly. If several of the routines are used in succession, all
the axes determined are available.

MSTU(44) : (D=4) is the number of the fastest (i.e. with largest momentum) particles
used to construct the (at most) 10 most promising starting configurations for
the thrust axis determination.

MSTU(45) : (D=2) is the number of different starting configurations above, which have
to converge to the same (best) value before this is accepted as the correct
thrust axis.

MSTU(46) : (D=1) distance measure used for the joining of clusters in PYCLUS.
= 1 : dij, i.e. approximately relative transverse momentum. Anytime two clus-

ters have been joined, particles are reassigned to the cluster they now are
closest to. The distance cut-off djoin is stored in PARU(44).

= 2 : distance measure as in =1, but particles are never reassigned to new jets.
= 3 : JADE distance measure yij, but with dimensions to correspond approx-

imately to total invariant mass. Particles may never be reassigned be-
tween clusters. The distance cut-off mmin is stored in PARU(44).

= 4 : as =3, but a scaled JADE distance yij is used instead of mij. The distance
cut-off ymin is stored in PARU(45).

= 5 : Durham distance measure ỹij, but with dimensions to correspond ap-
proximately to transverse momentum. Particles may never be reassigned
between clusters. The distance cut-off p⊥min is stored in PARU(44).

= 6 : as =5, but a scaled Durham distance ỹij is used instead of p⊥ij. The
distance cut-off ỹmin is stored in PARU(45).

393

MSTU(47) : (D=1) the minimum number of clusters to be reconstructed by PYCLUS.
MSTU(48) : (D=0) mode of operation of the PYCLUS routine.

= 0 : the cluster search is started from scratch.
= 1 : the clusters obtained in a previous cluster search on the same event (with

MSTU(48)=0) are to be taken as the starting point for subsequent cluster
joining. For this call to have any effect, the joining scale in PARU(44) or
PARU(45) must have been changed. If the event record has been modified
after the last PYCLUS call, or if any other cluster search parameter setting
has been changed, the subsequent result is unpredictable.

MSTU(51) : (D=25) number of pseudorapidity bins that the range between -PARU(51)
and +PARU(51) is divided into to define cell size for PYCELL.

MSTU(52) : (D=24) number of azimuthal bins, used to define the cell size for PYCELL.
MSTU(53) : (D=0) smearing of correct energy, imposed cell-by-cell in PYCELL, to simulate

calorimeter resolution effects.
= 0 : no smearing.
= 1 : the transverse energy in a cell, E⊥, is smeared according to a Gaussian

distribution with standard deviation PARU(55)×√E⊥, where E⊥ is given
in GeV. The Gaussian is cut off so that 0 < E⊥smeared <PARU(56)×E⊥true.

= 2 : as =1, but it is the energy E rather than the transverse energy E⊥ that
is smeared.

MSTU(54) : (D=1) form for presentation of information about reconstructed clusters in
PYCELL, as stored in PYJETS according to the MSTU(43) value.

= 1 : the P vector in each line contains η and ϕ for the geometric origin of the
jet, η and ϕ for the weighted center of the jet, and jet E⊥, respectively.

= 2 : the P vector in each line contains a massless four-vector giving the direc-
tion of the jet, obtained as
(px, py, pz, E,m) = E⊥(cosϕ, sinϕ, sinh η, cosh η, 0),
where η and ϕ give the weighted center of a jet and E⊥ its transverse
energy.

= 3 : the P vector in each line contains a massive four-vector, obtained by
adding the massless four-vectors of all cells that form part of the jet, and
calculating the jet mass from m2 = E2 − p2

x − p2
y − p2

z. For each cell, the
total E⊥ is summed up, and then translated into a massless four-vector
assuming that all the E⊥ was deposited in the center of the cell.

MSTU(61) : (I) first entry for storage of event-analysis information in last event analyzed
with PYSPHE, PYTHRU, PYCLUS or PYCELL.

MSTU(62) : (R) number of particles/partons used in the last event analysis with PYSPHE,
PYTHRU, PYCLUS, PYCELL, PYJMAS, PYFOWO or PYTABU.

MSTU(63) : (R) in a PYCLUS call, the number of preclusters constructed in order to speed
up analysis (should be equal to MSTU(62) if PARU(43)=0.). In a PYCELL call,
the number of cells hit.

MSTU(161), MSTU(162) : hard flavours involved in current event, as used in an analysis
with PYTABU(11). Either or both may be set 0, to indicate the presence of
one or none hard flavours in event. Is normally set by high-level routines, like
PYEEVT or PYEVNT, but can also be set by you.

PARU(41) : (D=2.) power of momentum-dependence in PYSPHE, default corresponds to
sphericity, =1. to linear event measures.

PARU(42) : (D=1.) power of momentum-dependence in PYTHRU, default corresponds to
thrust.

PARU(43) : (D=0.25 GeV) maximum distance dinit allowed in PYCLUS when forming
starting clusters used to speed up reconstruction. The meaning of the param-
eter is in p⊥ for MSTU(46)≤ 2 or ≥ 5 and in m else. If =0., no preclustering is

394

obtained. If chosen too large, more joining may be generated at this stage than
is desirable. The main application is at high energies, where some speedup is
imperative, and the small details are not so important anyway.

PARU(44) : (D=2.5 GeV) maximum distance djoin, below which it is allowed to join two
clusters into one in PYCLUS. Is used for MSTU(46)≤ 3 and =5, i.e. both for p⊥
and mass distance measure.

PARU(45) : (D=0.05) maximum distance yjoin = m2/E2
vis or ditto with m2 → p2

⊥, below
which it is allowed to join two clusters into one in PYCLUS for MSTU(46)=4,
=6.

PARU(48) : (D=0.0001) convergence criterion for thrust (in PYTHRU) or generalized thrust
(in PYCLUS), or relative change of m2

H + m2
L (in PYJMAS), i.e. when the value

changes by less than this amount between two iterations the process is stopped.
PARU(51) : (D=2.5) defines maximum absolute pseudorapidity used for detector as-

sumed in PYCELL.
PARU(52) : (D=1.5 GeV) gives minimum E⊥ for a cell to be considered as a potential

jet initiator by PYCELL.
PARU(53) : (D=7.0 GeV) gives minimum summed E⊥ for a collection of cells to be

accepted as a jet.

PARU(54) : (D=1.) gives the maximum distance in R =
√

(∆η)2 + (∆ϕ)2 from cell
initiator when grouping cells to check whether they qualify as a jet.

PARU(55) : (D=0.5) when smearing the transverse energy (or energy, see MSTU(53))
in PYCELL, the calorimeter cell resolution is taken to be PARU(55)×√E⊥ (or

PARU(55)×√E) for E⊥ (or E) in GeV.
PARU(56) : (D=2.) maximum factor of upward fluctuation in transverse energy or en-

ergy in a given cell when calorimeter resolution is included in PYCELL (see
MSTU(53)).

PARU(57) : (D=3.2) maximum rapidity (or pseudorapidity or pion rapidity, depending
on MSTU(42)) used in the factorial moments analysis in PYTABU.

PARU(58) : (D=0. GeV) in a PYCELL call, cells with a transverse energy E⊥ below
PARP(58) are removed from further consideration. This may be used to rep-
resent a threshold in an actual calorimeter, or may be chosen just to speed up
the algorithm in a high-multiplicity environment.

PARU(61) : (I) invariant mass W of a system analyzed with PYCLUS or PYJMAS, with
energies calculated according to the MSTU(42) value.

PARU(62) : (R) the generalized thrust obtained after a successful PYCLUS call, i.e. ratio
of summed cluster momenta and summed particle momenta.

PARU(63) : (R) the minimum distance d between two clusters in the final cluster config-
uration after a successful PYCLUS call; is 0 if only one cluster left.

15.6 Histograms

The GBOOK package was written in 1979, at a time when HBOOK [Bru87] was not
available in Fortran 77. It has been used since as a small and simple histogramming
program. For this version of Pythia the program has been updated to run together
with Pythia in double precision. Only the one-dimensional histogram part has been
retained, and subroutine names have been changed to fit Pythia conventions. These
modified routines are now distributed together with Pythia. They would not be used for
final graphics, but may be handy for simple checks, and are extensively used to provide
free-standing examples of analysis programs, to be found on the Pythia web page.

There is a maximum of 1000 histograms at your disposal, numbered in the range 1
to 1000. Before a histogram can be filled, space must be reserved (booked) for it, and
histogram information provided. Histogram contents are stored in a commonblock of

395

dimension 20000, in the order they are booked. Each booked histogram requires NX+28
numbers, where NX is the number of x bins and the 28 include limits, under/overflow and
the title. If you run out of space, the program can be recompiled with larger dimensions.
The histograms can be manipulated with a few routines. Histogram output is ‘line printer’
style, i.e. no graphics.

CALL PYBOOK(ID,TITLE,NX,XL,XU)

Purpose: to book a one-dimensional histogram.
ID : histogram number, integer between 1 and 1000.
TITLE : histogram title, at most 60 characters.
NX : number of bins in the histogram; integer between 1 and 100.
XL, XU : lower and upper bound, respectively, on the x range covered by the histogram.

CALL PYFILL(ID,X,W)

Purpose: to fill a one-dimensional histogram.
ID : histogram number.
X : x coordinate of point.
W : weight to be added in this point.

CALL PYFACT(ID,F)

Purpose: to rescale the contents of a histogram.
ID : histogram number.
F : rescaling factor, i.e. a factor that all bin contents (including overflow etc.) are

multiplied by.
Remark: a typical rescaling factor could be f = 1/(bin size * number of events) =

NX/(XU-XL) * 1/(number of events).

CALL PYOPER(ID1,OPER,ID2,ID3,F1,F2)

Purpose: this is a general-purpose routine for editing one or several histograms, which
all are assumed to have the same number of bins. Operations are carried out
bin by bin, including overflow bins etc.

OPER: gives the type of operation to be carried out, a one-character string or a
CHARACTER*1 variable.

= ’+’, ’-’, ’*’, ’/’ : add, subtract, multiply or divide the contents in ID1 and
ID2 and put the result in ID3. F1 and F2, if not 1D0, give factors by
which the ID1 and ID2 bin contents are multiplied before the indicated
operation. (Division with vanishing bin content will give 0.)

