hep-ph /0108264
LU TP 01-21
August 2001

PYTHIA 6.2
Physics and Manual

Torbjorn Sjostrand, Leif Lonnblad

Department of Theoretical Physics,
Lund University, Solvegatan 14A,
S-223 62 LUND, SWEDEN

Stephen Mrenna

Physics Department,
University of California at Davis,
One Shields Avenue,
Davis, CA 95616, USA

pp

I

I

Il

I

Il

I e
Il P
Il

I ete-
11

I

Abstract

The PYTHIA program can be used to generate high-energy-physics ‘events’,
i.e. sets of outgoing particles produced in the interactions between two in-
coming particles. The objective is to provide as accurate as possible a
representation of event properties in a wide range of reactions, with empha-
sis on those where strong interactions play a role, directly or indirectly, and
therefore multihadronic final states are produced. The physics is then not
understood well enough to give an exact description; instead the program
has to be based on a combination of analytical results and various QCD-
based models. This physics input is summarized here, for areas such as hard
subprocesses, initial- and final-state parton showers, beam remnants and un-
derlying events, fragmentation and decays, and much more. Furthermore,
extensive information is provided on all program elements: subroutines and
functions, switches and parameters, and particle and process data. This
should allow the user to tailor the generation task to the topics of interest.

The information in this edition of the manual refers to PYTHIA version
6.200, of 31 August 2001.

The official reference to the latest published version is
T. Sjostrand, P. Edén, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna and
E. Norrbin, Computer Physics Commun. 135 (2001) 238.

Preface

The PYTHIA program is frequently used for event generation in high-energy physics. The
emphasis is on multiparticle production in collisions between elementary particles. This
in particular means hard interactions in e*e™, pp and ep colliders, although also other
applications are envisaged. The program is intended to generate complete events, in as
much detail as experimentally observable ones, within the bounds of our current under-
standing of the underlying physics. Many of the components of the program represents
original research, in the sense that models have been developed and implemented for a
number of aspects not covered by standard theory.

Historically, the family of event generators from the Lund group was begun with
JETSET in 1978. The PyTHIA program followed a few years later. With time, the two
programs so often had to be used together that it made sense to merge them. There-
fore PYTHIA 5.7 and JETSET 7.4 were the last versions to appear individually; as of
PyTHIA 6.1 all the code is collected under the PYTHIA heading. At the same time, the
SPYTHIA sideline of PYTHIA was reintegrated. Both programs have a long history, and
several manuals have come out. The most recent one is

T. Sjostrand, P. Edén, C. Friberg, L.. Lonnblad, G. Miu, S. Mrenna and E. Norrbin,
Computer Physics Commun. 135 (2001) 238,

so please use this for all official references. Additionally remember to cite the original lit-
erature on the physics topics of particular relevance for your studies. (There is no reason
to omit references to good physics papers simply because some of their contents have also
been made available as program code.)

Event generators often have a reputation for being ‘black boxes’; if nothing else, this
report should provide you with a glimpse of what goes on inside the program. Some such
understanding may be of special interest for new users, who have no background in the
field. An attempt has been made to structure the report sufficiently well so that many of
the sections can be read independently of each other, so you can pick the sections that
interest you. We have tried to keep together the physics and the manual sections on
specific topics, where practicable.

A large number of persons should be thanked for their contributions. Bo Andersson
and Gosta Gustafson are the originators of the Lund model, and strongly influenced the
early development of the programs. Hans-Uno Bengtsson is the originator of the PYTHIA
program. Mats Bengtsson is the main author of the final-state parton-shower algorithm.
Patrik Edén has contributed an improved popcorn scenario for baryon production. Chris-
ter Friberg has helped develop the expanded photon physics machinery, Emanuel Norrbin
the new matrix-element matching of the final-state parton shower algorithm and the han-
dling of low-mass strings, and Gabriela Miu the matching of initial-state showers. Peter
Skands has contributed the code for lepton-number-violating decays in supersymmetry.

Further comments on the programs and smaller pieces of code have been obtained from
users too numerous to be mentioned here, but who are all gratefully acknowledged. To
write programs of this size and complexity would be impossible without a strong support
and user feedback. So, if you find errors, please let us know.

The moral responsibility for any remaining errors clearly rests with the authors. How-
ever, kindly note that this is a ‘University World” product, distributed ‘as is’, free of
charge, without any binding guarantees. And always remember that the program does
not represent a dead collection of established truths, but rather one of many possible
approaches to the problem of multiparticle production in high-energy physics, at the
frontline of current research. Be critical!

Contents

1

2

Introduction

Physics Overview

2.1
2.2
2.3
2.4

Hard Processes and Parton Distributions
Initial- and Final-State Radiation
Beam Remnants and Multiple Interactions
Hadronization

Program Overview

3.1
3.2
3.3
3.4
3.5
3.6

Update History
Program Installation o o oL
Program Philosophy o
Manual Conventions L
Getting Started with the Simple Routines
Getting Started with the Event Generation Machinery

Monte Carlo Techniques

4.1
4.2
4.3

Selection From a Distribution
The Veto Algorithm
The Random Number Generator

The Event Record

5.1
5.2
5.3
5.4

Particle Codes
The Event Record
How The Event Record Works
The HEPEVT Standard

The Old e"e~ Annihilation Routines

6.1
6.2
6.3
6.4

Annihilation Events in the Continuum
Decays of Onia Resonances
Routines and Common Block Variables
Examples

Process Generation

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Parton Distributions
Kinematics and Cross Section for a 2 — 2 Process
Resonance Production
Cross-section Calculations L
2—3and 2 —4 Processes
Resonance Decays o
Nonperturbative Processes

Physics Processes

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

The Process Classification Scheme
QCD Processes o e
Physics with Incoming Photons 000
Electroweak Gauge Bosons L.
Higgs Production
Non-Standard Physics oo
Supersymmetry Lo e
Polarization
Main Processes by Machine,

9 The Process Generation Program Elements
9.1 The Main Subroutines
9.2 Switches for Event Type and Kinematics Selection
9.3 The General Switches and Parameters
9.4 Further Couplings
9.5 Supersymmetry Common Blocks and Routines
9.6 General Event Information L.
9.7 How to Generate Weighted Events
9.8 How to Run with Varying Energies
9.9 How to Include External Processes
9.10 Interfaces to Other Generators
9.11 Other Routines and Common Blocks

10 Initial- and Final-State Radiation
10.1 Shower Evolution
10.2 Final-State Showers
10.3 Initial-State Showers
10.4 Routines and Common Block Variables

11 Beam Remnants and Underlying Events
11.1 Beam Remnants
11.2 Multiple Interactions
11.3 Pile-up Events
11.4 Common Block Variables,

12 Fragmentation
12.1 Flavour Selection
12.2 String Fragmentation Lo
12.3 Independent Fragmentation
12.4 Other Fragmentation Aspects,

13 Particles and Their Decays
13.1 The Particle Content
13.2 Masses, Widths and Lifetimes
13.3 Decays o o e

14 The Fragmentation and Decay Program Elements
14.1 Definition of Initial Configuration or Variables
14.2 The Physics Routines Lo
14.3 The General Switches and Parameters
14.4 Further Parameters and Particle Data
14.5 Miscellaneous Comments
14.6 Exampleso

15 Event Study and Analysis Routines
15.1 Event Study Routines
15.2 Event Shapes o
15.3 Cluster Finding o
15.4 Event Statistics
15.5 Routines and Common Block Variables
15.6 Histograms e

16 Summary and Outlook

160
160
164
171
194
198
203
208
212
215
235
239

256
256
259
269
279

288
288
291
299
300

306
306
312
319
322

329
329
330
332

337
337
340
342
357
364
366

370
370
375
379
384
385
395

399

References 400
Subprocess Summary Table 414

Index of Subprograms and Common Block Variables 417

1 Introduction

Multiparticle production is the most characteristic feature of current high-energy physics.
Today, observed particle multiplicities are typically between ten and a hundred, and with
future machines this range will be extended upwards. The bulk of the multiplicity is found
in jets, i.e. in collimated bunches of hadrons (or decay products of hadrons) produced
by the hadronization of partons, i.e. quarks and gluons. (For some applications it will
be convenient to extend the parton concept also to some non-coloured but showering
particles, such as electrons and photons.)

The Complexity of High-Energy Processes

To first approximation, all processes have a simple structure at the level of interactions
between the fundamental objects of nature, i.e. quarks, leptons and gauge bosons. For
instance, a lot can be understood about the structure of hadronic events at LEP just from
the ‘skeleton’ process ete™ — Z° — qq. Corrections to this picture can be subdivided,
arbitrarily but conveniently, into three main classes.

Firstly, there are bremsstrahlung-type modifications, i.e. the emission of additional
final-state particles by branchings such as e — ey or q — qg. Because of the largeness
of the strong coupling constant «, and because of the presence of the triple gluon ver-
tex, QCD emission off quarks and gluons is especially prolific. We therefore speak about
‘parton showers’, wherein a single initial parton may give rise to a whole bunch of par-
tons in the final state. Also photon emission may give sizeable effects in ete™ and ep
processes. The bulk of the bremsstrahlung corrections are universal, i.e. do not depend
on the details of the process studied, but only on one or a few key numbers, such as the
momentum transfer scale of the process. Such universal corrections may be included to
arbitrarily high orders, using a probabilistic language. Alternatively, exact calculations
of bremsstrahlung corrections may be carried out order by order in perturbation the-
ory, but rapidly the calculations then become prohibitively complicated and the answers
correspondingly lengthy:.

Secondly, we have ‘true’ higher-order corrections, which involve a combination of loop
graphs and the soft parts of the bremsstrahlung graphs above, a combination needed to
cancel some divergences. In a complete description it is therefore not possible to consider
bremsstrahlung separately, as assumed here. The necessary perturbative calculations are
usually very difficult; only rarely have results been presented that include more than one
non-‘trivial” order, i.e. more than one loop. As above, answers are usually very lengthy,
but some results are sufficiently simple to be generally known and used, such as the
running of ag, or the correction factor 1 + «a,/m + - -+ in the partial widths of Z° — qq
decay channels. For high-precision studies it is imperative to take into account the results
of loop calculations, but usually effects are minor for the qualitative aspects of high-energy
processes.

Thirdly, quarks and gluons are confined. In the two points above, we have used a
perturbative language to describe the short-distance interactions of quarks, leptons and
gauge bosons. For leptons and colourless bosons this language is sufficient. However, for
quarks and gluons it must be complemented with the structure of incoming hadrons, and
a picture for the hadronization process, wherein the coloured partons are transformed
into jets of colourless hadrons, photons and leptons. The hadronization can be further
subdivided into fragmentation and decays, where the former describes the way the creation
of new quark-antiquark pairs can break up a high-mass system into lower-mass ones,
ultimately hadrons. (The word ‘fragmentation’ is also sometimes used in a broader sense,
but we will here use it with this specific meaning.) This process is still not yet understood
from first principles, but has to be based on models. In one sense, hadronization effects
are overwhelmingly large, since this is where the bulk of the multiplicity comes from. In

another sense, the overall energy flow of a high-energy event is mainly determined by the
perturbative processes, with only a minor additional smearing caused by the hadronization
step. One may therefore pick different levels of ambition, but in general detailed studies
require a detailed modelling of the hadronization process.

The simple structure that we started out with has now become considerably more
complex — instead of maybe two final-state partons we have a hundred final particles.
The original physics is not gone, but the skeleton process has been dressed up and is no
longer directly visible. A direct comparison between theory and experiment is therefore
complicated at best, and impossible at worst.

Event Generators

It is here that event generators come to the rescue. In an event generator, the objective
strived for is to use computers to generate events as detailed as could be observed by a
perfect detector. This is not done in one step, but rather by ‘factorizing’ the full prob-
lem into a number of components, each of which can be handled reasonably accurately.
Basically, this means that the hard process is used as input to generate bremsstrahlung
corrections, and that the result of this exercise is thereafter left to hadronize. This sounds
a bit easier than it really is — else this report would be a lot thinner. However, the basic
idea is there: if the full problem is too complicated to be solved in one go, try to subdivide
it into smaller tasks of manageable proportions. In the actual generation procedure, most
steps therefore involve the branching of one object into two, or at least into a very small
number, with the daughters free to branch in their turn. A lot of book-keeping is involved,
but much is of a repetitive nature, and can therefore be left for the computer to handle.
As the name indicates, the output of an event generator should be in the form of
‘events’, with the same average behaviour and the same fluctuations as real data. In
the data, fluctuations arise from the quantum mechanics of the underlying theory. In
generators, Monte Carlo techniques are used to select all relevant variables according to
the desired probability distributions, and thereby ensure randomness in the final events.
Clearly some loss of information is entailed: quantum mechanics is based on amplitudes,
not probabilities. However, only very rarely do (known) interference phenomena appear
that cannot be cast in a probabilistic language. This is therefore not a more restraining
approximation than many others.
Once there, an event generator can be used in many different ways. The five main
applications are probably the following:
e To give physicists a feeling for the kind of events one may expect/hope to find, and
at what rates.
e As a help in the planning of a new detector, so that detector performance is opti-
mized, within other constraints, for the study of interesting physics scenarios.
e As a tool for devising the analysis strategies that should be used on real data, so
that signal-to-background conditions are optimized.
e As a method for estimating detector acceptance corrections that have to be applied
to raw data, in order to extract the ‘true’ physics signal.
e As a convenient framework within which to interpret the observed phenomena in
terms of a more fundamental underlying theory (usually the Standard Model).
Where does a generator fit into the overall analysis chain of an experiment? In ‘real
life’, the machine produces interactions. These events are observed by detectors, and the
interesting ones are written to tape by the data acquisition system. Afterwards the events
may be reconstructed, i.e. the electronics signals (from wire chambers, calorimeters, and
all the rest) may be translated into a deduced setup of charged tracks or neutral energy
depositions, in the best of worlds with full knowledge of momenta and particle species.
Based on this cleaned-up information, one may proceed with the physics analysis. In the
Monte Carlo world, the role of the machine, namely to produce events, is taken by the

event generators described in this report. The behaviour of the detectors — how particles
produced by the event generator traverse the detector, spiral in magnetic fields, shower
in calorimeters, or sneak out through cracks, etc. — is simulated in programs such as
GEANT | |. Traditionally, this latter activity is called event simulation, which is
somewhat unfortunate since the same words could equally well be applied to what, here,
we call event generation. A more appropriate term is detector simulation. Ideally, the
output of this simulation has exactly the same format as the real data recorded by the
detector, and can therefore be put through the same event reconstruction and physics
analysis chain, except that here we know what the ‘right answer’ should be, and so can
see how well we are doing.

Since the full chain of detector simulation and event reconstruction is very time-
consuming, one often does ‘quick and dirty’ studies in which these steps are skipped
entirely, or at least replaced by very simplified procedures which only take into account
the geometric acceptance of the detector and other trivial effects. One may then use the
output of the event generator directly in the physics studies.

There are still many holes in our understanding of the full event structure, despite
an impressive amount of work and detailed calculations. To put together a generator
therefore involves making a choice on what to include, and how to include it. At best,
the spread between generators can be used to give some impression of the uncertainties
involved. A multitude of approximations will be discussed in the main part of this report,
but already here is should be noted that many major approximations are related to the
almost complete neglect of the second point above, i.e. of the non-‘trivial’ higher-order
effects. It can therefore only be hoped that the ‘trivial’ higher order parts give the bulk of
the experimental behaviour. By and large, this seems to be the case; for e"e™ annihilation
it even turns out to be a very good approximation.

The necessity to make compromises has one major implication: to write a good event
generator is an art, not an exact science. It is therefore essential not to blindly trust
the results of any single event generator, but always to make several cross-checks. In
addition, with computer programs of tens of thousands of lines, the question is not whether
bugs exist, but how many there are, and how critical their positions. Further, an event
generator cannot be thought of as all-powerful, or able to give intelligent answers to ill-
posed questions; sound judgement and some understanding of a generator are necessary
prerequisites for successful use. In spite of these limitations, the event generator approach
is the most powerful tool at our disposal if we wish to gain a detailed and realistic
understanding of physics at current or future high-energy colliders.