= ’A’, ’S’, ’L’ : for ’S’ the square root of the content in ID1 is taken (result
0 for negative bin contents) and for ’L’ the 10-logarithm is taken (a
nonpositive bin content is before that replaced by 0.8 times the smallest
positive bin content). Thereafter, in all three cases, the content is mul-
tiplied by F1 and added with F2, and the result is placed in ID3. Thus
ID2 is dummy in these cases.

= ’M’ : intended for statistical analysis, bin-by-bin mean and standard deviation
of a variable, assuming that ID1 contains accumulated weights, ID2 accu-
mulated weight*variable and ID3 accumulated weight*variable-squared.

396

Afterwards ID2 will contain the mean values (=ID2/ID1) and ID3 the

standard deviations (=
√
ID3/ID1− (ID2/ID1)2). In the end, F1 multi-

plies ID1 (for normalization purposes), while F2 is dummy.
ID1, ID2, ID3 : histogram numbers, used as described above.
F1, F2 : factors or offsets, used as described above.

CALL PYHIST

Purpose: to print all histograms that have been filled, and thereafter reset their bin
contents to 0.

CALL PYPLOT(ID)

Purpose: to print out a single histogram.
ID : histogram to be printed.

CALL PYNULL(ID)

Purpose: to reset all bin contents, including overflow etc., to 0.
ID : histogram to be reset.

CALL PYDUMP(MDUMP,LFN,NHI,IHI)

Purpose: to dump the contents of existing histograms on an external file, from which
they could be read in to another program.

MDUMP : the action to be taken.
= 1 : dump histograms, each with the first line giving histogram number and

title, the second the number of x bins and lower and upper limit, the
third the total number of entries and under-, inside- and overflow, and
subsequent ones the bin contents grouped five per line. If NHI=0 all exist-
ing histograms are dumped and IHI is dummy, else the NHI histograms
with numbers IHI(1) through IHI(NHI) are dumped.

= 2 : read in histograms dumped with MDUMP=1 and book and fill histograms
according to this information. (With modest modifications this option
could instead be used to write the info to HBOOK/HPLOT format, or
whatever.) NHI and IHI are dummy.

= 3 : dump histogram contents in column style, where the first column con-
tains the x values (average of respective bin) of the first histogram, and
subsequent columns the histogram contents. All histograms dumped
this way must have the same number of x bins, but it is not checked
whether the x range is also the same. If NHI=0 all existing histograms
are dumped and IHI is dummy, else the NHI histograms with numbers
IHI(1) through IHI(NHI) are dumped. A file written this way can be
read e.g. by Gnuplot [Gnu99].

LFN : the file number to which the contents should be written. You must see to it
that this file is properly opened for write (since the definition of file names is
platform dependent).

NHI : number of histograms to be dumped; if 0 then all existing histograms are
dumped.

IHI : array containing histogram numbers in the first NHI positions for NHI nonzero.

397

COMMON/PYBINS/IHIST(4),INDX(1000),BIN(20000)

Purpose: to contain all information on histograms.
IHIST(1) : (D=1000) maximum allowed histogram number, i.e. dimension of the INDX

array.
IHIST(2) : (D=20000) size of histogram storage, i.e. dimension of the BIN array.
IHIST(3) : (D=55) maximum number of lines per page assumed for printing histograms.

18 lines are reserved for title, bin contents and statistics, while the rest can be
used for the histogram proper.

IHIST(4) : internal counter for space usage in the BIN array.
INDX : gives the initial address in BIN for each histogram. If this array is expanded,

also IHIST(1) should be changed.
BIN : gives bin contents and some further histogram information for the booked

histograms. If this array is expanded, also IHIST(2) should be changed.

398

16 Summary and Outlook

A complete description of the Pythia program would have to cover four aspects:
1. the basic philosophy and principles underlying the programs;
2. the detailed physics scenarios implemented, with all the necessary compromises and

approximations;
3. the structure of the implementation, including program flow, internal variable names

and programming tricks; and
4. the manual, which describes how to use the programs.

Of these aspects, the first has been dealt with in reasonable detail. The second is unevenly
covered: in depth for aspects which are not discussed anywhere else, more summarily for
areas where separate up-to-date papers already exist. The third is not included at all, but
‘left as an exercise’ for the reader, to figure out from the code itself. The fourth, finally,
should be largely covered, although many further comments could have been made, in
particular about the interplay between different parts of the programs. Still, in the end,
no manual, however complete, can substitute for ‘hands on’ experience.

The Pythia program is continuously being developed. We are aware of many short-
comings, some of which hopefully will be addressed in the future. Mainly this is a matter
of including new interesting physics scenarios and improving the existing ones, but also
some cleanup and reorganization would be appropriate. No timetable is set up for such fu-
ture changes, however. After all, this is not a professionally maintained software product,
but part of a small physics research project. Very often, developments of the programs
have come about as a direct response to the evolution of the physics stage, i.e. experi-
mental results and studies for future accelerators. Hopefully, the program will keep on
evolving in step with the new challenges opening up.

In the longer future, a radically new version of the program is required. Given the
decisions by the big laboratories and collaborations to discontinue the use of Fortran
and instead adopt C++, it is natural to attempt to move also event generators in that
direction. User-friendly interfaces will have to hide the considerable underlying complexity
from the non-expert. The Pythia 7 project got going in the beginning of 1998, and is
an effort to reformulate the event generation process in object oriented language. Even
if much of the physics will be carried over unchanged, none of the existing code will
survive. The structure of the event record and the whole administrative apparatus is
completely different from the current one, in order to allow a much more general and
flexible formulation of the event generation process. A strategy document [Lön99] was
followed by a first ‘proof of concept version’ in June 2000 [Ber01], containing the generic
event generation machinery, some processes, and the string fragmentation routines. In
the next few years, the hope is to produce useful versions, even if still limited in scope.
Due to the considerable complexity of the undertaking, it will still be several years before
the C++ version of Pythia will contain more and better physics than the Fortran one.
The two versions therefore will coexist for several years, with the Fortran one used for
physics ‘production’ and the C++ one for exploration of the object-oriented approach
that will be standard at the LHC.

399

References

[Abb87] A. Abbasabadi and W. Repko, Phys. Lett. B199 (1987) 286; Phys. Rev. D37
(1988) 2668;
W. Repko and G.L. Kane, private communication

[Ada93] WA82 Collaboration, M. Adamovich et al., Phys. Lett. B305 (1993) 402;
E769 Collaboration, G.A. Alves et al., Phys. Rev. Lett. 72 (1994) 812;
E791 Collaboration, E.M. Aitala et al., Phys. Lett. B371 (1996) 157

[AFS87] AFS Collaboration, T. Åkesson et al., Z. Phys. C34 (1987) 163;
UA2 Collaboration, J. Alitti et al., Phys. Lett. B268 (1991) 145;
L. Keeble (CDF Collaboration), FERMILAB-CONF-92-161-E (1992)

[ALE92] ALEPH Collaboration, D. Buskulic et al., Phys. Lett. B292 (1992) 210

[Ali80] A. Ali, J.G. Körner, G. Kramer and J. Willrodt, Nucl. Phys. B168 (1980)
409;
A. Ali, E. Pietarinen, G. Kramer and J. Willrodt, Phys. Lett. B93 (1980)
155

[Ali80a] A. Ali, J.G. Körner, Z. Kunszt, E. Pietarinen, G. Kramer, G. Schierholz and
J. Willrodt, Nucl. Phys. B167 (1980) 454

[Ali82] A. Ali, Phys. Lett. B110 (1982) 67;
A. Ali and F. Barreiro, Phys. Lett. B118 (1982) 155; Nucl. Phys. B236
(1984) 269

[Ali88] A. Ali et al., in ‘Proceedings of the HERA Workshop’, ed. R.D. Peccei (DESY,
Hamburg, 1988), Vol. 1, p. 395;
M. Bilenky and G. d’Agostini, private communication (1991)

[Alt77] G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298

[Alt78] G. Altarelli and G. Martinelli, Phys. Lett. 76B (1978) 89 ;
A. Mendéz, Nucl. Phys. B145 (1978) 199;
R. Peccei and R. Rückl, Nucl. Phys. B162 (1980) 125;
Ch. Rumpf, G. Kramer and J. Willrodt, Z. Phys. C7 (1981) 337

[Alt89] G. Altarelli, B. Mele and M. Ruiz-Altaba, Z. Phys. C45 (1989) 109

[Ama80] D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini and G. Veneziano, Nucl.
Phys. B173 (1980) 429;
G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175 (1980) 27

[And79] B. Andersson, G. Gustafson and C. Peterson, Z. Phys. C1 (1979) 105;
B. Andersson and G. Gustafson, Z. Phys. C3 (1980) 22;
B. Andersson, G. Gustafson and T. Sjöstrand, Z. Phys. C6 (1980) 235; Z.
Phys. C12 (1982) 49

[And80] B. Andersson, G. Gustafson and T. Sjöstrand, Phys. Lett. B94 (1980) 211

[And81] B. Andersson, G. Gustafson, I. Holgersson and O. Månsson, Nucl. Phys.
B178 (1981) 242

[And81a] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Z. Phys. C9
(1981) 233

400

[And82] B. Andersson, G. Gustafson and T. Sjöstrand, Nucl. Phys. B197 (1982) 45

[And82a] B. Andersson and G. Gustafson, LU TP 82-5 (1982)

[And83] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Phys. Rep. 97
(1983) 31

[And83a] B. Andersson, G. Gustafson and B. Söderberg, Z. Phys. C20 (1983) 317

[And85] B. Andersson, G. Gustafson and T. Sjöstrand, Physica Scripta 32 (1985) 574

[And89] B. Andersson, P. Dahlqvist and G. Gustafson, Z. Phys. C44 (1989) 455;
B. Andersson, G. Gustafson, A. Nilsson and C. Sjögren, Z. Phys. C49 (1991)
79

[And98] B. Andersson, ‘The Lund Model’ (Cambridge University Press, 1998)

[And98a] J. André and T. Sjöstrand, Phys. Rev. D57 (1998) 5767

[Ans90] F. Anselmo et al., in ‘Large Hadron Collider Workshop’, eds. G. Jarlskog and
D. Rein, CERN 90-10 (Geneva,1990), Vol. II, p. 130

[App92] T. Appelquist and G. Triantaphyllou, Phys. Pev. Lett. 69 (1992) 2750

[Art74] X. Artru and G. Mennessier, Nucl. Phys. B70 (1974) 93

[Art83] X. Artru, Phys. Rep. 97 (1983) 147

[Bab80] J.B. Babcock and R.E. Cutkosky, Nucl. Phys. B176 (1980) 113;
J. Dorfan, Z. Phys. C7 (1981) 349;
H.J. Daum, H. Meyer and J. Bürger, Z. Phys. C8 (1981) 167;
K. Lanius, H.E. Roloff and H. Schiller, Z. Phys. C8 (1981) 251;
M.C. Goddard, Rutherford preprint RL-81-069 (1981);
A. Bäcker, Z. Phys. C12 (1982) 161

[Bae93] H. Baer, F.E. Paige, S.D. Protopopescu and X. Tata, in ‘Workshop on Physics
at Current Accelerators and Supercolliders’, eds. J.L. Hewett, A.R. White and
D. Zeppenfeld, ANL-HEP-CP-93-92 (Argonne, 1993), p. 703;
H. Baer, F.E. Paige, S.D. Protopopescu and X. Tata, hep-ph/0001086

[Bag82] J.A. Bagger and J.F. Gunion, Phys. Rev. D25 (1982) 2287

[Bai81] V.N. Baier, E.A. Kuraev, V.S. Fadin and V.A. Khoze, Phys. Rep. 78 (1981)
293

[Bai83] R. Baier and R. Rückl, Z. Phys. C19 (1983) 251

[Lip76] L.N. Lipatov, Sov. J. Nucl. Phys. 23 (1976) 338;
E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Sov. Phys. JETP 45 (1977) 199;
I. Balitsky and L.N. Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822
V.S. Fadin and L.N. Lipatov, Nucl.Phys. B477 (1996) 767

[Bál01] C. Bálazs, J. Huston and I. Puljak, Phys. Rev. D63 (2001) 014021

[Bam00] P. Bambade et al., in ‘Reports of the Working Groups on Precision Calcula-
tions for LEP2 Physics’, eds. S. Jadach, G. Passarino and R. Pittau, CERN
2000-009, p. 137

401

[Bar86a] A. Bartl, H. Fraas, W. Majerotto, Nucl. Phys. B278 (1986) 1

[Bar86b] A. Bartl, H. Fraas, W. Majerotto, Z. Phys. C30 (1986) 441

[Bar87] A. Bartl, H. Fraas, W. Majerotto, Z. Phys. C34 (1987) 411

[Bar88] R.M. Barnett, H.E. Haber and D.E. Soper, Nucl. Phys. B306 (1988) 697

[Bar90] T.L. Barklow, SLAC-PUB-5364 (1990)

[Bar90a] V.Barger, K. Cheung, T. Han and R.J.N. Phillips, Phys. Rev. D42 (1990)
3052

[Bar94] D. Bardin, M. Bilenky, D. Lehner, A. Olchevski and T. Riemann, Nucl. Phys
B, Proc. Suppl. 37B (1994) 148;
D. Bardin, private communication

[Bar94a] E. Barberio and Z. Was, Computer Physics Commun. 79 (1994) 291

[Bar95] A. Bartl, W. Majerotto, and W. Porod, Z. Phys.C68 (1995) 518

[Bas78] C. Basham, L. Brown, S. Ellis and S. Love, Phys. Rev. Lett. 41 (1978) 1585

[Bas83] A. Bassetto, M. Ciafaloni and G, Marchesini, Phys. Rep. 100 (1983) 202

[Bau90] U. Baur, M. Spira and P. M. Zerwas, Phys. Rev. D42 (1990) 815

[Bee96] W. Beenakker et al., in ‘Physics at LEP2’, eds. G. Altarelli, T. Sjöstrand and
F. Zwirner, CERN 96-01 (Geneva, 1996), Vol. 1, p. 79

[Bel00] A.S. Belyaev et al., talk at the ACAT2000 Workshop, Fermilab, October
16–20, 2000 [hep-ph/0101232]

[Ben84] H.-U. Bengtsson, Computer Physics Commun. 31 (1984) 323

[Ben84a] H.-U. Bengtsson and G. Ingelman, LU TP 84-3, Ref.TH.3820-CERN (1984)

[Ben85] H.-U. Bengtsson and G. Ingelman, Computer Physics Commun. 34 (1985)
251

[Ben85a] H.-U. Bengtsson, W.-S. Hou, A. Soni and D.H. Stork, Phys. Rev. Lett. 55
(1985) 2762

[Ben87] H.-U. Bengtsson and T. Sjöstrand, Computer Physics Commun. 46 (1987)
43

[Ben87a] M. Bengtsson and T. Sjöstrand, Phys. Lett. B185 (1987) 435; Nucl. Phys.
B289 (1987) 810

[Ben87b] M. C. Bento and C. H. Llewellyn Smith, Nucl. Phys. B289 (1987) 36

[Ben88] M. Bengtsson and T. Sjöstrand, Z. Phys. C37 (1988) 465

[Ber81] E.L. Berger and D. Jones, Phys. Rev. D23 (1981) 1521

[Ber82] F.A. Berends, R. Kleiss and S. Jadach, Nucl. Phys. B202 (1982) 63; Com-
puter Physics Commun. 29 (1983) 185

[Ber84] E. L. Berger, E. Braaten and R. D. Field, Nucl. Phys. B239 (1984) 52

402

[Ber85] F.A. Berends and R. Kleiss, Nucl. Phys. B260 (1985) 32

[Ber85a] L. Bergström and G. Hulth, Nucl. Phys. B259 (1985) 137

[Ber89] F.A. Berends et al., in ‘Z Physics at LEP 1’, eds. G. Altarelli, R. Kleiss and
C. Verzegnassi, CERN 89-08 (Geneva, 1989), Vol. 1, p. 89

[Ber01] M. Bertini, L. Lönnblad and T. Sjöstrand, Computer Physics Commun. 134
(2001) 365

[Bet89] S. Bethke, Z. Phys. C43 (1989) 331

[Bet92] S. Bethke, Z. Kunszt, D.E. Soper and W.J. Stirling, Nucl. Phys. B370 (1992)
310

[Bia86] A. Bia las and R. Peschanski, Nucl. Phys. B273 (1986) 703

[Bij01] J. Bijnens, P. Eerola, M. Maul, A. Månsson and T. Sjöstrand, Phys. Lett.
B503 (2001) 341

[Bjo70] J.D. Bjorken and S.J. Brodsky, Phys. Rev. D1 (1970) 1416

[Bon73] G. Bonneau, M. Gourdin and F. Martin, Nucl. Phys.B54 (1973) 573

[Boo01] E. Boos et al., in preparation, to appear in the proceedings of the Workshop
on Physics at TeV Colliders, Les Houches, France, 21 May – 1 June 2001

[Bor93] F.M. Borzumati and G.A. Schuler, Z. Phys. C58 (1993) 139

[Bow81] M.G. Bowler, Z. Phys. C11 (1981) 169

[Bra64] S. Brandt, Ch. Peyrou, R. Sosnowski and A. Wroblewski, Phys. Lett. 12
(1964) 57;
E. Fahri, Phys. Rev. Lett. 39 (1977) 1587

[Bra79] S. Brandt and H.D. Dahmen, Z. Phys. C1 (1979) 61

[Bru87] R. Brun and D. Lienart, ‘HBOOK User Guide’, CERN program library long
write-up Y250 (1987);
R. Brun and N. Cremel Somon, ‘HPLOT User Guide’, CERN program library
long write-up Y251 (1988)

[Bru89] R. Brun et al., GEANT 3, CERN report DD/EE/84-1 (1989)

[Bru96] P. Bruni, A. Edin and G. Ingelman, in preparation (draft ISSN 0418-9833)

[Bud75] V.M. Budnev, I.F. Ginzburg, G.V. Meledin and V.G. Serbo,
Phys. Rep 15 (1975) 181

[Cah84] R.N. Cahn and S. Dawson, Phys. Lett. 136B (1984) 196;
R.N. Cahn, Nucl. Phys. B255 (1985) 341;
G. Altarelli, B. Mele and F. Pitolli, Nucl. Phys. B287 (1987) 205

[Can97] B. Cano-Coloma and M.A. Sanchis-Lozano, Nucl. Phys. B508 (1997) 753;
A. Edin, G. Ingelman and J. Rathsman, Phys. Rev. D56 (1997) 7317

[Car95] M. Carena, J.–R. Espinosa, M. Quiros and C.E.M. Wagner, Phys. Lett. B355
(1995) 209;
M. Carena, M. Quiros and C.E.M. Wagner, Nucl. Phys. B461 (1996) 407

403

[Car96] M. Carena et al., in ‘Physics at LEP2’, eds. G. Altarelli, T. Sjöstrand and
F. Zwirner, CERN 96-01 (Geneva, 1996), Vol. 1, p. 351

[Car00] M. Carena et al., ‘Report of the Tevatron Higgs Working Group’,
FERMILAB-CONF-00-279-T [hep-ph/0010338];
M. Spira, talk at the Workshop on Physics at TeV Colliders, Les Houches, 21
May – 1 June 2001

[Cat91] S. Catani, Yu. L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, Phys.
Lett. B269 (1991) 432

[CDF97] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 79 (1997) 584.