The Origins of the JETSET and PYTHIA Programs

Over the years, many event generators have appeared. Surveys of generators for ete™
physics in general and LEP in particular may be found in | , , , ,
for high-energy hadron-hadron (pp) physics in [, , ,], and for
ep physics in | ,]. We refer the reader to those for additional details and
references. In this particular report, the two closely connected programs JETSET and
PyTHIA, now merged under the PYTHIA label, will be described.

JETSET has its roots in the efforts of the Lund group to understand the hadroniza-
tion process, starting in the late seventies |]. The so-called string fragmentation
model was developed as an explicit and detailed framework, within which the long-range
confinement forces are allowed to distribute the energies and flavours of a parton config-
uration among a collection of primary hadrons, which subsequently may decay further.
This model, known as the Lund string model, or ‘Lund’ for short, contained a number of
specific predictions, which were confirmed by data from PETRA and PEP, whence the
model gained a widespread acceptance. The Lund string model is still today the most
elaborate and widely used fragmentation model at our disposal. It remains at the heart

of the PYTHIA program.

In order to predict the shape of events at PETRA /PEP, and to study the fragmentation
process in detail, it was necessary to start out from the partonic configurations that
were to fragment. The generation of complete e™e™ hadronic events was therefore added,
originally based on simple v exchange and first-order QCD matrix elements, later extended
to full v*/Z° exchange with first-order initial-state QED radiation and second-order QCD
matrix elements. A number of utility routines were also provided early on, for everything
from event listing to jet finding.

By the mid-eighties it was clear that the matrix-element approach had reached the
limit of its usefulness, in the sense that it could not fully describe the multijet topologies of
the data. (Later on, the use of optimized perturbation theory was to lead to a resurgence
of the matrix-element approach, but only for specific applications.) Therefore a parton-
shower description was developed | | as an alternative to the matrix-element one.
The combination of parton showers and string fragmentation has been very successful,
and forms the main approach to the description of hadronic Z° events.

In recent years, the JETSET part of the code has been a fairly stable product, covering
the four main areas of fragmentation, final-state parton showers, eTe™ event generation
and general utilities.

The successes of string fragmentation in ete™ made it interesting to try to extend this
framework to other processes, and explore possible physics consequences. Therefore a
number of other programs were written, which combined a process-specific description of
the hard interactions with the general fragmentation framework of JETSET. The PYTHIA
program evolved out of early studies on fixed-target proton—proton processes, addressed
mainly at issues related to string drawing.

With time, the interest shifted towards higher energies, first to the SPS pp collider,
and later to the Tevatron, SSC and LHC, in the context of a number of workshops in
the USA and Europe. Parton showers were added, for final-state radiation by making
use of the JETSET routine, for initial-state one by the development of the concept of
‘backwards evolution’; specifically for PYTHIA |]. Also a framework was developed
for minimum-bias and underlying events |].

Another main change was the introduction of an increasing number of hard processes,
within the Standard Model and beyond. A special emphasis was put on the search for
the Standard Model Higgs, in different mass ranges and in different channels, with due
respect to possible background processes.

The bulk of the machinery developed for hard processes actually depended little on the
choice of initial state, as long as the appropriate parton distributions were there for the
incoming partons and particles. It therefore made sense to extend the program from being
only a pp generator to working also for ete™ and ep. This process was only completed in
1991, again spurred on by physics workshop activities. Currently PyTHIA should therefore
work equally well for a selection of different possible incoming beam particles.

An effort independent of the Lund group activities got going to include supersymmetric
event simulation in PyYTHIA. This resulted in the SPYTHIA program.

While JETSET was independent of PYTHIA until 1996, their ties had grown much
stronger over the years, and the border-line between the two programs had become more
and more artificial. It was therefore decided to merge the two, and also include the
SPYTHIA extensions, starting from PYTHIA 6.1. The different origins in part still are
reflected in this manual, but the strive is towards a seamless merger.

The tasks of including new processes, and of improving the simulation of parton show-
ers and other aspects of already present processes, are never-ending. Work therefore
continues apace.

About this Report

As we see, JETSET and PYTHIA started out as very ideologically motivated programs, de-
veloped to study specific physics questions in enough detail that explicit predictions could
be made for experimental quantities. As it was recognized that experimental imperfec-
tions could distort the basic predictions, the programs were made available for general use
by experimentalists. It thus became feasible to explore the models in more detail than
would otherwise have been possible. As time went by, the emphasis came to shift some-
what, away from the original strong coupling to a specific fragmentation model, towards a
description of high-energy multiparticle production processes in general. Correspondingly,
the use expanded from being one of just comparing data with specific model predictions,
to one of extensive use for the understanding of detector performance, for the deriva-
tion of acceptance correction factors, for the prediction of physics at future high-energy
accelerators, and for the design of related detectors.

While the ideology may be less apparent, it is still there, however. This is not some-
thing unique to the programs discussed here, but inherent in any event generator, or at
least any generator that attempts to go beyond the simple parton level skeleton descrip-
tion of a hard process. Do not accept the myth that everything available in Monte Carlo
form represents ages-old common knowledge, tested and true. Ideology is present by
commissions or omissions in any number of details. A programs like PYTHIA represents
a major amount of original physics research, often on complicated topics where no simple
answers are available. As a (potential) program user you must be aware of this, so that
you can form your own opinion, not just about what to trust and what not to trust, but
also how much to trust a given prediction, i.e. how uncertain it is likely to be. PYTHIA
is particularly well endowed in this respect, since a number of publications exist where
most of the relevant physics is explained in considerable detail. In fact, the problem may
rather be the opposite, to find the relevant information among all the possible places.
One main objective of the current report is therefore to collect much of this information
in one single place. Not all the material found in specialized papers is reproduced, by a
wide margin, but at least enough should be found here to understand the general picture
and to know where to go for details.

The current report is therefore intended to update and extend the previous round of
published physics descriptions and program manuals | , , , , ,

|. Make all references to the most recent published one in |]. Further speci-
fication could include a statement of the type ‘We use PYTHIA version X.xxx’. (If you
are a TEX fan, you may want to know that the program name in this report has been
generated by the command \textsc{Pythia}.) Kindly do not refer to PYTHIA as ‘un-
published’, ‘private communication’ or ‘in preparation’: such phrases are incorrect and
only create unnecessary confusion.

In addition, remember that many of the individual physics components are docu-
mented in separate publications. If some of these contain ideas that are useful to you,
there is every reason to cite them. A reasonable selection would vary as a function of the
physics you are studying. The criterion for which to pick should be simple: imagine that
a Monte Carlo implementation had not been available. Would you then have cited a given
paper on the grounds of its physics contents alone? If so, do not punish the extra effort
of turning these ideas into publicly available software. (Monte Carlo manuals are good
for nothing in the eyes of many theorists, so often only the acceptance of ‘mainstream’
publications counts.) Here follows a list of some main areas where the PYTHIA programs
contain original research:

The string fragmentation model |)].

The string effect | |-

Baryon production (diquark/popcorn) | , ,].
Small-mass string fragmentation |]

Fragmentation of multiparton systems |].

Colour rearrangement |] and Bose-Einstein effects |].
Fragmentation effects on oy determinations |].

Initial-state parton showers | : .

Final-state parton showers | :].

Photon radiation from quarks |]

Deeply Inelastic Scattering | ,).

Photoproduction | vy | | and v*p/~v* v/v*v* | | physics.
Parton distributions of the photon [:].

Colour flow in hard scatterings |].

Elastic and diffractive cross sections |].

Minijets (multiple parton—parton interactions) |].
Rapidity gaps |].

Jet clustering in &, |].

In addition to a physics survey, the current report also contains a complete manual
for the program. Such manuals have always been updated and distributed jointly with
the programs, but have grown in size with time. A word of warning may therefore be in
place. The program description is fairly lengthy, and certainly could not be absorbed in
one sitting. This is not even necessary, since all switches and parameters are provided
with sensible default values, based on our best understanding (of the physics, and of what
you expect to happen if you do not specify any options). As a new user, you can therefore
disregard all the fancy options, and just run the program with a minimum ado. Later
on, as you gain experience, the options that seem useful can be tried out. No single user
is ever likely to find need for more than a fraction of the total number of possibilities
available, yet many of them have been added to meet specific user requests.

In some instances, not even this report will provide you with all the information you
desire. You may wish to find out about recent versions of the program, know about related
software, pick up a few sample main programs to get going, or get hold of related physics
papers. Some such material can be found on the PYTHIA web page:

http://www.thep.lu.se/~torbjorn/Pythia.html .

Disclaimer

At all times it should be remembered that this is not a commercial product, developed
and supported by professionals. Instead it is a ‘University World” product, developed by
a very few physicists (mainly the current first author) originally for their own needs, and
supplied to other physicists on an ‘as-is’ basis, free of charge. No guarantees are therefore
given for the proper functioning of the program, nor for the validity of physics results.
In the end, it is always up to you to decide for yourself whether to trust a given result
or not. Usually this requires comparison either with analytical results or with results of
other programs, or with both. Even this is not necessarily foolproof: for instance, if an
error is made in the calculation of a matrix element for a given process, this error will be
propagated both into the analytical results based on the original calculation and into all
the event generators which subsequently make use of the published formulae. In the end,
there is no substitute for a sound physics judgement.

This does not mean that you are all on your own, with a program nobody feels respon-
sible for. Attempts are made to check processes as carefully as possible, to write programs
that do not invite unnecessary errors, and to provide a detailed and accurate documen-
tation. All of this while maintaining the full power and flexibility, of course, since the
physics must always take precedence in any conflict of interests. If nevertheless any errors
or unclarities are found, please do communicate them to e-mail torbjorn@thep.lu.se, or to
another person in charge. For instance, all questions on the supersymmetric machinery

are better directed to mrenna@physics.ucdavis.edu. Every attempt will be made to solve
problems as soon as is reasonably possible, given that this support is by a few persons,
who mainly have other responsibilities.

However, in order to make debugging at all possible, we request that any sample
code you want to submit as evidence be completely self-contained, and peeled off from all
irrelevant aspects. Use simple write statements or the PYTHIA histogramming routines to
make your point. Chances are that, if the error cannot be reproduced by fifty lines of code,
in a main program linked only to PYTHIA, the problem is sitting elsewhere. Numerous
errors have been caused by linking to other (flawed) libraries, e.g. collaboration-specific
frameworks for running PyTHIA. Then you should put the blame elsewhere.

Appendix: The Historical Pythia

The ‘PyYTHIA’ label may need some explanation.

The myth tells how Apollon, the God of Wisdom, killed the powerful dragon-like
monster Python, close to the village of Delphi in Greece. To commemorate this victory,
Apollon founded the Pythic Oracle in Delphi, on the slopes of Mount Parnassos. Here
men could come to learn the will of the Gods and the course of the future. The oracle
plays an important role in many of the other Greek myths, such as those of Heracles and
of King Oedipus.

Questions were to be put to the Pythia, the ‘Priestess’ or ‘Prophetess’ of the Oracle. In
fact, she was a local woman, usually a young maiden, of no particular religious schooling.
Seated on a tripod, she inhaled the obnoxious vapours that seeped up through a crevice in
the ground. This brought her to a trance-like state, in which she would scream seemingly
random words and sounds. It was the task of the professional priests in Delphi to record
those utterings and edit them into the official Oracle prophecies, which often took the
form of poems in perfect hexameter. In fact, even these edited replies were often less than
easy to interpret. The Pythic oracle acquired a reputation for ambiguous answers.

The Oracle existed already at the beginning of the historical era in Greece, and was
universally recognized as the foremost religious seat. Individuals and city states came to
consult, on everything from cures for childlessness to matters of war. Lavish gifts allowed
the temple area to be built and decorated. Many states supplied their own treasury halls,
where especially beautiful gifts were on display. Sideshows included the Omphalos, a
stone reputedly marking the centre of the Earth, and the Pythic games, second only to
the Olympic ones in importance.

Strife inside Greece eventually led to a decline in the power of the Oracle. A serious
blow was dealt when the Oracle of Zeus Ammon (see below) declared Alexander the Great
to be the son of Zeus. The Pythic Oracle lived on, however, and was only closed by a
Roman Imperial decree in 390 AD, at a time when Christianity was ruthlessly destroying
any religious opposition. Pythia then had been at the service of man and Gods for a
millennium and a half.

The role of the Pythic Oracle prophecies on the course of history is nowhere better
described than in ‘The Histories” by Herodotus | |, the classical and captivating
description of the Ancient World at the time of the Great War between Greeks and
Persians. Especially famous is the episode with King Croisus of Lydia. Contemplating a
war against the upstart Persian Empire, he resolves to ask an oracle what the outcome
of a potential battle would be. However, to have some guarantee for the veracity of any
prophecy, he decides to send embassies to all the renowned oracles of the known World.
The messengers are instructed to inquire the various divinities, on the hundredth day
after their departure, what King Croisus is doing at that very moment. From the Pythia
the messengers bring back the reply

I know the number of grains of sand as well as the expanse of the sea,
And I comprehend the dumb and hear him who does not speak,

There came to my mind the smell of the hard-shelled turtle,
Boiled in copper together with the lamb,
With copper below and copper above.

The veracity of the Pythia is thus established by the crafty ruler, who had waited until
the appointed day, slaughtered a turtle and a lamb, and boiled them together in a copper
cauldron with a copper lid. Also the Oracle of Zeus Ammon in the Libyan desert is able
to give a correct reply (lost to posterity), while all others fail. King Croisus now sends a
second embassy to Delphi, inquiring after the outcome of a battle against the Persians.
The Pythia answers

If Croisus passes over the Halys he will dissolve a great Empire.

Taking this to mean he would win, the King collects his army and crosses the border river,
only to suffer a crushing defeat and see his Kingdom conquered. When the victorious King
Cyrus allows Croisus to send an embassy to upbraid the Oracle, the God Apollon answers
through his Prophetess that he has correctly predicted the destruction of a great empire
— Croisus’ own — and that he cannot be held responsible if people choose to interpret
the Oracle answers to their own liking.

The history of the PYTHIA program is neither as long nor as dignified as that of
its eponym. However, some points of contact exist. You must be very careful when
you formulate the questions: any ambiguities will corrupt the reply you get. And you
must be even more careful not to misinterpret the answers; in particular not to pick the
interpretation that suits you before considering the alternatives. Finally, even a perfect
God has servants that are only human: a priest might mishear the screams of the Pythia
and therefore produce an erroneous oracle reply; the current author might unwittingly let
a bug free in the program PYTHIA.

2 Physics Overview

In this section we will try to give an overview of the main physics features of PyTHIA, and
also to introduce some terminology. The details will be discussed in subsequent sections.

For the description of a typical high-energy event, an event generator should contain
a simulation of several physics aspects. If we try to follow the evolution of an event in
some semblance of a time order, one may arrange these aspects as follows:

1. Initially two beam particles are coming in towards each other. Normally each par-
ticle is characterized by a set of parton distributions, which defines the partonic
substructure in terms of flavour composition and energy sharing.

2. One shower initiator parton from each beam starts off a sequence of branchings,
such as q — qg, which build up an initial-state shower.

3. One incoming parton from each of the two showers enters the hard process, where
then a number of outgoing partons are produced, usually two. It is the nature of
this process that determines the main characteristics of the event.

4. The hard process may produce a set of short-lived resonances, like the Z°/W=* gauge
bosons, whose decay to normal partons has to be considered in close association with
the hard process itself.

The outgoing partons may branch, just like the incoming did, to build up final-state
showers.

6. In addition to the hard process considered above, further semihard interactions may

occur between the other partons of two incoming hadrons.

7. When a shower initiator is taken out of a beam particle, a beam remnant is left
behind. This remnant may have an internal structure, and a net colour charge that
relates it to the rest of the final state.

8. The QCD confinement mechanism ensures that the outgoing quarks and gluons are
not observable, but instead fragment to colour neutral hadrons.

9. Normally the fragmentation mechanism can be seen as occurring in a set of separate
colour singlet subsystems, but interconnection effects such as colour rearrangement
or Bose-Einstein may complicate the picture.

10. Many of the produced hadrons are unstable and decay further.

Conventionally, only quarks and gluons are counted as partons, while leptons and
photons are not. If pushed ad absurdum this may lead to some unwieldy terminology. We
will therefore, where it does not matter, speak of an electron or a photon in the ‘partonic’
substructure of an electron, lump branchings e — ey together with other ‘parton shower’
branchings such as q — qg, and so on. With this notation, the division into the above
seven points applies equally well to an interaction between two leptons, between a lepton
and a hadron, and between two hadrons.

In the following sections, we will survey the above ten aspects, not in the same order
as given here, but rather in the order in which they appear in the program execution, i.e.
starting with the hard process.

Ut

2.1 Hard Processes and Parton Distributions

In the original JETSET code, only two hard processes are available. The first and main
one is ete™ — v*/Z% — qq. Here the ‘*” of 7* is used to denote that the photon must be
off the mass shell. The distinction is of some importance, since a photon on the mass shell
cannot decay. Of course also the Z° can be off the mass shell, but here the distinction is
less relevant (strictly speaking, a Z° is always off the mass shell). In the following we may
not always use ‘x’ consistently, but the rule of thumb is to use a ‘x’ only when a process is
not kinematically possible for a particle of nominal mass. The quark q in the final state
of ete™ — ~4*/Z° — qq may be u, d, s, ¢, b or t; the flavour in each event is picked at

random, according to the relative couplings, evaluated at the hadronic c.m. energy. Also
the angular distribution of the final qq pair is included. No parton-distribution functions
are needed.

The other original JETSET process is a routine to generate ggg and ygg final states,
as expected in onium 17~ decays such as Y. Given the large top mass, toponium de-
cays weakly much too fast for these processes to be of any interest, so therefore no new
applications are expected.

2.1.1 Hard Processes

The current PYTHIA contains a much richer selection, with around 240 different hard

processes. These may be classified in many different ways.

One is according to the number of final-state objects: we speak of ‘2 — 1’ processes,
‘2 — 2 ones, ‘2 — 3’ ones, etc. This aspect is very relevant from a programming point
of view: the more particles in the final state, the more complicated the phase space and
therefore the whole generation procedure. In fact, PYTHIA is optimized for 2 — 1 and
2 — 2 processes. There is currently no generic treatment of processes with three or more
particles in the final state, but rather a few different machineries, each tailored to the
pole structure of a specific class of graphs.

Another classification is according to the physics scenario. This will be the main theme
of section 8. The following major groups may be distinguished:

e Hard QCD processes, e.g. qg — qg.

e Soft QCD processes, such as diffractive and elastic scattering, and minimum-bias
events. Hidden in this class is also process 96, which is used internally for the
merging of soft and hard physics, and for the generation of multiple interactions.
Heavy-flavour production, both open and hidden, e.g. gg — tt and gg — J/¢g.
Prompt-photon production, e.g. qg — q7.

Photon-induced processes, e.g. vg — qq.

Deeply Inelastic Scattering, e.g. qf — qf.

W /Z production, such as the ete™ — ~*/Z° or qq — WHW~,

Standard model Higgs production, where the Higgs is reasonably light and narrow,

and can therefore still be considered as a resonance.

e Gauge boson scattering processes, such as WW — WW, when the Standard Model
Higgs is so heavy and broad that resonant and non-resonant contributions have to
be considered together.

e Non-standard Higgs particle production, within the framework of a two-Higgs-
doublet scenario with three neutral (h, H® and A°) and two charged (H*) Higgs
states. Normally associated with Susy (see below), but does not have to be.

e Production of new gauge bosons, such as a 7', W' and R (a horizontal boson,
coupling between generations).

e Technicolor production, as an alternative scenario to the standard picture of elec-
troweak symmetry breaking by a fundamental Higgs.

e Compositeness is a possibility not only in the Higgs sector, but may also apply to
fermions, e.g. giving d* and u* production. At energies below the threshold for new
particle production, contact interactions may still modify the standard behaviour.

e Left—right symmetric models give rise to doubly charged Higgs states, in fact one
set belonging to the left and one to the right SU(2) gauge group. Decays involve
right-handed W’s and neutrinos.

e Leptoquark (Lq) production is encountered in some beyond-the-standard-model sce-
narios.

e Supersymmetry (SUSY) is probably the favourite scenario for physics beyond the
standard model. A rich set of processes are allowed, even if one obeys R-parity

10

conservation. The supersymmetric machinery and process selection is inherited
from SPYTHIA | |, however with many improvements in the event generation
chain. Many different SuSY scenarios have been proposed, and the program is
flexible enough to allow input from several of these, in addition to the ones provided
internally.

e The possibility of extra dimensions at low energies has been a topic of much study in
recent years, but has still not settled down to some standard scenarios. Its inclusion
into PYTHIA is also only in a very first stage.

This is by no means a survey of all interesting physics. Also, within the scenarios studied,
not all contributing graphs have always been included, but only the more important
and/or more interesting ones. In many cases, various approximations are involved in the
matrix elements coded.

2.1.2 Resonance Decays

As we noted above, the bulk of the processes above are of the 2 — 2 kind, with very
few leading to the production of more than two final-state particles. This may be seen
as a major limitation, and indeed is so at times. However, often one can come quite far
with only one or two particles in the final state, since showers will add the required extra
activity. The classification may also be misleading at times, since an s-channel resonance
is considered as a single particle, even if it is assumed always to decay into two final-state
particles. Thus the process ete™ — WTW™ — @} q2q, is classified as 2 — 2, although
the decay treatment of the W pair includes the full 2 — 4 matrix elements (in the doubly
resonant approximation, i.e. excluding interference with non-WW four-fermion graphs).

Particles which admit this close connection between the hard process and the subse-
quent evolution are collectively called resonances in this manual. It includes all particles
in mass above the b quark system, such as t, Z°, W*, h®, supersymmetric particles, and
many more. Typically their decays are given by electroweak physics, or physics beyond
the Standard Model. What characterizes a (PYTHIA) resonance is that partial widths
and branching ratios can be calculated dynamically, as a function of the actual mass
of a particle. Therefore not only do branching ratios change between an h® of nominal
mass 100 GeV and one of 200 GeV, but also for a Higgs of nominal mass 200 GeV, the
branching ratios would change between an actual mass of 190 GeV and 210 GeV, say.
This is particularly relevant for reasonably broad resonances, and in threshold regions.
For an approach like this to work, it is clearly necessary to have perturbative expressions
available for all partial widths.

Decay chains can become quite lengthy, e.g. for supersymmetric processes, but follow
a straight perturbative pattern. If the simulation is restricted to only some set of decays,
the corresponding cross section reduction can easily be calculated. (Except in some rare
cases where a nontrivial threshold behaviour could complicate matters.) It is therefore
standard in PYTHIA to quote cross sections with such reductions already included. Note
that the branching ratios of a particle is affected also by restrictions made in the secondary
or subsequent decays. For instance, the branching ratio of h® — WTW~, relative to
h? — Z°7Z° and other channels, is changed if the allowed W decays are restricted.

The decay products of resonances are typically quarks, leptons, or other resonances,
e.g. W — qq or h® — WH+W~. Ordinary hadrons are not produced in these decays,
but only in subsequent hadronization steps. In decays to quarks, parton showers are
automatically added to give a more realistic multijet structure, and one may also allow
photon emission off leptons. If the decay products in turn are resonances, further decays
are necessary. Often spin information is available in resonance decay matrix elements.
This means that the angular orientations in the two decays of a WHW™ pair are properly
correlated. In other cases, the information is not available, and then resonances decay
isotropically.

11

Of course, the above ‘resonance’ terminology is arbitrary. A p, for instance, could
also be called a resonance, but not in the above sense. The width is not perturbatively
calculable, it decays to hadrons by strong interactions, and so on. From a practical point
of view, the main dividing line is that the values of — or a change in — branching
ratios cannot affect the cross section of a process. For instance, if one wanted to consider
the decay Z° — c¢, with a D meson producing a lepton, not only would there then
be the problem of different leptonic branching ratios for different D’s (which means that
fragmentation and decay treatments would no longer decouple), but also that of additional
¢C pair production in parton-shower evolution, at a rate that is unknown beforehand. In
practice, it is therefore next to impossible to force D decay modes in a consistent manner.

2.1.3 Parton Distributions

The cross section for a process ij — k is given by

Tijk = /dﬁ«"l/d% fiH (@) 7 (x2) Gij, (1)

Here 6 is the cross section for the hard partonic process, as codified in the matrix elements
for each specific process. For processes with many particles in the final state it would
be replaced by an integral over the allowed final-state phase space. The f{(z) are the
parton-distribution functions, which describe the probability to find a parton ¢ inside
beam particle a, with parton 7 carrying a fraction x of the total @ momentum. Actually,
parton distributions also depend on some momentum scale Q2 that characterizes the hard
process.

Parton distributions are most familiar for hadrons, such as the proton. Hadrons are
inherently composite objects, made up of quarks and gluons. Since we do not understand
QCD, a derivation from first principles of hadron parton distributions does not yet exist,
although some progress is being made in lattice QCD studies. It is therefore necessary
to rely on parameterizations, where experimental data are used in conjunction with the
evolution equations for the @Q? dependence, to pin down the parton distributions. Several
different groups have therefore produced their own fits, based on slightly different sets of
data, and with some variation in the theoretical assumptions.

Also for fundamental particles, such as the electron, is it convenient to introduce parton
distributions. The function f(z) thus parameterizes the probability that the electron that
takes part in the hard process retains a fraction x of the original energy, the rest being
radiated (into photons) in the initial state. Of course, such radiation could equally well be
made part of the hard interaction, but the parton-distribution approach usually is much
more convenient. If need be, a description with fundamental electrons is recovered for
the choice f¢(z,Q?%) = §(x — 1). Note that, contrary to the proton case, electron parton
distributions are calculable from first principles, and reduce to the ¢ function above for
Q? — 0.

The electron may also contain photons, and the photon may in its turn contain quarks
and gluons. The internal structure of the photon is a bit of a problem, since the photon
contains a point-like part, which is perturbatively calculable, and a resolved part (with
further subdivisions), which is not. Normally, the photon parton distributions are there-
fore parameterized, just as the hadron ones. Since the electron ultimately contains quarks
and gluons, hard QCD processes like qg — qg therefore not only appear in pp collisions,
but also in ep ones (‘resolved photoproduction’) and in ete™ ones (‘doubly resolved 2~y
events’). The parton distribution function approach here makes it much easier to reuse
one and the same hard process in different contexts.

There is also another kind of possible generalization. The two processes qq — v*/Z°,
studied in hadron colliders, and ete™ — v*/Z° studied in e*e™ colliders, are really special
cases of a common process, ff — ~v*/Z° where f denotes a fundamental fermion, i.e. a

12

quark, lepton or neutrino. The whole structure is therefore only coded once, and then
slightly different couplings and colour prefactors are used, depending on the initial state
considered. Usually the interesting cross section is a sum over several different initial
states, e.g. ut — */Z° and dd — ~v*/Z° in a hadron collider. This kind of summation is
always implicitly done, even when not explicitly mentioned in the text.

2.2 Initial- and Final-State Radiation

In every process that contains coloured and/or charged objects in the initial or final state,
gluon and/or photon radiation may give large corrections to the overall topology of events.
Starting from a basic 2 — 2 process, this kind of corrections will generate 2 — 3, 2 — 4,
and so on, final-state topologies. As the available energies are increased, hard emission
of this kind is increasingly important, relative to fragmentation, in determining the event
structure.

Two traditional approaches exist to the modelling of perturbative corrections. One is
the matrix-element method, in which Feynman diagrams are calculated, order by order.
In principle, this is the correct approach, which takes into account exact kinematics,
and the full interference and helicity structure. The only problem is that calculations
become increasingly difficult in higher orders, in particular for the loop graphs. Only in
exceptional cases have therefore more than one loop been calculated in full, and often
we do not have any loop corrections at all at our disposal. On the other hand, we have
indirect but strong evidence that, in fact, the emission of multiple soft gluons plays a
significant role in building up the event structure, e.g. at LEP, and this sets a limit to
the applicability of matrix elements. Since the phase space available for gluon emission
increases with the available energy, the matrix-element approach becomes less relevant
for the full structure of events at higher energies. However, the perturbative expansion
is better behaved at higher energy scales, owing to the running of as. As a consequence,
inclusive measurements, e.g. of the rate of well-separated jets, should yield more reliable
results at high energies.

The second possible approach is the parton-shower one. Here an arbitrary number of
branchings of one parton into two (or more) may be combined, to yield a description of
multijet events, with no explicit upper limit on the number of partons involved. This is
possible since the full matrix-element expressions are not used, but only approximations
derived by simplifying the kinematics, and the interference and helicity structure. Parton
showers are therefore expected to give a good description of the substructure of jets, but in
principle the shower approach has limited predictive power for the rate of well-separated
jets (i.e. the 2/3/4/5-jet composition). In practice, shower programs may be matched to
first-order matrix elements to describe the hard-gluon emission region reasonably well, in
particular for the eTe™ annihilation process. Nevertheless, the shower description is not
optimal for absolute o determinations.

Thus the two approaches are complementary in many respects, and both have found
use. However, because of its simplicity and flexibility, the parton-shower option is gener-
ally the first choice, while the matrix elements one is mainly used for «y determinations,
angular distribution of jets, triple-gluon vertex studies, and other specialized studies. Ob-
viously, the ultimate goal would be to have an approach where the best aspects of the
two worlds are harmoniously married. This is currently a topic of quite some study.

2.2.1 Matrix elements

Matrix elements are especially made use of in the older JETSET-originated implementation
of the process eTe™ — +*/Z° — qq.

For initial-state QED radiation, a first order (un-exponentiated) description has been
adopted. This means that events are subdivided into two classes, those where a photon

13

is radiated above some minimum energy, and those without such a photon. In the latter
class, the soft and virtual corrections have been lumped together to give a total event rate
that is correct up to one loop. This approach worked fine at PETRA/PEP energies, but
does not do so well for the Z° line shape, i.e. in regions where the cross section is rapidly
varying and high precision is strived for.

For final-state QCD radiation, several options are available. The default is the parton-
shower one (see below), but the matrix-elements options are also frequently used. In the
definition of 3- or 4-jet events, a cut is introduced whereby it is required that any two
partons have an invariant mass bigger than some fraction of the c.m. energy. 3-jet events
which do not fulfil this requirement are lumped with the 2-jet ones. The first-order matrix-
element option, which only contains 3- and 2-jet events therefore involves no ambiguities.
In second order, where also 4-jets have to be considered, a main issue is what to do with
4-jet events that fail the cuts. Depending on the choice of recombination scheme, whereby
the two nearby partons are joined into one, different 3-jet events are produced. Therefore
the second-order differential 3-jet rate has been the subject of some controversy, and the
program actually contains two different implementations.

By contrast, the normal PYTHIA event generation machinery does not contain any full
higher-order matrix elements, with loop contributions included. There are several cases
where higher-order matrix elements are included at the Born level. Consider the case of
resonance production at a hadron collider, e.g. of a W, which is contained in the lowest-
order process qq@' — W. In an inclusive description, additional jets recoiling against the W
may be generated by parton showers. PYTHIA also contains the two first-order processes
qg — Wq' and qq@’ — Wg. The cross sections for these processes are divergent when the
p1 — 0. In this region a correct treatment would therefore have to take into account loop
corrections, which are not available in PYTHIA.

Even without having these accessible, we know approximately what the outcome
should be. The virtual corrections have to cancel the p; — 0 singularities of the real
emission. The total cross section of W production therefore receives finite O(ag) cor-
rections to the lowest-order answer. These corrections can often be neglected to first
approximation, except when high precision is required. As for the shape of the W p,
spectrum, the large cross section for low-p, emission has to be interpreted as allowing
more than one emission to take place. A resummation procedure is therefore necessary
to have matrix element make sense at small p,. The outcome is a cross section below the
naive one, with a finite behaviour in the p, — 0 limit.