[Chi90] P. Chiappetta and M. Perrottet, in ‘Large Hadron Collider Workshop’, eds.
G. Jarlskog and D. Rein, CERN 90-10 (Geneva, 1990), Vol. II, p. 806

[Cha85] M. Chanowitz and M.K. Gaillard, Nucl. Phys. B261 (1985) 379

[Che75] M.-S. Chen and P. Zerwas, Phys. Rev. D12 (1975) 187;
P. Zerwas, private communication (1991)

[Chu55] A.E. Chudakov, Izv. Akad. Nauk SSSR, Ser. Fiz. 19 (1955) 650

[Chý00] J. Chýla, Phys. Lett. B488 (2000) 289

[Cia87] M. Ciafaloni, Nucl. Phys. B296 (1987) 249;
S. Catani, F. Fiorani and G. Marchesini, Nucl. Phys. B336 (1990) 18;
G. Marchesini and B.R. Webber, Nucl. Phys. B349 (1991) 617

[Cla79] L. Clavelli, Phys. Lett. B85 (1979) 111;
A.V. Smilga, Nucl. Phys. B161 (1979) 449;
L. Clavelli and D. Wyler, Phys. Lett. 103B (1981) 383

[Coc91] D. Cocolicchio, F. Feruglio, G.L. Fogli and J. Terron, Phys. Lett. B255 (1991)
599;
F. Feruglio, private communication (1990)

[Col00] J. Collins, JHEP 05 (2000) 004;
Y. Chen, J. Collins and N. Tkachuk, hep-ph/0105291

[Com77] B.L. Combridge, J. Kripfganz and J. Ranft, Phys. Lett. 70B (1977) 234;
R. Cutler and D. Sivers, Phys. Rev. D17 (1978) 196

[Com79] B.L. Combridge, Nucl. Phys. B151 (1979) 429

[Con71] V. Constantini, B. de Tollis and G. Pistoni, Nuovo Cim. 2A (1971) 733

[Dan82] D. Danckaert, P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu,
Phys. Lett. B114 (1982) 203

[Daw85] S. Dawson, E. Eichten and C. Quigg, Phys. Rev. D31 (1985) 1581

[DeR75] A. De Rújula, H. Georgi and S.L Glashow, Phys. Rev. D12 (1975) 147

[Dic86] D.A. Dicus and S.S.D. Willenbrock, Phys. Rev. D34 (1986) 155

[Dic88] D.A. Dicus and S.S.D. Willenbrock, Phys. Rev. D37 (1988) 1801

404

[Din79] M. Dine and J. Sapirstein, Phys. Rev. Lett. 43 (1979) 668;
K.G. Chetyrkin et al., Phys. Lett. B85 (1979) 277;
W. Celmaster and R.J. Gonsalves, Phys. Rev. Lett. 44 (1980) 560

[Din96] M. Dine, A.E. Nelson, Y. Nir, and Y. Shirman, Phys. Rev. D53 (1996) 2658

[Dis01] J. Dischler and T. Sjöstrand, EPJdirect C2 (2001) 1

[Dob91] A. Dobado, M.J. Herrero and J. Terron, Z. Phys. C50 (1991) 205, ibid. 465

[Dok89] Yu.L. Dokshitzer, V.A. Khoze and S.I. Troyan, in ‘Perturbative QCD’, ed.
A.H. Mueller (World Scientific, Singapore, 1989), p. 241

[Dok92] Yu.L. Dokshitzer, V.A. Khoze and T. Sjöstrand, Phys. Lett. B274 (1992)
116

[Don92] A. Donnachie and P.V. Landshoff, Phys. Lett. B296 (1992) 227

[Dre85] M. Drees and K. Grassie, Z. Phys. C28 (1985) 451

[Dre89] M. Drees, J. Ellis and D. Zeppenfeld, Phys. Lett. B223 (1989) 454

[Dre91] M. Drees and C.S. Kim, Z. Phys. C53 (1991) 673.

[Dre95] M. Drees and S.P. Martin, in ‘Electroweak symmetry breaking and new
physics at the TeV scale’, eds. T.L. Barklow et al., p. 146 [hep-ph/9504324]

[Dre00] H. Dreiner, P. Richardson and M. H. Seymour, JHEP 0004 (2000) 008 [hep-
ph/9912407]

[Duk82] D.W. Duke and J.F. Owens, Phys. Rev. D26 (1982) 1600

[Dun86] M.J. Duncan, G.L. Kane and W.W. Repko, Nucl. Phys. B272 (1986) 517

[Edé97] P. Edén and G. Gustafson, Z. Phys. C75 (1997) 41;
P. Edén, LUTP 96–29 [hep-ph/9610246]

[Edé00] P. Edén, JHEP 05 (2000) 029

[Eic84] E. Eichten, I. Hinchliffe, K. Lane and C. Quigg, Rev. Mod. Phys. 56 (1984)
579; Rev. Mod. Phys. 58 (1985) 1065

[Eic96] E. Eichten and K. Lane, Phys. Lett. B388 (1996) 803;
E. Eichten, K. Lane and J. Womersley, Phys. Lett. B405 (1997) 305

[Eij90] B. van Eijk and R. Kleiss, in ‘Large Hadron Collider Workshop’, eds. G.
Jarlskog and D. Rein, CERN 90-10 (Geneva, 1990), Vol. II, p. 183

[Ell76] J. Ellis, M.K. Gaillard and G.G. Ross, Nucl. Phys. B111 (1976) 253

[Ell79] J. Ellis and I. Karliner, Nucl. Phys. B148 (1979) 141

[Ell81] R.K. Ellis, D.A. Ross and A.E. Terrano, Nucl. Phys. B178 (1981) 421

[Ell86] R.K. Ellis and J.C. Sexton, Nucl. Phys. B269 (1986) 445

[Ell88] R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Nucl. Phys. B297
(1988) 221

405

[EMC87] EMC Collaboration, M. Arneodo et al., Z. Physik C36 (1987) 527;
L. Apanasevich et al., Phys. Rev. D59 (1999) 074007

[Fab82] K. Fabricius, G. Kramer, G. Schierholz and I. Schmitt, Z. Phys. C11 (1982)
315

[Fad90] V. Fadin, V. Khoze and T. Sjöstrand, Z. Phys. C48 (1990) 613

[Fer00] A. Ferrari et al., Phys. Rev. D62 (2000) 013001;
A. Ferrari, private communication

[Fie78] R.D. Field and R.P. Feynman, Nucl. Phys. B136 (1978) 1

[Fon81] M. Fontannaz, B. Pire and D. Schiff, Z. Phys. C11 (1981) 211

[Fox79] G.C. Fox and S. Wolfram, Nucl. Phys. B149 (1979) 413

[Fri93] S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Phys. Lett. B319 (1993)
339

[Fri97] C. Friberg, E. Norrbin and T. Sjöstrand, Phys. Lett. B403 (1997) 329

[Fri00] C. Friberg and T. Sjöstrand, Eur. Phys. J. C13 (2000) 151, JHEP 09 (2000)
010, Phys. Lett. B492 (2000) 123

[Gab86] E. Gabrielli, Mod. Phys. Lett. A1 (1986) 465

[Gae80] K.J.F. Gaemers and J.A.M. Vermaseren, Z. Phys. C7 (1980) 81

[Gar98] L. Garren, http://www-pat.fnal.gov/mcgen/lund/convert.pl

[Gas87] R. Gastmans, W. Troost and T.T. Wu, Phys. Lett. B184 (1987) 257

[Gin82] I.F. Ginzburg, G.L. Kotkin, V.G. Serbo and V.I. Telnov, JETP Lett. 34
(1982) 491, Nucl. Instrum. Meth. 205 (1983) 47

[Glo88] E.W.N. Glover, A.D. Martin and W.J. Stirling, Z. Phys. C38 (1988) 473

[Glü92] M. Glück, E. Reya and A. Vogt, Z. Phys. C53 (1992) 127

[Glü92a] M. Glück, E. Reya and A. Vogt, Z. Phys. C53 (1992) 651

[Glü95] M. Glück, E. Reya and A. Vogt, Z. Phys. C67 (1995) 433

[Glü99] M. Glück, E. Reya and I. Schienbein, Phys. Rev. D60 (1999) 054019, Erratum
Phys. Rev. D62 (2000) 019902

[Gnu99] Gnuplot website at www.gnuplot.org

[Got82] T.D. Gottschalk, Phys. Lett. B109 (1982) 331;
T.D. Gottschalk and M.P. Shatz, Phys. Lett. B150 (1985) 451, CALT-68-
1172 (1984)

[Got86] T.D. Gottschalk, Nucl. Phys. B277 (1986) 700

[Gri72] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438, ibid. 75;
Yu. L. Dokshitzer, Sov. J. Phys. JETP 46 (1977) 641

[Gri83] L.V. Gribov, E.M. Levin and M.G. Ryskin, Phys. Rep. 100 (1983) 1

406

[Gro81] T.R. Grose and K.O. Mikaelian, Phys. Rev. D23 (1981) 123

[Gül93] St. Güllenstern, P. Górnicki, L. Mankiewicz and A. Schäfer, Nucl. Phys. A560
(1993) 494

[Gun86] J.F. Gunion and Z. Kunszt, Phys. Rev. D33 (1986) 665;
errata as private communication from the authors

[Gun87] J.F. Gunion, H.E. Haber, F.E. Paige, W.-K. Tung and S.S.D. Willenbrock,
Nucl. Phys. B294 (1987) 621

[Gun88] J. Gunion and H. Haber, Phys. Rev. D37 (1988) 2515

[Gun90] J.F. Gunion, H.E. Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide
(Addison-Wesley, 1990);
A. Djouadi, private communication (1991)

[Gus82] G. Gustafson, Z. Phys. C15 (1982) 155

[Gus88] G. Gustafson, U. Pettersson and P. Zerwas, Phys. Lett. B209 (1988) 90

[Gus94] G. Gustafson and J. Häkkinen, Z. Phys. C64 (1994) 659.

[Gut84] F. Gutbrod, G. Kramer and G. Schierholz, Z. Phys. C21 (1984) 235

[Gut87] F. Gutbrod, G. Kramer, G. Rudolph and G. Schierholz, Z. Phys. C35 (1987)
543

[Hab85] H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75.