Depending on the physics application, one could then use PYTHIA in one of two
ways. In an inclusive description, which is dominated by the region of reasonably small
p1, the preferred option is lowest-order matrix elements combined with parton showers,
which actually is one way of achieving the required resummation. For W production as
background to some other process, say, only the large-p,; tail might be of interest. Then
the shower approach may be inefficient, since only few events will end up in the interesting
region, while the matrix-element alternative allows reasonable cuts to be inserted from
the beginning of the generation procedure. (One would probably still want to add showers
to describe additional softer radiation, at the cost of some smearing of the original cuts.)
Furthermore, and not less importantly, the matrix elements should give a more precise
prediction of the high-p, event rate than the approximate shower procedure.

In the particular case considered here, that of W production, and a few similar pro-
cesses, actually the shower has been improved by a matching to first-order matrix ele-
ments, thus giving a decent description over the whole p; range. This does not provide
the first-order corrections to the total W production rate, however, nor the possibility to
select only a high-p, tail of events.

14

2.2.2 Parton showers

The separation of radiation into initial- and final-state showers is arbitrary, but very
convenient. There are also situations where it is appropriate: for instance, the process
ete” — Z° — qq only contains final-state QCD radiation (QED radiation, however, is
possible both in the initial and final state), while qq — Z° — e*e™ only contains initial-
state QCD one. Similarly, the distinction of emission as coming either from the q or from
the q is arbitrary. In general, the assignment of radiation to a given mother parton is a
good approximation for an emission close to the direction of motion of that parton, but
not for the wide-angle emission in between two jets, where interference terms are expected
to be important.

In both initial- and final-state showers, the structure is given in terms of branchings
a — be, specifically e — ey, q — qg, ¢ — q7, g — gg, and g — qq. (Further branchings,
like vy — eTe™ and v — (q, could also have been added, but have not yet been of interest.)
Each of these processes is characterized by a splitting kernel P,_;.(z). The branching rate
is proportional to the integral [P,_;.(z)dz. The z value picked for a branching describes
the energy sharing, with daughter b taking a fraction z and daughter ¢ the remaining 1 — 2
of the mother energy. Once formed, the daughters b and ¢ may in turn branch, and so on.

Each parton is characterized by some virtuality scale @2, which gives an approximate
sense of time ordering to the cascade. In the initial-state shower, Q? values are gradually
increasing as the hard scattering is approached, while)? is decreasing in the final-state
showers. Shower evolution is cut off at some lower scale Qy, typically around 1 GeV for
QCD branchings. From above, a maximum scale Q. is introduced, where the showers
are matched to the hard interaction itself. The relation between ()., and the kinematics
of the hard scattering is uncertain, and the choice made can strongly affect the amount
of well-separated jets.

Despite a number of common traits, the initial- and final-state radiation machineries
are in fact quite different, and are described separately below.

Final-state showers are time-like, i.e. partons have m? = E? — p? > 0. The evolution
variable Q% of the cascade is therefore in PYTHIA associated with the m? of the branching
parton, but this choice is not unique. Starting from @2, , an original parton is evolved
downwards in ? until a branching occurs. The selected ? value defines the mass of the
branching parton, and the z of the splitting kernel the parton energy division between
its daughters. These daughters may now, in turn, evolve downwards, in this case with
maximum virtuality already defined by kinematics, and so on down to the)y cut-off.

In QCD showers, corrections to the leading-log picture, so-called coherence effects,
lead to an ordering of subsequent emissions in terms of decreasing angles. This does
not follow automatically from the mass-ordering constraint, but is implemented as an
additional requirement on allowed emissions. Photon emission is not affected by angular
ordering. It is also possible to obtain non-trivial correlations between azimuthal angles in
the various branchings, some of which are implemented as options. Finally, the theoretical
analysis strongly suggests the scale choice ag = o, (p?) = as(2(1 — 2)m?), and this is the
default in the program.

The final-state radiation machinery is normally applied in the c.m. frame of the hard
scattering or a decaying resonance. The total energy and momentum of that subsystem is
preserved, as is the direction of the outgoing partons (in their common rest frame), where
applicable.

In contrast to final-state showers, initial-state ones are space-like. This means that,
in the sequence of branchings a — bc that lead up from the shower initiator to the hard
interaction, particles a and b have m? = E? — p? < 0. The ‘side branch’ particle ¢, which
does not participate in the hard scattering, may be on the mass shell, or have a time-like
virtuality. In the latter case a time-like shower will evolve off it, rather like the final-state
radiation described above. To first approximation, the evolution of the space-like main

15

branch is characterized by the evolution variable * = —m?, which is required to be
strictly increasing along the shower, i.e. Q% > Q. Corrections to this picture have been
calculated, but are basically absent in PYTHIA.

Initial-state radiation is handled within the backwards evolution scheme. In this ap-
proach, the choice of the hard scattering is based on the use of evolved parton distributions,
which means that the inclusive effects of initial-state radiation are already included. What
remains is therefore to construct the exclusive showers. This is done starting from the
two incoming partons at the hard interaction, tracing the showers ‘backwards in time’,
back to the two shower initiators. In other words, given a parton b, one tries to find the
parton a that branched into b. The evolution in the Monte Carlo is therefore in terms
of a sequence of decreasing space-like virtualities Q? and increasing momentum fractions
x. Branchings on the two sides are interleaved in a common sequence of decreasing ()?
values.

In the above formalism, there is no real distinction between gluon and photon emission.
Some of the details actually do differ, as will be explained in the full description.

The initial- and final-state radiation shifts around the kinematics of the original hard
interaction. In Deeply Inelastic Scattering, this means that the z and Q? values that can
be derived from the momentum of the scattered lepton do not automatically agree with
the values originally picked. In high-p, processes, it means that one no longer has two
jets with opposite and compensating p,, but more complicated topologies. Effects of any
original kinematics selection cuts are therefore smeared out, an unfortunate side-effect of
the parton-shower approach.

2.3 Beam Remnants and Multiple Interactions

In a hadron—hadron collision, the initial-state radiation algorithm reconstructs one shower
initiator in each beam. This initiator only takes some fraction of the total beam energy,
leaving behind a beam remnant which takes the rest. For a proton beam, a u quark ini-
tiator would leave behind a ud diquark beam remnant, with an antitriplet colour charge.
The remnant is therefore colour-connected to the hard interaction, and forms part of
the same fragmenting system. It is further customary to assign a primordial transverse
momentum to the shower initiator, to take into account the motion of quarks inside the
original hadron, at least as required by the uncertainty principle by the proton size, prob-
ably augmented by unresolved (i.e. not simulated) soft shower activity. This primordial
k. is selected according to some suitable distribution, and the recoil is assumed to be
taken up by the beam remnant.

Often the remnant is more complicated, e.g. a gluon initiator would leave behind a uud
proton remnant system in a colour octet state, which can conveniently be subdivided into
a colour triplet quark and a colour antitriplet diquark, each of which are colour-connected
to the hard interaction. The energy sharing between these two remnant objects, and their
relative transverse momentum, introduces additional degrees of freedom, which are not
understood from first principles.

Naively, one would expect an ep event to have only one beam remnant, and an eTe™”
event none. This is not always correct, e.g. a 7y — (q interaction in an ete™ event would
leave behind the et and e~ as beam remnants, and a qq — gg interaction in resolved
photoproduction in an e*e~ event would leave behind one e* and one q or q in each
remnant. Corresponding complications occur for photoproduction in ep events.

There is another source of beam remnants. If parton distributions are used to resolve
an electron inside an electron, some of the original energy is not used in the hard in-
teraction, but is rather associated with initial-state photon radiation. The initial-state
shower is in principle intended to trace this evolution and reconstruct the original elec-
tron before any radiation at all took place. However, because of cut-off procedures, some
small amount may be left unaccounted for. Alternatively, you may have chosen to switch

16

off initial-state radiation altogether, but still preserved the resolved electron parton dis-
tributions. In either case the remaining energy is given to a single photon of vanishing
transverse momentum, which is then considered in the same spirit as ‘true’ beam rem-
nants.

So far we have assumed that each event only contains one hard interaction, i.e. that
each incoming particle has only one parton which takes part in hard processes, and that all
other constituents sail through unaffected. This is appropriate in eTe™ or ep events, but
not necessarily so in hadron—-hadron collisions. Here each of the beam particles contains
a multitude of partons, and so the probability for several interactions in one and the
same event need not be negligible. In principle these additional interactions could arise
because one single parton from one beam scatters against several different partons from
the other beam, or because several partons from each beam take place in separate 2 — 2
scatterings. Both are expected, but combinatorics should favour the latter, which is the
mechanism considered in PYTHIA.

The dominant 2 — 2 QCD cross sections are divergent for p; — 0, and drop rapidly
for larger p,. Probably the lowest-order perturbative cross sections will be regularized
at small p; by colour coherence effects: an exchanged gluon of small p; has a large
transverse wave function and can therefore not resolve the individual colour charges of
the two incoming hadrons; it will only couple to an average colour charge that vanishes
in the limit p; — 0. In the program, some effective p i, scale is therefore introduced,
below which the perturbative cross section is either assumed completely vanishing or at
least strongly damped. Phenomenologically, p i, comes out to be a number of the order
of 1.5-2.0 GeV.

In a typical ‘minimum-bias’ event one therefore expects to find one or a few scatterings
at scales around or a bit above p, ., while a high-p; event also may have additional
scatterings at the p i scale. The probability to have several high-p, scatterings in the
same event is small, since the cross section drops so rapidly with p, .

The understanding of multiple interaction is still very primitive. PYTHIA therefore
contains several different options, with a fairly simple one as default. The options differ in
particular on the issue of the ‘pedestal’ effect: is there an increased probability or not for
additional interactions in an event which is known to contain a hard scattering, compared
with one that contains no hard interactions?

2.4 Hadronization

QCD perturbation theory, formulated in terms of quarks and gluons, is valid at short
distances. At long distances, QCD becomes strongly interacting and perturbation theory
breaks down. In this confinement regime, the coloured partons are transformed into
colourless hadrons, a process called either hadronization or fragmentation. In this paper
we reserve the former term for the combination of fragmentation and the subsequent decay
of unstable particles.

The fragmentation process has yet to be understood from first principles, starting from
the QCD Lagrangian. This has left the way clear for the development of a number of
different phenomenological models. Three main schools are usually distinguished, string
fragmentation (SF), independent fragmentation (IF) and cluster fragmentation (CF), but
many variants and hybrids exist. Being models, none of them can lay claims to being
‘correct’, although some may be better founded than others. The best that can be aimed
for is internal consistency, a good representation of existing data, and a predictive power
for properties not yet studied or results at higher energies.

17

2.4.1 String Fragmentation

The original JETSET program is intimately connected with string fragmentation, in the
form of the time-honoured ‘Lund model’. This is the default for all PYTHIA applications,
but independent fragmentation options also exist, for applications where one wishes to
study the importance of string effects.

All current models are of a probabilistic and iterative nature. This means that the
fragmentation process as a whole is described in terms of one or a few simple underlying
branchings, of the type jet — hadron + remainder-jet, string — hadron + remainder-
string, and so on. At each branching, probabilistic rules are given for the production of
new flavours, and for the sharing of energy and momentum between the products.

To understand fragmentation models, it is useful to start with the simplest possible
system, a colour-singlet qq 2-jet event, as produced in e"e™ annihilation. Here lattice
QCD studies lend support to a linear confinement picture (in the absence of dynamical
quarks), i.e. the energy stored in the colour dipole field between a charge and an anticharge
increases linearly with the separation between the charges, if the short-distance Coulomb
term is neglected. This is quite different from the behaviour in QED, and is related to
the presence of a triple-gluon vertex in QCD. The details are not yet well understood,
however.

The assumption of linear confinement provides the starting point for the string model.
As the q and @ partons move apart from their common production vertex, the physical
picture is that of a colour flux tube (or maybe a colour vortex line) being stretched between
the q and the . The transverse dimensions of the tube are of typical hadronic sizes,
roughly 1 fm. If the tube is assumed to be uniform along its length, this automatically
leads to a confinement picture with a linearly rising potential. In order to obtain a Lorentz
covariant and causal description of the energy flow due to this linear confinement, the most
straightforward way is to use the dynamics of the massless relativistic string with no
transverse degrees of freedom. The mathematical, one-dimensional string can be thought
of as parameterizing the position of the axis of a cylindrically symmetric flux tube. From
hadron spectroscopy, the string constant, i.e. the amount of energy per unit length, is
deduced to be k & 1 GeV/fm. The expression ‘massless’ relativistic string is somewhat
of a misnomer: k effectively corresponds to a ‘mass density’ along the string.

Let us now turn to the fragmentation process. As the q and g move apart, the potential
energy stored in the string increases, and the string may break by the production of a
new ¢'q pair, so that the system splits into two colour-singlet systems qq and ¢'q. If the
invariant mass of either of these string pieces is large enough, further breaks may occur.
In the Lund string model, the string break-up process is assumed to proceed until only
on-mass-shell hadrons remain, each hadron corresponding to a small piece of string with
a quark in one end and an antiquark in the other.

In order to generate the quark—antiquark pairs q'q’ which lead to string break-ups, the
Lund model invokes the idea of quantum mechanical tunnelling. This leads to a flavour-
independent Gaussian spectrum for the p, of ¢'q’ pairs. Since the string is assumed to
have no transverse excitations, this p, is locally compensated between the quark and the
antiquark of the pair. The total p, of a hadron is made up out of the p; contributions
from the quark and antiquark that together form the hadron. Some contribution of very
soft perturbative gluon emission may also effectively be included in this description.

The tunnelling picture also implies a suppression of heavy-quark production, u:d:s:
c~1:1:0.3:107. Charm and heavier quarks hence are not expected to be produced
in the soft fragmentation, but only in perturbative parton-shower branchings g — qq.

When the quark and antiquark from two adjacent string breaks are combined to form
a meson, it is necessary to invoke an algorithm to choose between the different allowed
possibilities, notably between pseudoscalar and vector mesons. Here the string model
is not particularly predictive. Qualitatively one expects a 1 : 3 ratio, from counting

18

the number of spin states, multiplied by some wave-function normalization factor, which
should disfavour heavier states.

A tunnelling mechanism can also be used to explain the production of baryons. This
is still a poorly understood area. In the simplest possible approach, a diquark in a
colour antitriplet state is just treated like an ordinary antiquark, such that a string can
break either by quark—antiquark or antidiquark—diquark pair production. A more complex
scenario is the ‘popcorn’ one, where diquarks as such do not exist, but rather quark—
antiquark pairs are produced one after the other. This latter picture gives a less strong
correlation in flavour and momentum space between the baryon and the antibaryon of a
pair.

In general, the different string breaks are causally disconnected. This means that it is
possible to describe the breaks in any convenient order, e.g. from the quark end inwards.
One therefore is led to write down an iterative scheme for the fragmentation, as follows.
Assume an initial quark q moving out along the +z axis, with the antiquark going out
in the opposite direction. By the production of a q;q; pair, a meson with flavour content
qq; is produced, leaving behind an unpaired quark q;. A second pair ¢»q, may now be
produced, to give a new meson with flavours q;qs,, etc. At each step the produced hadron
takes some fraction of the available energy and momentum. This process may be iterated
until all energy is used up, with some modifications close to the @ end of the string in
order to make total energy and momentum come out right.

The choice of starting the fragmentation from the quark end is arbitrary, however.
A fragmentation process described in terms of starting at the @ end of the system and
fragmenting towards the q end should be equivalent. This ‘left-right’ symmetry constrains
the allowed shape of the fragmentation function f(z), where z is the fraction of the
remaining light-cone momentum E =+ p, (+ for the q jet, — for the g one) taken by
each new particle. The resulting ‘Lund symmetric fragmentation function’ has two free
parameters, which are determined from data.

If several partons are moving apart from a common origin, the details of the string
drawing become more complicated. For a qqg event, a string is stretched from the q
end via the g to the @ end, i.e. the gluon is a kink on the string, carrying energy and
momentum. As a consequence, the gluon has two string pieces attached, and the ratio of
gluon to quark string force is 2, a number which can be compared with the ratio of colour
charge Casimir operators, No/Cr = 2/(1 — 1/NZ) = 9/4. In this, as in other respects,
the string model can be viewed as a variant of QCD where the number of colours N¢
is not 3 but infinite. Note that the factor 2 above does not depend on the kinematical
configuration: a smaller opening angle between two partons corresponds to a smaller
string length drawn out per unit time, but also to an increased transverse velocity of the
string piece, which gives an exactly compensating boost factor in the energy density per
unit string length.

The qqg string will fragment along its length. To first approximation this means
that there is one fragmenting string piece between q and g and a second one between g
and q. One hadron is straddling both string pieces, i.e. sitting around the gluon corner.
The rest of the particles are produced as in two simple qq strings, but strings boosted
with respect to the overall c.m. frame. When considered in detail, the string motion
and fragmentation is more complicated, with the appearance of additional string regions
during the time evolution of the system. These corrections are especially important for
soft and collinear gluons, since they provide a smooth transition between events where
such radiation took place and events where it did not. Therefore the string fragmentation
scheme is ‘infrared safe’ with respect to soft or collinear gluon emission.

For events that involve many partons, there may be several possible topologies for
their ordering along the string. An example would be a qqg;gs (the gluon indices are here
used to label two different gluon-momentum vectors), where the string can connect the
partons in either of the sequences q —g; —gs —q and q — g2 — g1 —q. The matrix elements

19

that are calculable in perturbation theory contain interference terms between these two
possibilities, which means that the colour flow is not always well-defined. Fortunately, the
interference terms are down in magnitude by a factor 1/NZ, where No = 3 is the number
of colours, so approximate recipes can be found. In the leading log shower description,
on the other hand, the rules for the colour flow are well-defined.

A final comment: in the argumentation for the importance of colour flows there is
a tacit assumption that soft-gluon exchanges between partons will not normally mess
up the original colour assignment. Colour rearrangement models provide toy scenarios
wherein deviations from this rule could be studied. Of particular interest has been the
process ete™ — WTW~™ — q1q,q3q,, where the original singlets q;q, and q3q, could
be rearranged to q;q, and q3q,. So far, there are no experimental evidence for dramatic
effects of this kind, but the more realistic models predict effects sufficiently small that these
have not been ruled out. Another example of nontrivial effects is that of Bose-Einstein
correlations between identical final-state particles, which reflect the true quantum nature
of the hadronization process.

2.4.2 Decays

A large fraction of the particles produced by fragmentation are unstable and subsequently
decay into the observable stable (or almost stable) ones. It is therefore important to in-
clude all particles with their proper mass distributions and decay properties. Although
involving little deep physics, this is less trivial than it may sound: while a lot of ex-
perimental information is available, there is also very much that is missing. For charm
mesons, it is necessary to put together measured exclusive branching ratios with some
inclusive multiplicity distributions to obtain a consistent and reasonably complete set of
decay channels, a rather delicate task. For bottom even less is known, and for some B
baryons only a rather simple phase-space type of generator has been used for hadronic
decays.

Normally it is assumed that decay products are distributed according to phase space,
i.e. that there is no dynamics involved in their relative distribution. However, in many
cases additional assumptions are necessary, e.g. for semileptonic decays of charm and
bottom hadrons one needs to include the proper weak matrix elements. Particles may
also be produced polarized and impart a non-isotropic distribution to their decay products.
Many of these effects are not at all treated in the program. In fact, spin information is
not at all carried along, but has to be reconstructed explicitly when needed.

This normal decay treatment makes use of a set of tables where branching ratios
and decay modes are stored. It encompasses all hadrons made out of d, u, s, ¢ and b
quarks, and also the leptons. The decay products are hadrons, leptons and photons.
Some bb states are sufficiently heavy that they are allowed to decay to partonic states,
like T — ggg, which subsequently fragment, but these are exceptions.

You may at will change the particle properties, decay channels or branching ratios of
the above particles. There is no censorship what is allowed or not allowed, beyond energy—
momentum and (electrical and colour) charge conservation. There is also no impact e.g. on
the cross section of processes, since there is no way of knowing e.g. if the restriction to one
specific decay of a particle is because that decay is of particular interest to us, or because
recent measurement have shown that this indeed is the only channel. Furthermore, the
number of particles produced of each species in the hadronization process is not known
beforehand, and so cannot be used to correctly bias the preceding steps of the generation
chain. All of this contrasts with the class of ‘resonances’ described above, in section 2.1.2.

20

3 Program Overview

This section contains a diverse collection of information. The first part is an overview of
previous JETSET and PYTHIA versions. The second gives instructions for installation of
the program and describes its philosophy: how it is constructed and how it is supposed
to be used. It also contains some information on how to read this manual. The third and
final part contains several examples of pieces of code or short programs, to illustrate the
general style of program usage. This last part is mainly intended as an introduction for
completely new users, and can be skipped by more experienced ones.

The combined PYTHIA package is completely self-contained. Interfaces to externally
defined subprocesses, parton-distribution function libraries, 7 decay libraries, and a time
routine are provided, however, plus a few other optional interfaces.

Many programs written by other persons make use of PYTHIA, especially the string
fragmentation machinery. It is not the intention to give a complete list here. A majority of
these programs are specific to given collaborations, and therefore not publicly distributed.
Below we give a list of a few public programs from the ‘Lund group’, which may have a
somewhat wider application. None of them are supported by the PYTHIA author team,
so any requests should be directed to the persons mentioned.

e ARIADNE is a generator for dipole emission, written mainly by L. Lénnblad |].

e AROMA is a generator for heavy-flavour processes in leptoproduction, written by

G. Ingelman and G. Schuler |].

e FRITIOF is a generator for hadron-hadron, hadron-nucleus and nucleus—nucleus

collisions |].

e LEPTO is a leptoproduction event generator, written mainly by G. Ingelman [].

It can generate parton configurations in Deeply Inelastic Scattering according to a
number of possibilities.

e POMPYT is a generator for pomeron interactions written by G. Ingelman and col-

laborators |].
One should also note that a version of PYTHIA has been modified to include the effects
of longitudinally polarized incoming protons. This is the work of St. Giillenstern et al.

[

3.1 Update History

For the record, in Tables 1 and 2 we list the official main versions of JETSET and PYTHIA,
respectively, with some brief comments.

All versions preceding PYTHIA 6.1 should now be considered obsolete, and are no
longer maintained. For stable applications, the earlier combination JETSET 7.4 and
PyYTHIA 5.7 could still be used, however. (A note on backwards compatibility: per-
sons who have code that relies on the old /LUJETS/ single precision commonblock could
easily write a translation routine to copy the /PYJETS/ double precision information to
/LUJETS/. In fact, among the old JETSET 7 routines, only LUGIVE and LULOGO routines
have access to some PYTHIA commonblocks, and therefore these are the only ones that
need to be modified if one, for some reason, would like to combine PYTHIA 6 with the old
JETSET 7 routines.)

The move from JETSET 7.4 and PYTHIA 5.7 to PYTHIA 6.1 was a major one. For
reasons of space, individual points are therefore not listed separately below, but only the
main ones. The PYTHIA web page contains complete update notes, where all changes are
documented by topic and subversion.

The main new features of PYTHIA 6.1, either present from the beginning or added
later on, include:

e PYTHIA and JETSET have been merged.

21

Table 1: The main versions of JETSET, with their date of appearance, published
manuals, and main changes from previous versions.

No. | Date Publ. | Main new or improved features

1 | Nov 78 | [Sj078] | single-quark jets

May 79 | [Sj679] | heavy-flavour jets

3.1 | Aug 79 — 2-jets in eTe™, preliminary 3-jets

3.2 | Apr 80 | [5)080] | 3-jets in eTe™ with full matrix elements,
toponium — ggg decays

3.3 | Aug 80 — softer fragmentation spectrum

4.1 | Apr 81 — baryon production and diquark fragmentation,
fourth-generation quarks, larger jet systems

4.2 | Nov 81 — low-p, physics

4.3 | Mar 82 | [Sjo82] | 4-jets and QFD structure in ete™,

Jul 82 | [Sj083] | event-analysis routines

5.1 | Apr 83 — improved string fragmentation scheme, symmetric
fragmentation, full 2"¢ order QCD for ete™

5.2 | Nov 83 — momentum-conservation schemes for IF,
initial-state photon radiation in ete™

5.3 | May 84 — ‘popcorn’ model for baryon production

6.1 | Jan 85 — common blocks restructured, parton showers

6.2 | Oct 85 | [5j086] | error detection

6.3 | Oct 86 | [5j087] | new parton-shower scheme

7.1 | Feb 89 — new particle codes and common block structure,

more mesons, improved decays, vertex information,
Abelian gluon model, Bose-Einstein effects

7.2 | Nov 89 — interface to new standard common block,

photon emission in showers

7.3 | May 90 | [5j092d] | expanded support for non-standard particles

7.4 | Dec 93 | [5j094] | updated particle data and defaults

e All real variables are declared in double precision.
e The internal mapping of particle codes has changed.

e The supersymmetric process machinery of SPYTHIA has been included and further

improved, with several new processes.

e Many new processes of beyond-the-standard-model physics, in areas such as techni-

color and doubly-charged Higgses.

e An expanded description of QCD processes in virtual-photon interactions, combined

with a new machinery for the flux of virtual photons from leptons.

e Initial-state parton showers are matched to the next-to-leading order matrix ele-

ments for gauge boson production.

e Final-state parton showers are matched to a number of different first-order matrix

elements for gluon emission, including full mass dependence.

e The hadronization description of low-mass strings has been improved, with conse-

quences especially for heavy-flavour production.

22

Table 2: The main versions of PYTHIA, with their date of appearance, published
manuals, and main changes from previous versions.

No. | Date Publ. Main new or improved features

1 | Dec 82 | [Ben&4] | synthesis of predecessors COMPTON, HIGHPT and
KASSANDRA

2 I
3.1 —
3.2 —
3.3 | Feb 84 | [Ben84a] | scale-breaking parton distributions
3.4 | Sep 84 | [Ben85] | more efficient kinematics selection

4.1 | Dec 84 initial- and final-state parton showers, W and Z
4.2 | Jun 85 multiple interactions

4.3 | Aug 85 WW, WZ, Z7Z and R processes

4.4 | Nov 85 YW, vZ, v processes

4.5 | Jan 86 H° production, diffractive and elastic events

4.6 | May 86 angular correlation in resonance pair decays

4.7 | May 86 7"° and HT processes

4.8 | Jan 87 | [Ben&7] | variable impact parameter in multiple interactions
4.9 | May 87 gH™ process

5.1 | May 87 massive matrix elements for heavy quarks

5.2 | Jun 87 intermediate boson scattering

5.3 | Oct 89 new particle and subprocess codes, new common block

structure, new kinematics selection, some
lepton—lepton and lepton-hadron interactions,

new subprocesses

5.4 | Jun 90 s-dependent widths, resonances not on the mass shell,
new processes, new parton distributions

5.5 | Jan 91 improved e*e™ and ep, several new processes

5.6 | Sep 91 | [5j092d] | reorganized parton distributions, new processes,
user-defined external processes

5.7 | Dec 93 | [5)0941] | new total cross sections, photoproduction, top decay
6.1 | Mar 97 | [Sjo01] | merger with JETSET, double precision, supersymmetry,
technicolor, extra dimensions, etc. new processes,
improved initial- and final-state showers,

baryon production, virtual photon processes

6.1 | Aug 01 this user processes, lepton number violation

23

e An alternative baryon production model has been introduced.

e Colour rearrangement is included as a new option, and several alternative Bose-
Einstein descriptions are added.

By comparison, the move from PYTHIA 6.1 to PYTHIA 6.2 was rather less dramatic.
Again update notes tell the full story. Some of the main new features, which partly break
backwards compatibility, are:

e A new machinery to handle user-defined external processes, according to the stan-
dard in []. The old machinery is no longer available. Some of the alternatives
for the FRAME argument in the PYINIT call have also been renamed to make way for
a new ’USER’ option.

e The maximum size of the decay channel table has been increased from 4000 to 8000,
affecting the MDME, BRAT and KFDP arrays in the PYDAT3 common block.

e Lepton-number-violating decay channels have been included for supersymmetric
particles | |. Thus the decay tables have grown considerably longer.

e The PYSHOW timelike showering routine has been expanded to allow showering inside
systems consisting of up to seven particles, which can be made use of in some
resonance decays and in user-defined processes.

e Some exotic particles and QCD effective states have been moved from temporary
flavour codes to a PDG-consistent naming, and a few new codes have been intro-
duced.

e The maximum number of documentation lines in the beginning of the event record
has been expanded from 50 to 100.

e The default parton distribution set for the proton is now CTEQ 5L.

e The default Standard Model Higgs mass has been changed to 115 GeV.

3.2 Program Installation

The PYTHIA ‘master copy’ is the one found on the web page

http://www.thep.lu.se/~torbjorn/Pythia.html

There you have, for several subversions xx:

pythia62xx.f the PYTHIA 6.2xx code,
pythia62xx.tex this PYTHIA manual, and
pythia62xx.update plain text update notes to the manual.

In addition to these, one may also find older versions of the program and manuals, sample
main programs and other pieces of related software, and other physics papers.

The program is written essentially entirely in standard Fortran 77, and should run on
any platform with such a compiler. To a first approximation, program compilation should
therefore be straightforward.

Unfortunately, experience with many different compilers has been uniform: the op-
tions available for obtaining optimized code may actually produce erroneous code (e.g.
operations inside DO loops are moved out before them, where some of the variables have
not yet been properly set). Therefore the general advice is to use a low optimization level.
Note that this is often not the default setting.

SAVE statements have been included in accordance with the Fortran standard.

All default settings and particle and process data are stored in BLOCK DATA PYDATA.
This subprogram must be linked for a proper functioning of the other routines. On some
platforms this is not done automatically but must be forced by you, e.g. by having a line

EXTERNAL PYDATA

24

at the beginning of your main program. This applies in particular if PYTHIA is main-
tained as a library from which routines are to be loaded only when they are needed. In
this connection we note that the library approach does not give any significant space
advantages over a loading of the packages as a whole, since a normal run will call on most
of the routines anyway, directly or indirectly.

With the move towards higher energies, e.g. for LHC applications, single-precision (32
bit) real arithmetic has become inappropriate. Therefore a declaration IMPLICIT DOUBLE
PRECISION(A-H,0-Z) at the beginning of each subprogram is inserted to ensure double-
precision (64 bit) real arithmetic. Remember that this also means that all calls to PyTHIA
routines have to be done with real variables declared correspondingly in the user-written
calling program. An IMPLICIT INTEGER(I-N) is also included to avoid problems on some
compilers. Integer functions beginning with PY have to be declared explicitly. In total,
therefore all routines begin with

C...Double precision and integer declaratiomns.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

and you are recommended to do the same in your main programs. Note that, in running
text and in description of commonblock default valuess, the more cumbersome double-
precision notation is not always made explicit, but code examples should be correct.

On a machine where DOUBLE PRECISION would give 128 bits, it may make sense to
use compiler options to revert to 64 bits, since the program is anyway not constructed to
make use of 128 bit precision.

Fortran 77 makes no provision for double-precision complex numbers. Therefore com-
plex numbers have been used only sparingly. However, some matrix element expressions,
mainly for supersymmetric and technicolor processes, simplify considerably when written
in terms of complex variables. In order to achieve a uniform precision, such variables
have been declared COMPLEX*16, and are manipulated with functions such as DCMPLX
and DCONJG. Affected are PYSIGH, PYWIDT and several of the supersymmetry routines.
Should the compiler not accept this deviation from the standard, or some simple equiv-
alent thereof (like DOUBLE COMPLEX instead of COMPLEX*16) these code pieces could be
rewritten to ordinary COMPLEX, also converting the real numbers involved to and from
single precision, with some drop in accuracy for the affected processes. PYRESD already
contains some ordinary COMPLEX variables, and should not cause any problems.

Several compilers report problems when an odd number of integers precede a double-
precision variable in a commonblock. Therefore an extra integer has been introduced as
padding in a few instances, e.g. NPAD, MSELPD and NGENPD.