[Hag91] K. Hagiwara, H. Iwasaki, A. Miyamoto, H. Murayama and D. Zeppenfeld,
Nucl. Phys. B365 (1991) 544

[Hal78] F. Halzen and D. M. Scott, Phys. Rev. D18 (1978) 3378

[Herbc] Herodotus of Halicarnassus, ‘The Histories’ (circa 430 bc),
translation to English e.g. by A. de Sélincourt (1954), available in Penguin
Classics

[HER92] ‘Physics at HERA’, eds. W Buchmüller and G. Ingelman (DESY, Hamburg,
1992), Vol. 3

[HER99] ‘Monte Carlo Generators for HERA Physics’, eds. A.T. Doyle, G. Grind-
hammer, G. Ingelman and H. Jung, DESY-Proc-1999-02 (DESY, Hamburg,
1999)

[Hew88] J.L. Hewett and S. Pakvasa, Phys. Rev. D37 (1988) 3165, and private com-
munication from the authors

[Hin93] I. Hinchliffe and T. Kaeding, Phys. Rev. D47 (1993) 279

[Hoo79] G. ’t Hooft and M. Veltman, Nucl. Phys. B153 (1979) 365

[Hoy79] P. Hoyer, P. Osland, H.G. Sander, T.F. Walsh and P.M. Zerwas, Nucl. Phys.
B161 (1979) 349

407

[Hui97] K. Huitu, J. Maalampi, A. Pietilä and M. Raidal, Nucl. Phys. B487 (1997)
27 and private communication;
G. Barenboim, K. Huitu, J. Maalampi and M. Raidal, Phys. Lett. B394
(1997) 132

[Ing80] G. Ingelman and T. Sjöstrand, LUTP 80-12 (1980);
G. Ingelman, A. Edin and J. Rathsman, Computer Physics Commun. 101
(1997) 108

[Ing85] G. Ingelman and P.E. Schlein, Phys. Lett. 152B (1985) 256

[Ing87] G. Ingelman, Computer Physics Commun. 46 (1987) 217

[Ing87a] G. Ingelman et al., in ‘Proceedings of the HERA Workshop’, ed. R.D. Peccei
(DESY, Hamburg, 1988), Vol. 1, p. 3

[Ing88] G. Ingelman and G.A. Schuler, Z. Phys. C40 (1988) 299;
G. Ingelman and G.A. Schuler, in ‘Physics at HERA’, eds. W. Buchmüller
and G. Ingelman (DESY, Hamburg, 1992), Vol. 3, p. 1346

[Iof78] B.L. Ioffe, Phys. Lett. 78B (1978) 277

[JAD86] JADE Collaboration, W. Bartel et al., Z. Phys. C33 (1986) 23;
S. Bethke, Habilitation thesis, LBL 50-208 (1987)

[JAD88] JADE Collaboration, S. Bethke et al., Phys. Lett. B213 (1988) 235;
TASSO Collaboration, W. Braunschweig et al., Phys. Lett. 214B (1988) 286

[Jad91] S. Jadach, Z. Was and J.H. Kühn, Computer Physics Commun. 64 (1991)
275;
M. Jezabek, Z. Was, S. Jadach and J.H. Kühn, Computer Physics Commun.
70 (1992) 69;
S. Jadach, Z. Was, R. Decker and J.H. Kühn, Computer Physics Commun.
76 (1993) 361

[Jam80] F. James, Rep. Prog. Phys. 43 (1980) 1145

[Jam90] F. James, Computer Physics Commun. 60 (1990) 329

[Jer81] J. Jersák, E. Laermann and P.M. Zerwas, Phys. Rev. D25 (1982) 1218

[Jeż89] M. Jeżabek and J.H. Kühn, Nucl. Phys. B314 (1989) 1

[Jol99] A. Joly, J. Gascon, P. Taras, Eur. Phys. J. C6 (1999) 413.

[Jun97] H. Jung, private communication;
H. Kharraziha, private communication

[Kat83] M. Katuya, Phys. Lett. 124B (1983) 421

[Kat98] S. Katsanevas and P. Morawitz, Computer Physics Commun. 112 (1998) 227

[Kho96] V.A. Khoze and T. Sjöstrand, Z. Phys. C70 (1996) 625.

[Kle89] R. Kleiss et al., in ‘Z physics at LEP 1’, eds. G. Altarelli, R. Kleiss and
C. Verzegnassi, CERN 89-08 (Geneva, 1989), Vol. 3, p. 143

[Kni89] B.A. Kniehl and J.H. Kühn, Phys. Lett. B224 (1989) 229

408

[Kno93] I.G. Knowles and S.D. Protopopescu, in ‘Workshop on Physics at Current
Accelerators and Supercolliders’, eds. J.L. Hewett, A.R. White and D. Zep-
penfeld, ANL-HEP-CP-93-92 (Argonne, 1993), p. 651

[Kno96] I.G. Knowles et al., in ‘Physics at LEP2’, eds. G. Altarelli, T. Sjöstrand and
F. Zwirner, CERN 96–01 (Geneva, 1996), Vol. 2, p. 103

[Kol78] K. Koller and T.F. Walsh, Nucl. Phys. B140 (1978) 449

[Kol96] C. Kolda and S.P. Martin, Phys. Rev. D53 (1996) 3871

[Kör85] J.G. Körner and G. Schuler, Z. Phys. C26 (1985) 559

[Kra88] G. Kramer and B. Lampe, Z. Phys. C39 (1988) 101; Fortschr. Phys. 37 (1989)
161

[Krz72] A. Krzywicki and B. Petersson, Phys. Rev. D6 (1972) 924;
J. Finkelstein and R.D. Peccei, Phys. Rev. D6 (1972) 2606;
F. Niedermayer, Nucl. Phys. B79 (1974) 355;
A. Casher, J. Kogut and L. Susskind, Phys. Rev. D10 (1974) 732

[Küh89] J.H. Kühn et al., in ‘Z Physics at LEP 1’, eds. G. Altarelli, R. Kleiss and C.
Verzegnassi, CERN 89-08 (Geneva, 1989), Vol. 1, p. 267

[Kun81] Z. Kunszt, Phys. Lett. B99 (1981) 429; Phys. Lett. B107 (1981) 123

[Kun84] Z. Kunszt, Nucl. Phys. B247 (1984) 339

[Kun87] Z. Kunszt et al., in ‘Proceedings of the Workshop on Physics at Future Ac-
celerators’, ed. J.H. Mulvey, CERN 87-08 (1987), Vol. I, p. 123, and private
communication

[Lae80] E. Laermann, K.H. Streng and P.M. Zerwas, Z. Phys. C3 (1980) 289; Erratum
Z. Phys. C52 (1991) 352

[Lai95] CTEQ Collaboration, H.L. Lai et al., Phys. Rev. D51 (1995) 4763

[Lai00] CTEQ Collaboration, H.L. Lai et al., Eur. Phys. J. C12 (2000) 375

[Lan91] K. Lane, private communication (1991)

[Lan99] K. Lane, Phys. Rev. D60 (1999) 075007;
S. Mrenna, Phys. Lett. B461 (1999) 352

[LEP90] OPAL Collaboration, M.Z. Akrawy et al., Z. Phys C47 (1990) 505;
L3 Collaboration, B. Adeva et al., Z. Phys. C55 (1992) 39;
ALEPH Collaboration, D. Buskulic et al., Z. Phys. C55 (1992) 209

[Lev90] E.M. Levin and M.G. Ryskin, Phys. Rep. 189 (1990) 267

[LHC00] ‘Proceedings of the Workshop on Standard Model Physics (and more) at the
LHC’, eds. G. Altarelli and M.L. Mangano, CERN 2000–004 (Geneva, 2000)

[Lin97] O. Linossier and R. Zitoun, internal ATLAS note and private communication;
V. Barger et al., Phys. Rev. D49 (1994) 79

[Lön95] L. Lönnblad and T. Sjöstrand, Phys. Lett. B351 (1995) 293, Eur. Phys. J.
C2 (1998) 165

409

[Lön96] L. Lönnblad et al., in ‘Physics at LEP2’, eds. G. Altarelli, T. Sjöstrand and
F. Zwirner, CERN 96–01 (Geneva, 1996), Vol. 2, p. 187

[Lön99] L. Lönnblad, Computer Physics Commun. 118 (1999) 213

[Lör89] B. Lörstad, Int. J. of Mod. Phys. A4 (1989) 2861

[Lus91] M. Lusignoli and M. Masetti, Z. Physik C51 (1991) 549

[Lüs94] M. Lüscher, Computer Physics Commun. 79 (1994) 100;
F. James, Computer Physics Commun. 79 (1994) 111

[Mag89] N. Magnussen, Ph.D. Thesis, University of Wuppertal WUB-DI 88-4 and
DESY F22-89-01 (1989);
G. Kramer and N. Magnussen, Z. Phys. C49 (1991) 301

[Mah98] G. Mahlon and S. Parke, Phys. Rev. D58 (1998) 054015

[Man00] M.L. Mangano, in International Europhysics Conference on High Energy
Physics, eds. K. Huitu et al. (IOP Publishing, Bristol, 2000), p. 33

[MAR79] MARK J Collaboration, D.P. Barber et al., Phys. Rev. Lett. 43 (1979) 830

[Mar88] G. Marchesini and B.R. Webber, Nucl. Phys. B310 (1988) 571;
G. Marchesini, B.R. Webber, M.H. Seymour, G. Abbiendi, L. Stanco and I.G.
Knowles, Computer Physics Commun. 67 (1992) 465

[Mar90] G. Marsaglia, A. Zaman and W.-W. Tsang, Stat. Prob. Lett. 9 (1990) 35

[Mar94] S.P. Martin and M.T. Vaughn, Phys. Rev. D50 (1994) 2282

[Miu99] G. Miu and T. Sjöstrand, Phys. Lett. B449 (1999) 313

[Mon79] I. Montvay, Phys. Lett. B84 (1979) 331

[Mor89] D.A. Morris, Nucl. Phys. B313 (1989) 634

[Mor98] S. Moretti, L. Lönnblad and and T. Sjöstrand, JHEP 08 (1998) 001

[Mre97] S. Mrenna, Computer Physics Commun. 101 (1997) 232

[Mre99] S. Mrenna, UCD-99-4 [hep-ph/9902471]

[Mue81] A.H. Mueller, Phys. Lett. 104B (1981) 161;
B.I. Ermolaev, V.S. Fadin, JETP Lett. 33 (1981) 269

[Nil87] B. Nilsson-Almqvist and E. Stenlund, Computer Physics Commun. 43 (1987)
387;
H. Pi, Computer Physics Commun. 71 (1992) 173

[Nor97] E. Norrbin and T. Sjöstrand, Phys. Rev. D55 (1997) R5;
V.A. Khoze and T. Sjöstrand, Eur. Phys. J. C6 (1999) 271, EPJdirect C1
(2000) 1.