Since Fortran 77 provides no date-and-time routine, PYTIME allows a system-specific
routine to be interfaced, with some commented-out examples given in the code. This
routine is only used for cosmetic improvements of the output, however, so can be left at
the default with time 0 given.

A test program, PYTEST, is included in the PYTHIA package. It is disguised as a
subroutine, so you have to run a main program

CALL PYTEST(1)
END

This program will generate over a thousand events of different types, under a variety of
conditions. If PYTHIA has not been properly installed, this program is likely to crash, or
at least generate a number of erroneous events. This will then clearly be marked in the
output, which otherwise will just contain a few sample event listings and a table of the
number of different particles produced. To switch off the output of normal events and

25

final table, use PYTEST (0) instead of PYTEST(1). The final tally of errors detected should
read 0.

For a program written to run PYTHIA 5 and JETSET 7, most of the conversion required
for PYTHIA 6 is fairly straightforward, and can be automatized. Both a simple Fortran
routine and a more sophisticated Perl | | script exist to this end, see the PYTHIA
web page. Some manual checks and interventions may still be required.

3.3 Program Philosophy

The Monte Carlo program is built as a slave system, i.e. you, the user, have to supply
the main program. From this the various subroutines are called on to execute specific
tasks, after which control is returned to the main program. Some of these tasks may be
very trivial, whereas the ‘high-level’ routines by themselves may make a large number of
subroutine calls. Many routines are not intended to be called directly by you, but only
from higher-level routines such as PYEXEC, PYEEVT, PYINIT or PYEVNT.

Basically, this means that there are three ways by which you communicate with the
programs. First, by setting common block variables, you specify the details of how the
programs should perform specific tasks, e.g. which subprocesses should be generated,
which particle masses should be assumed, which coupling constants used, which fragmen-
tation scenarios, and so on with hundreds of options and parameters. Second, by calling
subroutines you tell the programs to generate events according to the rules established
above. Normally there are few subroutine arguments, and those are usually related to
details of the physical situation, such as what c.m. energy to assume for events. Third,
you can either look at the common block PYJETS to extract information on the generated
event, or you can call on various functions and subroutines to analyse the event further
for you.

It should be noted that, while the physics content is obviously at the centre of at-
tention, the PYTHIA package also contains a very extensive setup of auxiliary service
routines. The hope is that this will provide a comfortable working environment, where
not only events are generated, but where you also linger on to perform a lot of the subse-
quent studies. Of course, for detailed studies, it may be necessary to interface the output
directly to a detector simulation program.

The general rule is that all routines have names that are six characters long, beginning
with PY. There are three exceptions the length rules: PYK, PYP and PYR. The former two
functions are strongly coupled to the K and P matrices in the PYJETS common block, the
latter is very frequently used. Also common block names are six characters long and start
with PY. There are three integer functions, PYK,PYCHGE and PYCOMP. In all routines where
they are to be used, they have to be declared INTEGER.

On the issue of initialization, the routines of different origin and functionality behave
quite differently. Routines that are intended to be called from many different places, such
as showers, fragmentation and decays, require no specific initialization (except for the
one implied by the presence of BLOCK DATA PYDATA, see above), i.e. each event and each
task stands on its own. Current common block values are used to perform the tasks in
specific ways, and those rules can be changed from one event to the next (or even within
the generation of one and the same event) without any penalty. The random-number
generator is initialized at the first call, but usually this is transparent.

In the core process generation machinery (e.g. selection of the hard process kinematics),
on the other hand, a sizeable amount of initialization is performed in the PYINIT call, and
thereafter the events generated by PYEVNT all obey the rules established at that point.
This improves the efficiency of the generation process, and also ties in with the Monte
Carlo integration of the process cross section over many events. Therefore common block
variables that specify methods and constraints to be used have to be set before the PYINIT
call and then not be changed afterwards, with few exceptions. Of course, it is possible

26

to perform several PYINIT calls in the same run, but there is a significant time overhead
involved, so this is not something one would do for each new event. The two older separate
process generation routines PYEEVT (and some of the routines called by it) and PYONIA
also contain some elements of initialization, where there are a few advantages if events are
generated in a coherent fashion. The cross section is not as complicated here, however, so
the penalty for reinitialization is small, and also does not require any special user calls.

Apart from writing a title page, giving a brief initialization information, printing error
messages if need be, and responding to explicit requests for listings, all tasks of the
program are performed ‘silently’. All output is directed to unit MSTU(11), by default 6,
and it is up to you to set this unit open for write. The only exceptions are PYRGET, PYRSET
and PYUPDA where, for obvious reasons, the input/output file number is specified at each
call. Here you again have to see to it that proper read/write access is set.

The programs are extremely versatile, but the price to be paid for this is having a
large number of adjustable parameters and switches for alternative modes of operation.
No single user is ever likely to need more than a fraction of the available options. Since
all these parameters and switches are assigned sensible default values, there is no reason
to worry about them until the need arises.

Unless explicitly stated (or obvious from the context) all switches and parameters can
be changed independently of each other. One should note, however, that if only a few
switches/parameters are changed, this may result in an artificially bad agreement with
data. Many disagreements can often be cured by a subsequent retuning of some other
parameters of the model, in particular those that were once determined by a comparison
with data in the context of the default scenario. For example, for ete™ annihilation, such
a retuning could involve one QCD parameter (g or A), the longitudinal fragmentation
function, and the average transverse momentum in fragmentation.

The program contains a number of checks that requested processes have been imple-
mented, that flavours specified for jet systems make sense, that the energy is sufficient to
allow hadronization, that the memory space in PYJETS is large enough, etc. If anything
goes wrong that the program can catch (obviously this may not always be possible), an
error message will be printed and the treatment of the corresponding event will be cut
short. In serious cases, the program will abort. As long as no error messages appear on
the output, it may not be worthwhile to look into the rules for error checking, but if but
one message appears, it should be enough cause for alarm to receive prompt attention.
Also warnings are sometimes printed. These are less serious, and the experienced user
might deliberately do operations which go against the rules, but still can be made to
make sense in their context. Only the first few warnings will be printed, thereafter the
program will be quiet. By default, the program is set to stop execution after ten errors,
after printing the last erroneous event.

It must be emphasized that not all errors will be caught. In particular, one tricky ques-
tion is what happens if an integer-valued common block switch or subroutine/function
argument is used with a value that is not defined. In some subroutine calls, a prompt
return will be expedited, but in most instances the subsequent action is entirely unpre-
dictable, and often completely haywire. The same goes for real-valued variables that are
assigned values outside the physically sensible range. One example will suffice here: if
PARJ(2) is defined as the s/u suppression factor, a value > 1 will not give more profuse
production of s than of u, but actually a spillover into ¢ production. Users, beware!

3.4 Manual Conventions

In the manual parts of this report, some conventions are used. All names of subprograms,
common blocks and variables are given in upper-case ‘typewriter’ style, e.g. MSTP(111)=0.
Also program examples are given in this style.

If a common block variable must have a value set at the beginning of execution, then

27

a default value is stored in the block data subprogram PYDATA. Such a default value is
usually indicated by a ‘(D=...)" immediately after the variable name, e.g.
MSTJ(1) : (D=1) choice of fragmentation scheme.

All variables in the fragmentation-related common blocks (with very few exceptions,
clearly marked) can be freely changed from one event to the next, or even within the
treatment of one single event; see discussion on initialization in the previous section. In
the process generation machinery common blocks the situation is more complicated. The
values of many switches and parameters are used already in the PYINIT call, and cannot
be changed after that. The problem is mentioned in the preamble to the afflicted common
blocks, which in particular means /PYPARS/ and /PYSUBS/. For the variables which may
still be changed from one event to the next, a ‘(C)’ is added after the ‘(D=...)" statement.

Normally, variables internal to the program are kept in separate common blocks and
arrays, but in a few cases such internal variables appear among arrays of switches and
parameters, mainly for historical reasons. These are denoted by ‘(R)’ for variables you
may want to read, because they contain potentially interesting information, and by ‘(I)’
for purely internal variables. In neither case may the variables be changed by you.

In the description of a switch, the alternatives that this switch may take are often
enumerated, e.g.

MSTJ(1) : (D=1) choice of fragmentation scheme.

=0 : no jet fragmentation at all.

=1: string fragmentation according to the Lund model.

=2 independent fragmentation, according to specification in MSTJ(2) and
MSTJ(3).

If you then use any value other than 0, 1 or 2, results are undefined. The action could
even be different in different parts of the program, depending on the order in which the
alternatives are identified.

It is also up to you to choose physically sensible values for parameters: there is no
check on the allowed ranges of variables. We gave an example of this at the end of the
preceding section.

Subroutines you are expected to use are enclosed in a box at the point where they are
defined:

CALL PYLIST(MLIST)

This is followed by a description of input or output parameters. The difference between
input and output is not explicitly marked, but should be obvious from the context. In
fact, the event-analysis routines of section 15.5 return values, while all the rest only have
input variables.

Routines that are only used internally are not boxed in. However, we use boxes for all
common blocks, so as to enhance the readability.

In running text, often specific switches and parameters will be mentioned, without a
reference to the place where they are described further. The Index at the very end of the
document allows you to find this place. Tables 3 and 4 gives a brief summary of almost
all common blocks and the variables stored there. Often names for switches begin with
MST and parameters with PAR. No common block variables begin with PY. There is thus
no possibility to confuse an array element with a function or subroutine call.

3.5 Getting Started with the Simple Routines

Normally PYTHIA is expected to take care of the full event generation process. At times,
however, one may want to access the more simple underlying routines, which allow a large

28

Table 3: An almost complete list of common blocks, with brief comments on their
main functions. The listing continues in Table 4.

...The event record.
COMMON/PYJETS/N,NPAD,K (4000,5) ,P(4000,5) ,V(4000,5)

. .Parameters.
COMMON/PYDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)

..Particle properties + some flavour parameters.
COMMON/PYDAT2/KCHG(500,4) ,PMAS(500,4) ,PARF(2000) ,VCKM(4,4)

. .Decay information.
COMMON/PYDAT3/MDCY (500, 3) ,MDME (8000,2) ,BRAT(8000) ,KFDP (8000,5)

..Particle names
COMMON/PYDAT4/CHAF (500, 2)
CHARACTER CHAF*16

. .Random number generator information.
COMMON/PYDATR/MRPY (6) ,RRPY (100)

..Selection of hard scattering subprocesses.
COMMON/PYSUBS/MSEL ,MSELPD ,MSUB(500) ,KFIN(2,-40:40) ,CKIN(200)

. .Parameters.
COMMON/PYPARS/MSTP (200) ,PARP (200) ,MSTI (200) ,PARI(200)

..Internal variables.
COMMON/PYINT1/MINT(400) ,VINT (400)

..Process information.
COMMON/PYINT2/ISET(500) ,KFPR(500,2) ,COEF(500,20),IC0OL(40,4,2)

..Parton distributions and cross sections.
COMMON/PYINT3/XSFX(2,-40:40) ,ISIG(1000,3),SIGH(1000)

. .Resonance width and secondary decay treatment.
COMMON/PYINT4/MWID(500) ,WIDS(500,5)

..Generation and cross section statistics.
COMMON/PYINT5/NGENPD,NGEN (0:500,3) ,XSEC(0:500,3)

. .Process names.
COMMON/PYINT6/PROC(0:500)
CHARACTER PROC*28

..Total cross sectiomns.
COMMON/PYINT7/SIGT(0:6,0:6,0:5)

. .Photon parton distributions: total and valence only.
COMMON/PYINT8/XPVMD(-6:6) ,XPANL(-6:6) ,XPANH(-6:6) ,XPBEH(-6:6) ,
&XPDIR(-6:6)
COMMON/PYINT9/VXPVMD(-6:6) ,VXPANL(-6:6) ,VXPANH(-6:6) ,VXPDGM(-6:6)

. .Supersymmetry parameters.
COMMON/PYMSSM/IMSS(0:99) ,RMSS(0:99)

. .Supersymmetry mixing matrices.
COMMON/PYSSMT/ZMIX (4,4) ,UMIX(2,2) ,VMIX(2,2),SMZ(4),SMW(2),
&SFMIX(16,4) ,ZMIXI(4,4) ,UMIXI(2,2),VMIXI(2,2)

..R-parity-violating couplings in supersymmetry.
COMMON/PYMSRV/RVLAM(3,3,3), RVLAMP(3,3,3), RVLAMB(3,3,3)

..Internal parameters for R-parity-violating processes.
COMMON/PYRVNV/AB(2,16,2) ,RMS(0:3) ,RES(6,5) ,IDR,IDR2,DCMASS,KFR(3)
COMMON/PYRVPM/RM(0:3) ,A(2) ,B(2) ,RESM(2) ,RESW(2) ,MFLAG
LOGICAL MFLAG

29

Table 4: Continuation of Table 3.

C...Parameters for Gauss integration of supersymmetric widths.
COMMON/PYINTS/XXM(20)
COMMON/PYG2DX/X1
C...Histogram information.
COMMON/PYBINS/IHIST(4) ,INDX(1000),BIN(20000)
C...HEPEVT commonblock.
PARAMETER (NMXHEP=4000)
COMMON/HEPEVT/NEVHEP , NHEP , ISTHEP (NMXHEP) , IDHEP (NMXHEP) ,
&JMOHEP (2, NMXHEP) , JDAHEP (2, NMXHEP) , PHEP (5, NMXHEP) , VHEP (4 , NMXHEP)
DOUBLE PRECISION PHEP,VHEP
C...User process initialization commonblock.
INTEGER MAXPUP
PARAMETER (MAXPUP=100)
INTEGER IDBMUP,PDFGUP,PDFSUP,IDWTUP,NPRUP,LPRUP
DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP
COMMON/HEPRUP/IDBMUP (2) ,EBMUP (2) ,PDFGUP (2) ,PDFSUP(2),
&IDWTUP ,NPRUP, XSECUP (MAXPUP) , XERRUP (MAXPUP) , XMAXUP (MAXPUP) ,
&LPRUP (MAXPUP)
C...User process event common block.
INTEGER MAXNUP
PARAMETER (MAXNUP=500)
INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP
DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP
COMMON/HEPEUP/NUP , IDPRUP , XWGTUP , SCALUP , AQEDUP , AQCDUP, IDUP (MAXNUP) ,
&ISTUP (MAXNUP) ,MOTHUP (2,MAXNUP) , ICOLUP(2,MAXNUP) ,PUP(5,MAXNUP) ,
&VTIMUP (MAXNUP) , SPINUP (MAXNUP)

flexibility to ‘do it yourself’. We therefore start with a few cases of this kind, at the same
time introducing some of the more frequently used utility routines.

As a first example, assume that you want to study the production of utu 2-jet systems
at 20 GeV energy. To do this, write a main program

IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
CALL PY2ENT(0,2,-2,20D0)

CALL PYLIST(1)

END

and run this program, linked together with PyTHIA. The routine PY2ENT is specifically
intended for storing two entries (partons or particles). The first argument (0) is a com-
mand to perform fragmentation and decay directly after the entries have been stored, the
second and third that the two entries are u (2) and @ (—2), and the last that the c.m.
energy of the pair is 20 GeV, in double precision. When this is run, the resulting event is
stored in the PYJETS common block. This information can then be read out by you. No
output is produced by PY2ENT itself, except for a title page which appears once for every
PYTHIA run.

Instead the second command, to PYLIST, provides a simple visible summary of the
information stored in PYJETS. The argument (1) indicates that the short version should
be used, which is suitable for viewing the listing directly on an 80-column terminal screen.
It might look as shown here.