[Nor98] E. Norrbin and T. Sjöstrand, Phys. Lett. B442 (1998) 407, Eur. Phys. J.
C17 (2000) 137

[Nor01] E. Norrbin and T. Sjöstrand, Nucl. Phys. B603 (2001) 297

410

[Ohl97] T. Ohl, Computer Physics Commun.101 (1997) 269

[Ols80] H.A. Olsen, P. Osland and I. Øverbø, Nucl. Phys. B171 (1980) 209

[OPA91] OPAL Collaboration, M.Z. Akrawy et al., Z. Phys. C49 (1991) 375

[OPA92] OPAL Collaboration, P.D. Acton et al., Phys. Lett. B276 (1992) 547

[Owe84] J.F. Owens, Phys. Rev. D30 (1984) 943

[Par78] G. Parisi, Phys. Lett. 74B (1978) 65;
J.F. Donoghue, F.E. Low and S.Y. Pi, Phys. Rev. D20 (1979) 2759

[PDG86] Particle Data Group, M. Aguilar-Benitez et al., Phys. Lett. B170 (1986) 1

[PDG88] Particle Data Group, G. P. Yost et al., Phys. Lett. B204 (1988) 1

[PDG92] Particle Data Group, K. Hikasa et al., Phys. Rev. D45 (1992) S1

[PDG96] Particle Data Group, R.M. Barnett et al., Phys. Rev. D54 (1996) 1

[PDG00] Particle Data Group, D.E. Groom et al., Eur. Phys. J. C15 (2000) 1

[Pet83] C. Peterson, D. Schlatter, I. Schmitt and P. Zerwas, Phys. Rev. D27 (1983)
105

[Pet88] U. Pettersson, LU TP 88-5 (1988);
L. Lönnblad and U. Pettersson, LU TP 88-15 (1988);
L. Lönnblad, Computer Physics Commun. 71 (1992) 15

[Pie97] D.M. Pierce, J.A. Bagger, K. Matchev and R. Zhang, Nucl. Phys. B491
(1997) 3

[Plo93] H. Plothow-Besch, Computer Physics Commun. 75 (1993) 396, Int. J. Mod.
Phys. A10 (1995) 2901, http://consult.cern.ch/writeup/pdflib/

[Puk99] A. Pukhov et al., preprint INP MSU 98-41/542 [hep-ph/9908288]

[Ran99] L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370;
B.C. Allanach, K. Odagiri, M.A. Parker and B.R. Webber, JHEP 0009 (2000)
019

[Riz81] T. Rizzo and G. Senjanovic, Phys. Rev. D24 (1981) 704

[Sam91] M.A. Samuel, G. Li, N. Sinha, R. Sinha and M.K. Sundaresan, Phys. Rev.
Lett. 67 (1991) 9; ERRATUM ibid. 2920

[Sch80] G. Schierholz and D.H. Schiller, DESY 80/88 (1980);
J.G. Körner and D.H. Schiller, DESY 81-043 (1981);
K. Koller, D.H. Schiller and D. Wähner, Z. Phys. C12 (1982) 273

[Sch92] G.A. Schuler and J. Terron, in ‘Physics at HERA’, eds. W. Buchmüller and
G. Ingelman (DESY, Hamburg, 1992), Vol. 1, p. 599

[Sch93] G.A. Schuler and T. Sjöstrand, Phys. Lett. B300 (1993) 169

[Sch93a] G.A. Schuler and T. Sjöstrand, Nucl. Phys. B407 (1993) 539

[Sch94] G.A. Schuler and T. Sjöstrand, Phys. Rev. D49 (1994) 2257

411

[Sch94a] G.A. Schuler and T. Sjöstrand, in ‘Workshop on Two-Photon Physics from
DAPHNE to LEP200 and Beyond’, eds. F. Kapusta and J. Parisi (World
Scientific, Singapore, 1994), p. 163

[Sch95] G.A. Schuler and T. Sjöstrand, Z. Phys. C68 (1995) 607.

[Sch96] G.A. Schuler and T. Sjöstrand, Phys. Lett. B376 (1996) 193.

[Sch97] G.A. Schuler and T. Sjöstrand, Z. Phys. C73 (1997) 677

[Sch98] G.A. Schuler, Computer Physics Commun. 108 (1998) 279

[Sey95] M.H. Seymour, Nucl. Phys. B436 (1995) 163;
D.J. Miller and M.H. Seymour, Phys. Lett. B435 (1998) 213

[Sey95a] M.H. Seymour, Phys. Lett. B354 (1995) 409

[Sjö78] T. Sjöstrand, B. Söderberg, LU TP 78-18 (1978)

[Sjö79] T. Sjöstrand, LU TP 79-8 (1979)

[Sjö80] T. Sjöstrand, LU TP 80-3 (1980)

[Sjö82] T. Sjöstrand, Computer Physics Commun. 27 (1982) 243

[Sjö83] T. Sjöstrand, Computer Physics Commun. 28 (1983) 229

[Sjö84] T. Sjöstrand, Phys. Lett. 142B (1984) 420, Nucl. Phys. B248 (1984) 469

[Sjö84a] T. Sjöstrand, Z. Phys. C26 (1984) 93;
M. Bengtsson, T. Sjöstrand and M. van Zijl, Phys. Lett. B179 (1986) 164

[Sjö85] T. Sjöstrand, Phys. Lett. 157B (1985) 321;
M. Bengtsson, T. Sjöstrand and M. van Zijl, Z. Phys. C32 (1986) 67

[Sjö86] T. Sjöstrand, Computer Physics Commun. 39 (1986) 347

[Sjö87] T. Sjöstrand and M. Bengtsson, Computer Physics Commun. 43 (1987) 367

[Sjö87a] T. Sjöstrand and M. van Zijl, Phys. Rev. D36 (1987) 2019

[Sjö88] T. Sjöstrand, Int. J. Mod. Phys. A3 (1988) 751

[Sjö89] T. Sjöstrand et al., in ‘Z physics at LEP 1’, eds. G. Altarelli, R. Kleiss and
C. Verzegnassi, CERN 89-08 (Geneva, 1989), Vol. 3, p. 143

[Sjö92] T. Sjöstrand, in ‘1991 CERN School of Computing’, ed. C. Verkerk, CERN
92-02 (Geneva, 1992), p. 227

[Sjö92a] T. Sjöstrand and P.M. Zerwas, in ‘e+e− Collisions at 500 GeV: The Physics
Potential’, ed P.M. Zerwas, DESY 92-123 (Hamburg, 1992), Part A, p. 463;
T. Sjöstrand, in ‘Proceedings of the 1992 Workshops on High-Energy Physics
with Colliding Beams’, ed. J. Rogers, SLAC Report-428 (Stanford, 1993),
Vol. 2, p. 445;
V.A. Khoze and T. Sjöstrand, Phys. Lett. B328 (1994) 466

[Sjö92b] T. Sjöstrand, in ‘Physics at HERA’, eds. W Buchmüller and G. Ingelman
(DESY, Hamburg, 1992), Vol. 3, p. 1405

412

[Sjö92c] T. Sjöstrand, in ‘Workshop on Photon Radiation from Quarks’, ed. S.
Cartwright, CERN 92-04 (Geneva, 1992), p. 89 and p. 103

[Sjö92d] T. Sjöstrand, CERN-TH.6488/92 (1992)

[Sjö94] T. Sjöstrand, Computer Physics Commun. 82 (1994) 74

[Sjö94a] T. Sjöstrand and V.A. Khoze, Z. Phys. C62 (1994) 281, Phys. Rev. Lett. 72
(1994) 28

[Sjö01] T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna and E.
Norrbin, Computer Physics Commun. 135 (2001) 238

[Ska01] P. Z. Skands, Master’s Thesis, Niels Bohr Inst., Copenhagen University (2001)

[Ste81] P.M. Stevenson, Phys. Rev. D23 (1981) 2916

[Sud56] V.V. Sudakov, Zh.E.T.F. 30 (1956) 87 (Sov. Phys. J.E.T.P. 30 (1956) 65)

[UA183] UA1 Collaboration, G. Arnison et al., Phys. Lett. 123B (1983) 115;
UA1 Collaboration, C. Albajar et al., Nucl. Phys. B309 (1988) 405

[UA584] UA5 Collaboration, G.J. Alner et al., Phys. Lett. 138B (1984) 304;
UA5 Collaboration, R.E. Ansorge et al., Z. Phys. C43 (1989) 357

[Ver81] J.A.M. Vermaseren, K.J.F. Gaemers and S.J. Oldham, Nucl. Phys. B187
(1981) 301

[Web86] B.R. Webber, Ann. Rev. Nucl. Part. Sci. 36 (1986) 253

[Wu79] S.L. Wu and G. Zobernig, Z. Phys. C2 (1979) 107

[Wud86] J. Wudka, Phys. Lett. 167B (1986) 337

[Zaj87] W.A. Zajc, Phys. Rev. D35 (1987) 3396

[Zhu83] R.-y. Zhu, Ph. D. Thesis (M.I.T.), MIT-LNS Report RX-1033 (1983); Caltech
Report CALT-68-1306; in Proceedings of the 1984 DPF conference, Santa Fe,
p. 229; in Proceedings of 1985 DPF conference, Oregon, p. 552

413

Subprocess Summary Table

This index is intended to give a quick reference to the different physics processes imple-
mented in the program. Further details are to be found elsewhere in the manual, especially
in section 8. A trailing ’+’ on a few Susy processes indicates inclusion of charge-conjugate
modes as well.