Event listing (summary)

30

I particle/jet KS KF orig p_x pP_y p_z E m

1 (w A 12 2 0 0.000 0.000 10.000 10.000 0.006

2 (ubar) v 11 -2 0O 0.000 0.000 -10.000 10.000 0.006

3 (string) 11 92 1 0.000 0.000 0.000 20.000 20.000

4 (rho+) 11 213 3 0.098 -0.154 2.710 2.856 0.885

5 (rho-) 11 -213 3 -0.227 0.145 6.538 6.590 0.781

6 pi+ 1 211 3 0.1256 -0.266 0.097 0.339 0.140

7 (Sigma0) 11 3212 3 -0.254 0.034 -1.397 1.855 1.193

8 (Kx+) 11 323 3 -0.124 0.709 -2.753 2.968 0.846

9 p’- 1 -2212 3 0.395 -0.614 -3.806 3.988 0.938

10 pi- 1 -211 3 -0.013 0.146 -1.389 1.403 0.140
11 pi+ 1 211 4 0.109 -0.456 2.164 2.218 0.140
12 (pi0) 11 111 4 -0.011 0.301 0.546 0.638 0.135
13 pi- 1 -211 5 0.089 0.343 2.089 2.124 0.140
14 (pi0) 11 111 5 -0.316 -0.197 4.449 4.467 0.135
15 (LambdaO) 11 3122 7 -0.208 0.014 -1.403 1.804 1.116
16 gamma 1 22 7 -0.046 0.020 0.006 0.050 0.000
17 K+ 1 321 8 -0.084 0.299 -2.139 2.217 0.494
18 (pi0) 11 111 8 -0.040 0.410 -0.614 0.751 0.135
19 gamma 1 22 12 0.059 0.146 0.224 0.274 0.000
20 gamma 1 22 12 -0.070 0.155 0.322 0.364 0.000
21 gamma 1 22 14 -0.322 -0.162 4.027 4.043 0.000
22 gamma 1 22 14 0.006 -0.035 0.422 0.423 0.000
23 p+ 1 2212 15 -0.178 0.033 -1.343 1.649 0.938
24 pi- 1 -211 15 -0.030 -0.018 -0.059 0.156 0.140
25 gamma 1 22 18 -0.006 0.384 -0.585 0.699 0.000
26 gamma 1 22 18 -0.034 0.026 -0.029 0.052 0.000
sum: 0.00 0.000 0.000 0.000 20.000 20.000

(A few blanks have been removed between the columns to make it fit into the format
of this text.) Look in the particle/jet column and note that the first two lines are the
original u and u. The parentheses enclosing the names, ‘(u)’ and ‘(ubar)’, are there as
a reminder that these partons actually have been allowed to fragment. The partons are
still retained so that event histories can be studied. Also note that the KF (flavour code)
column contains 2 in the first line and —2 in the second. These are the codes actually
stored to denote the presence of a u and a 1, cf. the PY2ENT call, while the names written
are just conveniences used when producing visible output. The A and V near the end of the
particle/jet column indicate the beginning and end of a string (or cluster, or independent
fragmentation) parton system; any intermediate entries belonging to the same system
would have had an I in that column. (This gives a poor man’s representation of an
up-down arrow, [.)

In the orig (origin) column, the zeros indicate that u and U are two initial entries.
The subsequent line, number 3, denotes the fragmenting ut string system as a whole, and
has origin 1, since the first parton of this string system is entry number 1. The particles
in lines 4-10 have origin 3 to denote that they come directly from the fragmentation of
this string. In string fragmentation it is not meaningful to say that a particle comes from
only the u quark or only the U one. It is the string system as a whole that gives a p™, a
p,ant,aX aK ap, and a 7. Note that some of the particle names are again
enclosed in parentheses, indicating that these particles are not present in the final state
either, but have decayed further. Thus the 7~ in line 13 and the 7% in line 14 have origin
5, as an indication that they come from the decay of the p~ in line 5. Only the names
not enclosed in parentheses remain at the end of the fragmentation/decay chain, and

31

are thus experimentally observable. The actual status code used to distinguish between
different classes of entries is given in the KS column; codes in the range 1-10 correspond
to remaining entries, and those above 10 to those that have fragmented or decayed.

The columns with p_x, p_y, p-z, E and m are quite self-explanatory. All momenta,
energies and masses are given in units of GeV, since the speed of light is taken to be ¢ = 1.
Note that energy and momentum are conserved at each step of the fragmentation/decay
process (although there exist options where this is not true). Also note that the z axis
plays the role of preferred direction, along which the original partons are placed. The final
line is intended as a quick check that nothing funny happened. It contains the summed
charge, summed momentum, summed energy and invariant mass of the final entries at the
end of the fragmentation/decay chain, and the values should agree with the input implied
by the PY2ENT arguments. (In fact, warnings would normally appear on the output if
anything untoward happened, but that is another story.)

The above example has illustrated roughly what information is to be had in the event
record, but not so much about how it is stored. This is better seen by using a 132-column
format for listing events. Try e.g. the following program

IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
CALL PY3ENT(0,1,21,-1,30D0,0.9D0,0.7D0)
CALL PYLIST(2)

CALL PYEDIT(3)

CALL PYLIST(2)

END

where a 3-jet dgd event is generated in the first executable line and listed in the second.
This listing will contain the numbers as directly stored in the common block PYJETS

COMMON/PYJETS/N,NPAD, K (4000,5) ,P(4000,5),V(4000,5)

For particle I, K(I,1) thus gives information on whether or not a parton or particle has
fragmented or decayed, K(I,2) gives the particle code, K(I,3) its origin, K(I,4) and
K(I,5) the position of fragmentation/decay products, and P(I,1)-P(I,5) momentum,
energy and mass. The number of lines in current use is given by N, i.e. 1 < I < N. The
V matrix contains decay vertices; to view those PYLIST(3) has to be used. NPAD is a
dummy, needed to avoid some compiler troubles. It is important to learn the rules for
how information is stored in PYJETS.

The third executable line in the program illustrates another important point about
PYTHIA: a number of routines are available for manipulating and analyzing the event
record after the event has been generated. Thus PYEDIT (3) will remove everything except
stable charged particles, as shown by the result of the second PYLIST call. More advanced
possibilities include things like sphericity or clustering routines. PYTHIA also contains
some simple routines for histogramming, used to give self-contained examples of analysis
procedures.

Apart from the input arguments of subroutine calls, control on the doings of PYTHIA
may be imposed via many common blocks. Here sensible default values are always pro-
vided. A user might want to switch off all particle decays by putting MSTJ(21)=0 or
increase the s/u ratio in fragmentation by putting PARJ(2)=0.40D0, to give but two ex-
amples. It is by exploring the possibilities offered here that PYTHIA can be turned into
an extremely versatile tool, even if all the nice physics is already present in the default
values.

As a final, semi-realistic example, assume that the p; spectrum of 7 particles is to
be studied in 91.2 GeV ete™ annihilation events, where p, is to be defined with respect
to the sphericity axis. Using the internal routines for simple histogramming, a complete
program might look like

32

C...Double precision and integer declaratiomns.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

C...Common blocks.
COMMON/PYJETS/N,NPAD,K (4000,5) ,P(4000,5),V(4000,5)

C...Book histograms.
CALL PYBOOK(1,’pT spectrum of pi+’,100,0D0,5D0)

C...Number of events to generate. Loop over events.
NEVT=100
DO 110 IEVT=1,NEVT

C...Generate event. List first one.
CALL PYEEVT(0,91.2D0)
IF(IEVT.EQ.1) CALL PYLIST(1)

C...Find sphericity axis.
CALL PYSPHE(SPH,APL)

C...Rotate event so that sphericity axis is along z axis.
CALL PYEDIT(31)

C...Loop over all particles, but skip if not pi+.
DO 100 I=1,N
IF(K(I,2).NE.211) GOTO 100

C...Calculate pT and fill in histogram.
PT=SQRT(P(I,1)**x2+P(I,2)*%2)
CALL PYFILL(1,PT,1DO)

C...End of particle and event loops.
100 CONTINUE
110 CONTINUE

C...Normalize histogram properly and list it.
CALL PYFACT(1,20D0/NEVT)
CALL PYHIST

END

Study this program, try to understand what happens at each step, and run it to check
that it works. You should then be ready to look at the relevant sections of this report
and start writing your own programs.

3.6 Getting Started with the Event Generation Machinery

A run with the full PYTHIA event generation machinery has to be more strictly organized
than the simple examples above, in that it is necessary to initialize the generation before
events can be generated, and in that it is not possible to change switches and parameters
freely during the course of the run. A fairly precise recipe for how a run should be
structured can therefore be given.

33

Thus, the nowadays normal usage of PYTHIA can be subdivided into three steps.
1. The initialization step. It is here that all the basic characteristics of the coming
generation are specified. The material in this section includes the following.
e Declarations for double precision and integer variables and integer functions:
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP

e Common blocks, at least the following, and maybe some more:
COMMON/PYJETS/N,NPAD,K (4000,5) ,P(4000,5),V(4000,5)
COMMON/PYDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)
COMMON/PYSUBS/MSEL ,MSELPD,MSUB(500) ,KFIN(2,-40:40) ,CKIN(200)
COMMON/PYPARS/MSTP (200) ,PARP (200) ,MSTI (200) ,PARI (200)

e Selection of required processes. Some fixed ‘menus’ of subprocesses can be
selected with different MSEL values, but with MSEL=0 it is possible to compose
‘a la carte’, using the subprocess numbers. To generate processes 14, 18 and
29, for instance, one needs

MSEL=0

MSUB(14)=1
MSUB(18)=1
MSUB(29)=1

e Selection of kinematics cuts in the CKIN array. To generate hard scatterings

with 5 GeV < p, < 10 GeV, for instance, use

CKIN(3)=5D0

CKIN(4)=10DO
Unfortunately, initial- and final-state radiation will shift around the kinematics
of the hard scattering, making the effects of cuts less predictable. One therefore
always has to be very careful that no desired event configurations are cut out.

e Definition of underlying physics scenario, e.g. Higgs mass.

e Selection of parton-distribution sets, Q? definitions, and all other details of the
generation.

e Switching off of generator parts not needed for toy simulations, e.g. fragmen-
tation for parton level studies.

e Initialization of the event generation procedure. Here kinematics is set up,
maxima of differential cross sections are found for future Monte Carlo gen-
eration, and a number of other preparatory tasks carried out. Initialization
is performed by PYINIT, which should be called only after the switches and
parameters above have been set to their desired values. The frame, the beam
particles and the energy have to be specified, e.g.

CALL PYINIT(’CMS’,’p’,’pbar’,1800D0)

e Any other initial material required by you, e.g. histogram booking.

2. The generation loop. It is here that events are generated and studied. It includes
the following tasks:

e Generation of the next event, with

CALL PYEVNT
e Printing of a few events, to check that everything is working as planned, with
CALL PYLIST(1)

e An analysis of the event for properties of interest, either directly reading out in-
formation from the PYJETS common block or making use of the utility routines
in PYTHIA.

e Saving of events on disk or tape, or interfacing to detector simulation.

3. The finishing step. Here the tasks are:

34

e Printing a table of deduced cross sections, obtained as a by-product of the
Monte Carlo generation activity, with the command
CALL PYSTAT(1)
e Printing histograms and other user output.
To illustrate this structure, imagine a toy example, where one wants to simulate the
production of a 300 GeV Higgs particle. In PyTHIA, a program for this might look
something like the following.

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

C...Common blocks.
COMMON/PYJETS/N,NPAD, K (4000,5) ,P(4000,5) ,V(4000,5)
COMMON/PYDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)
COMMON/PYDAT2/KCHG (500, 4) ,PMAS (500,4) ,PARF (2000) ,VCKM(4,4)
COMMON/PYDAT3/MDCY (500, 3) ,MDME (8000,2) ,BRAT(8000) ,KFDP (8000,5)
COMMON/PYSUBS/MSEL ,MSELPD,MSUB (500) ,KFIN(2,-40:40) ,CKIN(200)
COMMON/PYPARS/MSTP (200) ,PARP (200) ,MSTI (200) ,PARI (200)

C...Number of events to generate. Switch on proper processes.
NEV=1000
MSEL=0
MSUB(102)=1
MSUB(123)=1
MSUB(124)=1

C...Select Higgs mass and kinematics cuts in mass.
PMAS (25,1)=300D0
CKIN(1)=290D0
CKIN(2)=310D0

C...For simulation of hard process only: cut out unnecessary tasks.
MSTP(61)=0
MSTP(71)=0
MSTP(81)=0
MSTP(111)=0

C...Initialize and list partial widths.
CALL PYINIT(’CMS’,’p’,’p’,14000D0)
CALL PYSTAT(2)

C...Book histogram.
CALL PYBOOK(1,’Higgs mass’,50,275D0,325D0)

C...Generate events. Look at first few.
DO 200 IEV=1,NEV
CALL PYEVNT
IF(IEV.LE.3) CALL PYLIST(1)

C...Loop over particles to find Higgs and histogram its mass.
DO 100 I=1,N

35

IF(K(I,1).LT.20.AND.K(I,2).EQ.25) HMASS=P(I,5)
CONTINUE
CALL PYFILL(1,HMASS,1DO)
200 CONTINUE

100

C...Print cross sections and histograms.
CALL PYSTAT(1)
CALL PYHIST

END

Here 102, 123 and 124 are the three main Higgs production graphs gg — h, ZZ — h,
and WW — h, and MSUB(ISUB)=1 is the command to switch on process ISUB. Full
freedom to combine subprocesses ‘a la carte’ is ensured by MSEL=0; ready-made ‘menus
can be ordered with other MSEL numbers. The PMAS command sets the mass of the Higgs,
and the CKIN variables the desired mass range of the Higgs — a Higgs with a 300 GeV
nominal mass actually has a fairly broad Breit—Wigner type mass distribution. The MSTP
switches that come next are there to modify the generation procedure, in this case to
switch off initial- and final-state radiation, multiple interactions among beam jets, and
fragmentation, to give only the ‘parton skeleton’ of the hard process. The PYINIT call
initializes PYTHIA, by finding maxima of cross sections, recalculating the Higgs decay
properties (which depend on the Higgs mass), etc. The decay properties can be listed
with PYSTAT(2).

Inside the event loop, PYEVNT is called to generate an event, and PYLIST(1) to list
the event. The information used by PYLIST(1) is the event record, stored in the common
block PYJETS. Here one finds all produced particles, both final and intermediate ones, with
information on particle species and event history (K array), particle momenta (P array)
and production vertices (V array). In the loop over all particles produced, 1 through N,
the Higgs particle is found by its code, K(I,2)=25, and its mass is stored in P(I,5).

After all events have been generated, PYSTAT(1) gives a summary of the number of
events generated in the various allowed channels, and the inferred cross sections.

In the run above, a typical event listing might look like the following.

Event listing (summary)

I particle/jet KF p_x P-y p_z E m

1 lp+! 2212 0.000 0.000 8000.000 8000.000 0.938
2 lp+! 2212 0.000 0.000-8000.000 8000.000 0.938
3 lgl 21 -0.505 -0.229 28.553 28.558 0.000
4 Ig! 21 0.224 0.041 -788.073 788.073 0.000
5 Ig! 21 -0.505 -0.229 28.5563 28.558 0.000
6 lg! 21 0.224 0.041 -788.073 788.073 0.000
7 THO! 25 -0.281 -0.188 -759.520 816.631 300.027
8 IW+! 24 120.648 35.239 -397.843 424.829 80.023
9 Iw-! -24 -120.929 -35.426 -361.677 391.801 82.579
10 le+! -11 12.922 -4.760 -160.940 161.528 0.001
11 'nu_e! 12 107.726 39.999 -236.903 263.302 0.000
12 Is! 3 -62.423 7.195 -266.713 264.292 0.199
13 !cbar! -4 -58.506 -42.621 -104.963 127.509 1.350
14 (HO) 25 -0.281 -0.188 -759.520 816.631 300.027
15 (W+) 24 120.648 35.239 -397.843 424.829 80.023

36

16 (W-) -24 -120.929 -35.426 -361.677 391.801 82.579
17 e+ -11 12.922 -4.760 -160.940 161.528 0.001
18 nu_e 12 107.726 39.999 -236.903 263.302 0.000
19 s A 3 -62.423 7.195 -266.713 264.292 0.199
20 cbar v -4 -58.506 -42.621 -104.963 127.509 1.350
21 ud_1 A 2103 -0.101 0.176 7971.328 7971.328 0.771
22 d v 1 -0.316 0.001 -87.390 87.390 0.010
23 u A 2 0.606 0.052 -0.751 0.967 0.006
24 uu_1l v 2203 0.092 -0.042-7123.668 7123.668 0.771

sum: 2.00 0.00 0.00 0.00 15999.98 15999.98

The above event listing is abnormally short, in part because some columns of information
were removed to make it fit into this text, in part because all initial- and final-state QCD
radiation, all non-trivial beam jet structure, and all fragmentation was inhibited in the
generation. Therefore only the skeleton of the process is visible. In lines 1 and 2 one
recognizes the two incoming protons. In lines 3 and 4 are incoming partons before initial-
state radiation and in 5 and 6 after — since there is no such radiation they coincide here.
Line 7 shows the Higgs produced by gg fusion, 8 and 9 its decay products and 10-13 the
second-step decay products. Up to this point lines give a summary of the event history,
indicated by the exclamation marks that surround particle names (and also reflected in
the K(I,1) code, not shown). From line 14 onwards come the particles actually produced
in the final states, first in lines 14-16 particles that subsequently decayed, which have
their names surrounded by brackets, and finally the particles and partons left in the end,
including beam remnants. Here this also includes a number of unfragmented partons,
since fragmentation was inhibited. Ordinarily, the listing would have gone on for a few
hundred more lines, with the particles produced in the fragmentation and their decay
products. The final line gives total charge and momentum, as a convenient check that
nothing unexpected happened. The first column of the listing is just a counter, the second
gives the particle name and information on status and string drawing (the A and V), the
third the particle-flavour code (which is used to give the name), and the subsequent
columns give the momentum components.