No. Subprocess

Hard QCD processes:

11 fifj → fifj

12 fifi → fkfk

13 fifi → gg

28 fig→ fig

53 gg→ fkfk

68 gg→ gg

Soft QCD processes:

91 elastic scattering

92 single diffraction (XB)

93 single diffraction (AX)

94 double diffraction

95 low-p⊥ production

Open heavy flavour:

(also fourth generation)

81 fifi → QkQk

82 gg→ QkQk

83 qifj → Qkfl

84 gγ → QkQk

85 γγ → FkFk

Closed heavy flavour:

86 gg→ J/ψg

87 gg→ χ0cg

88 gg→ χ1cg

89 gg→ χ2cg

104 gg→ χ0c

105 gg→ χ2c

106 gg→ J/ψγ

107 gγ → J/ψg

108 γγ → J/ψγ

No. Subprocess

W/Z production:

1 fifi → γ∗/Z0

2 fifj →W±

22 fifi → Z0Z0

23 fifj → Z0W±

25 fifi →W+W−

15 fifi → gZ0

16 fifj → gW±

30 fig→ fiZ
0

31 fig→ fkW
±

19 fifi → γZ0

20 fifj → γW±

35 fiγ → fiZ
0

36 fiγ → fkW
±

69 γγ →W+W−

70 γW± → Z0W±

Prompt photons:

14 fifi → gγ

18 fifi → γγ

29 fig→ fiγ

114 gg→ γγ

115 gg→ gγ

Deeply Inel. Scatt.:

10 fifj → fkfl

99 γ∗q→ q

Photon-induced:

33 fiγ → fig

34 fiγ → fiγ

54 gγ → fkfk

58 γγ → fkfk

131 fiγ
∗
T → fig

No. Subprocess

132 fiγ
∗
L → fig

133 fiγ
∗
T → fiγ

134 fiγ
∗
L → fiγ

135 gγ∗T → fifi

136 gγ∗L → fifi

137 γ∗Tγ
∗
T → fifi

138 γ∗Tγ
∗
L → fifi

139 γ∗Lγ
∗
T → fifi

140 γ∗Lγ
∗
L → fifi

80 qiγ → qkπ
±

Light SM Higgs:

3 fifi → h0

24 fifi → Z0h0

26 fifj →W±h0

102 gg→ h0

103 γγ → h0

110 fifi → γh0

111 fifi → gh0

112 fig→ fih
0

113 gg→ gh0

121 gg→ QkQkh
0

122 qiqi → QkQkh
0

123 fifj → fifjh
0

124 fifj → fkflh
0

Heavy SM Higgs:

5 Z0Z0 → h0

8 W+W− → h0

71 Z0
LZ0

L → Z0
LZ0

L

72 Z0
LZ0

L →W+
L W−

L

73 Z0
LW±

L → Z0
LW±

L

76 W+
L W−

L → Z0
LZ0

L

77 W±
L W±

L →W±
L W±

L

414

No. Subprocess

BSM Neutral Higgses:

151 fifi → H0

152 gg→ H0

153 γγ → H0

171 fifi → Z0H0

172 fifj →W±H0

173 fifj → fifjH
0

174 fifj → fkflH
0

181 gg→ QkQkH
0

182 qiqi → QkQkH
0

183 fifi → gH0

184 fig→ fiH
0

185 gg→ gH0

156 fifi → A0

157 gg→ A0

158 γγ → A0

176 fifi → Z0A0

177 fifj →W±A0

178 fifj → fifjA
0

179 fifj → fkflA
0

186 gg→ QkQkA
0

187 qiqi → QkQkA
0

188 fifi → gA0

189 fig→ fiA
0

190 gg→ gA0

Charged Higgs:

143 fifj → H+

161 fig→ fkH
+

Higgs pairs:

297 fifj → H±h0

298 fifj → H±H0

299 fifi → A0h0

300 fifi → A0H0

301 fifi → H+H−

No. Subprocess

New gauge bosons:

141 fifi → γ/Z0/Z′0

142 fifj →W′+

144 fifj → R

Leptoquarks:

145 qi`j → LQ

162 qg→ `LQ

163 gg→ LQLQ

164 qiqi → LQLQ

Technicolor:

149 gg→ ηtc

191 fifi → ρ0
tc

192 fifj → ρ+
tc

193 fifi → ω0
tc

194 fifi → fkfk

195 fifj → fkf l

361 fifi →W+
L W−

L

362 fifi →W±
Lπ
∓
tc

363 fifi → π+
tcπ
−
tc

364 fifi → γπ0
tc

365 fifi → γπ′0tc
366 fifi → Z0π0

tc

367 fifi → Z0π′0tc
368 fifi →W±π∓tc
370 fifj →W±

L Z0
L

371 fifj →W±
Lπ

0
tc

372 fifj → π±tcZ0
L

373 fifj → π±tcπ0
tc

374 fifj → γπ±tc
375 fifj → Z0π±tc
376 fifj →W±π0

tc

377 fifj →W±π′0tc

No. Subprocess

Compositeness:

146 eγ → e∗

147 dg→ d∗

148 ug→ u∗

167 qiqj → d∗qk
168 qiqj → u∗qk
169 qiqi → e±e∗∓

165 fifi(→ γ∗/Z0)→ fkfk

166 fifj(→W±)→ fkf l

Left–right symmetry:

341 `i`j → H±±L
342 `i`j → H±±R
343 `±i γ → H±±L e∓

344 `±i γ → H±±R e∓

345 `±i γ → H±±L µ∓

346 `±i γ → H±±R µ∓

347 `±i γ → H±±L τ∓

348 `±i γ → H±±R τ∓

349 fifi → H++
L H−−L

350 fifi → H++
R H−−R

351 fifj → fkflH
±±
L

352 fifj → fkflH
±±
R

353 fifi → Z0
R

354 fifj →W±
R

Extra Dimensions:

391 ff → G∗

392 gg→ G∗

393 qq→ gG∗

394 qg→ qG∗

395 gg→ gG∗

415

No. Subprocess

Susy:

201 fifi → ẽLẽ∗L
202 fifi → ẽRẽ∗R
203 fifi → ẽLẽ∗R+

204 fifi → µ̃Lµ̃
∗
L

205 fifi → µ̃Rµ̃
∗
R

206 fifi → µ̃Lµ̃
∗
R+

207 fifi → τ̃1τ̃
∗
1

208 fifi → τ̃2τ̃
∗
2

209 fifi → τ̃1τ̃
∗
2 +

210 fifj → ˜̀
Lν̃
∗
`+

211 fifj → τ̃1ν̃
∗
τ+

212 fifj → τ̃2ν̃
∗
τ+

213 fifi → ν̃`ν̃`
∗

214 fifi → ν̃τ ν̃
∗
τ

216 fifi → χ̃1χ̃1

217 fifi → χ̃2χ̃2

218 fifi → χ̃3χ̃3

219 fifi → χ̃4χ̃4

220 fifi → χ̃1χ̃2

221 fifi → χ̃1χ̃3

222 fifi → χ̃1χ̃4

223 fifi → χ̃2χ̃3

224 fifi → χ̃2χ̃4

225 fifi → χ̃3χ̃4

226 fifi → χ̃±1 χ̃
∓
1

227 fifi → χ̃±2 χ̃
∓
2

228 fifi → χ̃±1 χ̃
∓
2

229 fifj → χ̃1χ̃
±
1

No. Subprocess

230 fifj → χ̃2χ̃
±
1

231 fifj → χ̃3χ̃
±
1

232 fifj → χ̃4χ̃
±
1

233 fifj → χ̃1χ̃
±
2

234 fifj → χ̃2χ̃
±
2

235 fifj → χ̃3χ̃
±
2

236 fifj → χ̃4χ̃
±
2

237 fifi → g̃χ̃1

238 fifi → g̃χ̃2

239 fifi → g̃χ̃3

240 fifi → g̃χ̃4

241 fifj → g̃χ̃±1
242 fifj → g̃χ̃±2
243 fifi → g̃g̃

244 gg→ g̃g̃

246 fig→ q̃iLχ̃1

247 fig→ q̃iRχ̃1

248 fig→ q̃iLχ̃2

249 fig→ q̃iRχ̃2

250 fig→ q̃iLχ̃3

251 fig→ q̃iRχ̃3

252 fig→ q̃iLχ̃4

253 fig→ q̃iRχ̃4

254 fig→ q̃jLχ̃
±
1

256 fig→ q̃jLχ̃
±
2

258 fig→ q̃iLg̃

259 fig→ q̃iRg̃

261 fifi → t̃1t̃∗1
262 fifi → t̃2t̃∗2

No. Subprocess

263 fifi → t̃1t̃∗2+

264 gg→ t̃1t̃∗1
265 gg→ t̃2t̃∗2
271 fifj → q̃iLq̃jL

272 fifj → q̃iRq̃jR

273 fifj → q̃iLq̃jR+

274 fifj → q̃iLq̃∗jL
275 fifj → q̃iRq̃∗jR
276 fifj → q̃iLq̃∗jR+

277 fifi → q̃jLq̃∗jL
278 fifi → q̃jRq̃∗jR
279 gg→ q̃iLq̃∗i L
280 gg→ q̃iRq̃∗i R
281 bqi → b̃1q̃iL

282 bqi → b̃2q̃iR

283 bqi → b̃1q̃iR + b̃2q̃iL

284 bqi → b̃1q̃∗i L
285 bqi → b̃2q̃∗i R
286 bqi → b̃1q̃∗i R + b̃2q̃∗i L
287 qiqi → b̃1b̃∗1
288 qiqi → b̃2b̃∗2
289 gg→ b̃1b̃∗1
290 gg→ b̃2b̃∗2
291 bb→ b̃1b̃1

292 bb→ b̃2b̃2

293 bb→ b̃1b̃2

294 bg→ b̃1g̃

295 bg→ b̃2g̃

296 bb→ b̃1b̃∗2+

416

Index of Subprograms and Common Block Variables

This index is not intended to be complete, but gives the page where the main description
begins of a subroutine, function, block data, common block, variable or array. For common
block variables also the name of the common block is given. When some components of
an array are described in a separate place, a special reference (indented with respect to
the main one) is given for these components.

AQCDUP in HEPEUP 224
AQEDUP in HEPEUP 224
BRAT in PYDAT3 363
CHAF in PYDAT4 364
CKIN in PYSUBS 167
COEF in PYINT2 250
EBMUP in HEPRUP 217
HEPEUP common block 223
HEPEVT common block 63
HEPRUP common block 217
ICOL in PYINT2 251
ICOLUP in HEPEUP 226
IDBMUP in HEPRUP 217
IDPRUP in HEPEUP 223
IDUP in HEPEUP 224
IDWTUP in HEPRUP 218
IMSS in PYMSSM 199
ISET in PYINT2 250
ISIG in PYINT3 251
ISTUP in HEPEUP 224
K in PYJETS 57
KCHG in PYDAT2 358
KFDP in PYDAT3 363
KFIN in PYSUBS 167
KFPR in PYINT2 250
LPRUP in HEPRUP 222
MAXNUP in HEPEUP 223
MAXPUP in HEPRUP 217
MDCY in PYDAT3 360
MDME in PYDAT3 360
MINT in PYINT1 242
MOTHUP in HEPEUP 225
MRPY in PYDATR 46
MSEL in PYSUBS 165
MSTI in PYPARS 203
MSTJ in PYDAT1, main 345
MSTJ(38) - MSTJ(50) 281
MSTJ(101) - MSTJ(121) 78

MSTP in PYPARS, main 171
MSTP(22) 285
MSTP(61) - MSTP(71) 285
MSTP(81) - MSTP(94) 300
MSTP(131) - MSTP(134) 303

MSTU in PYDAT1, main 342
MSTU(1) and some more 375
MSTU(41) - MSTU(63) 393
MSTU(101) - MSTU(118) 195
MSTU(161) - MSTU(162) 394

MSUB in PYSUBS 166
MWID in PYINT4 251
N in PYJETS 57
NGEN in PYINT5 253
NPRUP in HEPRUP 222
NUP in HEPEUP 223
P in PYJETS 58
PARF in PYDAT2 358
PARI in PYPARS 205
PARJ in PYDAT1, main 350
PARJ(80) - PARJ(90) 284
PARJ(121) - PARJ(171) 81
PARJ(180) - PARJ(195) 198

PARP in PYPARS, main 190
PARP(61) - PARP(72) 287
PARP(81) - PARP(100) 304
PARP(131) 305

PARU in PYDAT1, main 345
PARU(41) - PARU(63) 394
PARU(101) - PARU(195) 195

PDFGUP in HEPRUP 217
PDFSUP in HEPRUP 217
PMAS in PYDAT2 358
PROC in PYINT6 253
PUP in HEPEUP 227
PY1ENT subroutine 337
PY2ENT subroutine 337
PY3ENT subroutine 338
PY4ENT subroutine 338
PY2FRM subroutine 236
PY4FRM subroutine 236
PY6FRM subroutine 237
PY4JET subroutine 238
PYADSH function 280
PYALEM function 194
PYALPS function 194
PYANGL function 341
PYBINS common block 398

417

PYBOEI subroutine 340
PYBOOK subroutine 396
PYCELL subroutine 387
PYCHGE function 341
PYCLUS subroutine 386
PYCOMP function 341
PYDAT1 common block 342
PYDAT2 common block 358
PYDAT3 common block 360
PYDAT4 common block 364
PYDATA block data 242
PYDATR common block 46
PYDCYK subroutine 356
PYDECY subroutine 340
PYDIFF subroutine 240
PYDISG subroutine 240
PYDOCU subroutine 240
PYDUMP subroutine 397
PYEDIT subroutine 370
PYEEVT subroutine 76
PYERRM subroutine 341
PYEVNT subroutine 162
PYEVWT subroutine 210
PYEXEC subroutine 340
PYFACT subroutine 396
PYFILL subroutine 396
PYFOWO subroutine 389
PYFRAM subroutine 163
PYGAGA subroutine 240
PYGAMM function 241
PYGANO function 241
PYGBEH function 241
PYGDIR function 241
PYGGAM function 241
PYGIVE subroutine 339
PYGVMD function 241
PYHEPC subroutine 64
PYHFTH function 241
PYHIST subroutine 397
PYI3AU subroutine 242
PYINBM subroutine 239
PYINDF subroutine 340
PYINIT subroutine 160
PYINKI subroutine 240
PYINPR subroutine 240
PYINRE subroutine 239
PYINT1 common block 242
PYINT2 common block 250
PYINT3 common block 251
PYINT4 common block 251
PYINT5 common block 253

PYINT6 common block 253
PYINT7 common block 253
PYINT8 common block 254
PYINT9 common block 254
PYJETS common block 57
PYJMAS subroutine 388
PYJOIN subroutine 338
PYK function 373
PYKCUT subroutine 164
PYKFDI subroutine 340
PYKFIN subroutine 356
PYKLIM subroutine 241
PYKMAP subroutine 241
PYLIST subroutine 372
PYLOGO subroutine 341
PYMAEL function 280
PYMASS function 341
PYMAXI subroutine 240
PYMEMX subroutine 280
PYMEWT subroutine 280
PYMRUN function 194
PYMSRV common block 202
PYMSSM common block 199
PYMULT subroutine 240
PYNAME subroutine 341
PYNMES subroutine 356
PYNULL subroutine 397
PYONIA subroutine 77
PYOPER subroutine 396
PYOFSH subroutine 241
PYP function 374
PYPARS common block 171, 203
PYPDEL subroutine 241
PYPDFL subroutine 241
PYPDFU subroutine 241
PYPDGA subroutine 241
PYPDPI subroutine 241
PYPDPR subroutine 241
PYPILE subroutine 240
PYPLOT subroutine 397
PYPREP subroutine 340
PYPTDI subroutine 340
PYQQBH subroutine 242
PYR function 45
PYRGET subroutine 46
PYRSET subroutine 46
PYRADK subroutine 77
PYRAND subroutine 240
PYRECO subroutine 242
PYREMN subroutine 240
PYRESD subroutine 240

418

PYROBO subroutine 370
PYSAVE subroutine 240
PYSCAT subroutine 240
PYSHOW subroutine 279
PYSIGH subroutine 241
PYSPEN function 242
PYSPHE subroutine 385
PYSPLI subroutine 241
PYSSMT common block 201
PYSSPA subroutine 280
PYSTAT subroutine 162
PYSTRF subroutine 340
PYSUBS common block 165
PYTABU subroutine 389
PYTAUD subroutine 341
PYTEST subroutine 25
PYTHRU subroutine 386
PYTIME subroutine 341
PYUPDA subroutine 357
PYWAUX subroutine 242
PYWIDT subroutine 241
PYX3JT subroutine 77
PYX4JT subroutine 77
PYXDIF subroutine 77
PYXJET subroutine 77
PYXKFL subroutine 77
PYXTEE subroutine 77
PYXTOT subroutine 240
PYZDIS subroutine 340
RMSS in PYMSSM 200
RRPY in PYDATR 47
RVLAM in PYMSRV 202
RVLAMB in PYMSRV 202
RVLAMP in PYMSRV 202
SCALUP in HEPEUP 223

SFMIX in PYSSMT 202
SIGH in PYINT3 251
SIGT in PYINT7 254
SMW in PYSSMT 202
SMZ in PYSSMT 202
SPINUP in HEPEUP 227
UPEVNT subroutine 223
UPINIT subroutine 216
V in PYJETS 58
VCKM in PYDAT2 360
VINT in PYINT1 245
VTIMUP in HEPEUP 227
VXPANH in PYINT9 254
VXPANL in PYINT9 254
VXPDGM in PYINT9 254
VXPVMD in PYINT9 254
WIDS in PYINT4 252
XERRUP in HEPRUP 222
XMAXUP in HEPRUP 222
XPANH in PYINT8 254
XPANL in PYINT8 254
XPBEH in PYINT8 254
XPDIR in PYINT8 254
XPVMD in PYINT8 254
XSEC in PYINT5 253
XSECUP in HEPRUP 222
XSFX in PYINT3 251
XWGTUP in HEPEUP 223
UMIX in PYSSMT 202
UMIXI in PYSSMT 202
VMIX in PYSSMT 202
VMIXI in PYSSMT 202
ZMIX in PYSSMT 201
ZMIXI in PYSSMT 202

419

	Introduction
	Physics Overview
	Hard Processes and Parton Distributions
	Initial- and Final-State Radiation
	Beam Remnants and Multiple Interactions
	Hadronization

	Program Overview
	Update History
	Program Installation
	Program Philosophy
	Manual Conventions
	Getting Started with the Simple Routines
	Getting Started with the Event Generation Machinery

	Monte Carlo Techniques
	Selection From a Distribution
	The Veto Algorithm
	The Random Number Generator

	The Event Record
	Particle Codes
	The Event Record
	How The Event Record Works
	The HEPEVT Standard

	The Old e+e- Annihilation Routines
	Annihilation Events in the Continuum
	Decays of Onia Resonances
	Routines and Common Block Variables
	Examples

	Process Generation
	Parton Distributions
	Kinematics and Cross Section for a 2 2 Process
	Resonance Production
	Cross-section Calculations
	2 3 and 2 4 Processes
	Resonance Decays
	Nonperturbative Processes

	Physics Processes
	The Process Classification Scheme
	QCD Processes
	Physics with Incoming Photons
	Electroweak Gauge Bosons
	Higgs Production
	Non-Standard Physics
	Supersymmetry
	Polarization
	Main Processes by Machine

	The Process Generation Program Elements
	The Main Subroutines
	Switches for Event Type and Kinematics Selection
	The General Switches and Parameters
	Further Couplings
	Supersymmetry Common Blocks and Routines
	General Event Information
	How to Generate Weighted Events
	How to Run with Varying Energies
	How to Include External Processes
	Interfaces to Other Generators
	Other Routines and Common Blocks

	Initial- and Final-State Radiation
	Shower Evolution
	Final-State Showers
	Initial-State Showers
	Routines and Common Block Variables

	Beam Remnants and Underlying Events
	Beam Remnants
	Multiple Interactions
	Pile-up Events
	Common Block Variables

	Fragmentation
	Flavour Selection
	String Fragmentation
	Independent Fragmentation
	Other Fragmentation Aspects

	Particles and Their Decays
	The Particle Content
	Masses, Widths and Lifetimes
	Decays

	The Fragmentation and Decay Program Elements
	Definition of Initial Configuration or Variables
	The Physics Routines
	The General Switches and Parameters
	Further Parameters and Particle Data
	Miscellaneous Comments
	Examples

	Event Study and Analysis Routines
	Event Study Routines
	Event Shapes
	Cluster Finding
	Event Statistics
	Routines and Common Block Variables
	Histograms

	Summary and Outlook
	References
	Subprocess Summary Table
	Index of Subprograms and Common Block Variables