One of the main problems is to select kinematics efficiently. Imagine for instance that
one is interested in the production of a single Z with a transverse momentum in excess of
50 GeV. If one tries to generate the inclusive sample of Z events, by the basic production
graphs qq — 7, then most events will have low transverse momenta and will have to be
discarded. That any of the desired events are produced at all is due to the initial-state
generation machinery, which can build up transverse momenta for the incoming q and
q. However, the amount of initial-state radiation cannot be constrained beforehand. To
increase the efficiency, one may therefore turn to the higher-order processes qg — Zq
and qq — Zg, where already the hard subprocess gives a transverse momentum to the
Z. This transverse momentum can be constrained as one wishes, but again initial- and
final-state radiation will smear the picture. If one were to set a p; cut at 50 GeV for
the hard-process generation, those events where the Z was given only 40 GeV in the hard
process but got the rest from initial-state radiation would be missed. Not only therefore
would cross sections come out wrong, but so might the typical event shapes. In the end,
it is therefore necessary to find some reasonable compromise, by starting the generation
at 30 GeV, say, if one knows that only rarely do events below this value fluctuate up to
50 GeV. Of course, most events will therefore not contain a Z above 50 GeV, and one will
have to live with some inefficiency. It is not uncommon that only one event out of ten
can be used, and occasionally it can be even worse.

If it is difficult to set kinematics, it is often easier to set the flavour content of a process.
In a Higgs study, one might wish, for example, to consider the decay h® — Z°Z°, with
each Z° — ete™ or putpu~. It is therefore necessary to inhibit all other h® and Z° decay

37

channels, and also to adjust cross sections to take into account this change, all of which
is fairly straightforward. The same cannot be said for decays of ordinary hadrons, where
the number produced in a process is not known beforehand, and therefore inconsistencies
easily can arise if one tries to force specific decay channels.

In the examples given above, all run-specific parameters are set in the code (in the
main program; alternatively it could be in a subroutine called by the main program).
This approach is allowing maximum flexibility to change parameters during the course
of the run. However, in many experimental collaborations one does not want to allow
this freedom, but only one set of parameters, to be read in from an external file at the
beginning of a run and thereafter never changed. This in particular applies when PYTHIA
is to be linked with other libraries, such as GEANT | | and detector-specific software.
While a linking of a normal-sized main program with PYTHIA is essentially instantaneous
on current platforms (typically less than a second), this may not hold for other libraries.
For this purpose one then needs a parser of PYTHIA parameters, the core of which can
be provided by the PYGIVE routine.

As an example, consider a main program of the form

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP
C...Input and output strings.
CHARACTER FRAME*12,BEAM*12,TARGET*12,PARAM*100

C...Read parameters for PYINIT call.
READ (*,*) FRAME,BEAM,TARGET,ENERGY

C...Read number of events to generate, and to print.
READ(*,*) NEV,NPRT

C...Loop over reading and setting parameters/switches.
100 READ(*,’(A)’,END=200) PARAM
CALL PYGIVE(PARAM)
GOTO 100

C...Initialize PYTHIA.
200 CALL PYINIT(FRAME,BEAM, TARGET,ENERGY)

Q

.. .Event generation loop
DO 300 IEV=1,NEV
CALL PYEVNT
IF(IEV.LE.NPRT) CALL PYLIST(1)
300 CONTINUE

C...Print cross sections.
CALL PYSTAT(1)

END
and a file indata with the contents

CMS,p,p,14000.
1000,3
| below follows commands sent to PYGIVE

38

MSEL=0
MSUB(102)=1
MSUB(123)=1

! Mix processes freely
' g+ g ->ho
' 20 + 20 -> hO
MSUB(124)=1 I W+ + W= -> hO
PMAS(25,1)=300. ! Higgs mass
CKIN(1)=290. ! lower cutoff on mass
CKIN(2)=310. ! upper cutoff on mass
I
!
!
!

MSTP(61)=0 no initial-state showers
MSTP(71)=0 no final-state showers
MSTP(81)=0 no multiple interactions

MSTP(111)=0 no hadronization

Here the text following the exclamation marks is interpreted as a comment by PYGIVE, and
thus purely intended to allow better documentation of changes. The main program could
then be linked to PYTHIA, to an executable a.out, and run e.g. with a Unix command
line

a.out < indata > output

to produce results on the file output. Here the indata could be changed without requiring
a recompilation. Of course, the main program would have to be more realistic, e.g. with
events saved to disk or tape, but the principle should be clear.

39

4 Monte Carlo Techniques

Quantum mechanics introduces a concept of randomness in the behaviour of physical
processes. The virtue of event generators is that this randomness can be simulated by
the use of Monte Carlo techniques. In the process, the program authors have to use some
ingenuity to find the most efficient way to simulate an assumed probability distribution.
A detailed description of possible techniques would carry us too far, but in this section
some of the most frequently used approaches are presented, since they will appear in
discussions in subsequent sections. Further examples may be found e.g. in |

First of all one assumes the existence of a random number generator. This is a (For—
tran) function which, each time it is called, returns a number R in the range between 0
and 1, such that the inclusive distribution of numbers R is flat in the range, and such that
different numbers R are uncorrelated. The random number generator that comes with
PyTHIA is described at the end of this section, and we defer the discussion until then.

4.1 Selection From a Distribution

The situation that is probably most common is that we know a function f(x) which is
non-negative in the allowed z range i < © < Tpa. We want to select an x ‘at random’
so that the probability in a small interval dz around a given x is proportional to f(z)dz.
Here f(z) might be a fragmentation function, a differential cross section, or any of a
number of distributions.

One does not have to assume that the integral of f(z) is explicitly normalized to unity:
by the Monte Carlo procedure of picking exactly one accepted x value, normalization is
implicit in the final result. Sometimes the integral of f(x) does carry a physics content
of its own, as part of an overall weight factor we want to keep track of. Consider, for
instance, the case when x represents one or several phase-space variables and f(z) a
differential cross section; here the integral has a meaning of total cross section for the
process studied. The task of a Monte Carlo is then, on the one hand, to generate events
one at a time, and, on the other hand, to estimate the total cross section. The discussion
of this important example is deferred to section 7.4.

If it is possible to find a primitive function F(x) which has a known inverse F'~1(x),
an x can be found as follows (method 1):

/xi flz)dz = R/x:rx f(z)dx
- = F_1<F(xmin) + R(F(Zmax) = F(Tmin))) - (2)

The statement of the first line is that a fraction R of the total area under f(z) should be
to the left of z. However, seldom are functions of interest so nice that the method above
works. It is therefore necessary to use more complicated schemes.

Special tricks can sometimes be found. Consider e.g. the generation of a Gaussian
f(z) = exp(—2?). This function is not integrable, but if we combine it with the same
Gaussian distribution of a second variable y, it is possible to transform to polar coordinates

f(z)dz f(y) dy = exp(—2° — y*) dzdy = rexp(—r*) drdyp , (3)

and now the r and ¢ distributions may be easily generated and recombined to yield x.
At the same time we get a second number y, which can also be used. For the generation
of transverse momenta in fragmentation, this is very convenient, since in fact we want to
assign two transverse degrees of freedom.

If the maximum of f(z) is known, f(x) < fiax in the x range considered, a hit-or-miss
method will always yield the correct answer (method 2):

40

1. select an x with even probability in the allowed range, i.e. * = Zyin+ R(Zmax — Tmin);

2. compare a (new) R with the ratio f(x)/fuax; if f(2)/fmax < R, then reject the x

value and return to point 1 for a new try;

3. otherwise the most recent = value is retained as final answer.

The probability that f(z)/fmax > R is proportional to f(x); hence the correct distribution
of retained x values. The efficiency of this method, i.e. the average probability that an
x will be retained, is ([f(z)dz)/(fmax(Tmax — Tmin))- The method is acceptable if this
number is not too low, i.e. if f(z) does not fluctuate too wildly.

Very often f(z) does have narrow spikes, and it may not even be possible to define
an fuax. An example of the former phenomenon is a function with a singularity just
outside the allowed region, an example of the latter an integrable singularity just at the
Tmin and/or Tya, borders. Variable transformations may then be used to make a function
smoother. Thus a function f(x) which blows up as 1/x for x — 0, with an @, close to
0, would instead be roughly constant if transformed to the variable y = In x.

The variable transformation strategy may be seen as a combination of methods 1 and
2, as follows. Assume the existence of a function g(z), with f(z) < g(z) over the x range
of interest. Here g(x) is picked to be a ‘simple’ function, such that the primitive function
G(x) and its inverse G~1(x) are known. Then (method 3):

1. select an x according to the distribution g(z), using method 1;

2. compare a (new) R with the ratio f(x)/g(x); if f(z)/g(x) < R, then reject the z

value and return to point 1 for a new try;

3. otherwise the most recent = value is retained as final answer.

This works, since the first step will select = with a probability ¢g(z)dz = dG(x) and the
second retain this choice with probability f(z)/g(x). The total probability to pick a value
x is then just the product of the two, i.e. f(z)dzx.

If f(x) has several spikes, method 3 may work for each spike separately, but it may
not be possible to find a g(z) that covers all of them at the same time, and which still
has an invertible primitive function. However, assume that we can find a function g(z) =
> gi(x), such that f(z) < g(x) over the x range considered, and such that the functions
gi(z) each are non-negative and simple, in the sense that we can find primitive functions
and their inverses. In that case (method 4):

1. select an 7 at random, with relative probability given by the integrals

L7 (@) do = Gilman) = Gilmn) Y

2. for the 7 selected, use method 1 to find an z, i.e.
z = G7HGi(@min) + R(Gi(Tmax) — Gi(Tmin))) ; (5)

3. compare a (new) R with the ratio f(x)/g(x); if f(z)/g(x) < R, then reject the z

value and return to point 1 for a new try;

4. otherwise the most recent = value is retained as final answer.

This is just a trivial extension of method 3, where steps 1 and 2 ensure that, on the
average, each x value picked there is distributed according to g(z): the first step picks i
with relative probability [g;(x) dz, the second x with absolute probability g;(z)/ | g;(x) dx
(this is one place where one must remember to do normalization correctly); the product
of the two is therefore g;(x) and the sum over all i gives back g(z).

We have now arrived at an approach that is sufficiently powerful for a large selection
of problems. In general, for a function f(z) which is known to have sharp peaks in a few
different places, the generic behaviour at each peak separately may be covered by one
or a few simple functions g;(x), to which one adds a few more g;(z) to cover the basic
behaviour away from the peaks. By a suitable selection of the relative strengths of the

41

different g;’s, it is possible to find a function g(z) that matches well the general behaviour
of f(z), and thus achieve a reasonable Monte Carlo efficiency.

The major additional complication is when z is a multidimensional variable. Usually
the problem is not so much f(z) itself, but rather that the phase-space boundaries may
be very complicated. If the boundaries factorize it is possible to pick phase-space points
restricted to the desired region. Otherwise the region may have to be inscribed in a hyper-
rectangle, with points picked within the whole hyper-rectangle but only retained if they
are inside the allowed region. This may lead to a significant loss in efficiency. Variable
transformations may often make the allowed region easier to handle.

There are two main methods to handle several dimensions, each with its set of vari-
ations. The first method is based on a factorized ansatz, i.e. one attempts to find a
function g(x) which is everywhere larger than f(x), and which can be factorized into
9(x) = gV (zy) g@(x9) - g™ (x,), where x = (x1,29,...,7,). Here each g¥)(z;) may
in its turn be a sum of functions gz-(]), as in method 4 above. First, each xz; is selected
independently, and afterwards the ratio f(x)/g(x) is used to determine whether to retain
the point.

The second method is useful if the boundaries of the allowed region can be written in
a form where the maximum range of x; is known, the allowed range of x5 only depends
on x1, that of x3 only on z; and x5, and so on until z,,, whose range may depend on all
the preceding variables. In that case it may be possible to find a function g(x) that can
be integrated over x5 through x,, to yield a simple function of 1, according to which x; is
selected. Having done that, x is selected according to a distribution which now depends
on x1, but with x5 through z,, integrated over. In particular, the allowed range for x, is
known. The procedure is continued until z,, is reached, where now the function depends
on all the preceding z; values. In the end, the ratio f(x)/g(x) is again used to determine
whether to retain the point.

4.2 The Veto Algorithm

The ‘radioactive decay’ type of problems is very common, in particular in parton showers,
but it is also used, e.g. in the multiple interactions description in PYTHIA. In this kind
of problems there is one variable ¢, which may be thought of as giving a kind of time axis
along which different events are ordered. The probability that ‘something will happen’
(a nucleus decay, a parton branch) at time ¢ is described by a function f(t), which is
non-negative in the range of ¢ values to be studied. However, this naive probability is
modified by the additional requirement that something can only happen at time ¢ if it
did not happen at earlier times ' < ¢. (The original nucleus cannot decay once again
if it already did decay; possibly the decay products may decay in their turn, but that is
another question.)

The probability that nothing has happened by time ¢ is expressed by the function
N(t) and the differential probability that something happens at time ¢ by P(t). The
basic equation then is

dN
P(t) =~ = (N) (0
For simplicity, we shall assume that the process starts at time ¢t = 0, with A/(0) = 1.
The above equation can be solved easily if one notes that AN /AN = dInN:

N{(t) = N(0) exp{— / ") dt’} :exp{— / ") dt’} , (1)

and thus

With f(t) = c this is nothing but the textbook formulae for radioactive decay. In partic-
ular, at small times the correct decay probability, P(t), agrees well with the input one,
f(t), since the exponential factor is close to unity there. At larger t, the exponential
gives a dampening which ensures that the integral of P(t) never can exceed unity, even
if the integral of f(t) does. The exponential can be seen as the probability that nothing
happens between the original time 0 and the final time . In the parton-shower language,
this corresponds to the so-called Sudakov form factor.

If f(¢t) has a primitive function with a known inverse, it is easy to select ¢ values
correctly:

/OtP(t’) a = N(0) = N(0) = 1 - exp { - /Otf(t’) aw}=1-R, ()
which has the solution
F(0)-F@#t)=InR = t=F'F(0)-InR). (10)

If f(t) is not sufficiently nice, one may again try to find a better function g(t), with
f(t) < g(t) for all t > 0. However to use method 3 with this g(¢) would not work, since
the method would not correctly take into account the effects of the exponential term in
P(t). Instead one may use the so-called veto algorithm:

1. start with « = 0 and ty = 0;

2. add 1 to i and select t; = G (G(t;_1) — In R), i.e. according to g(t), but with the

constraint that ¢; > t;_q,

3. compare a (new) R with the ratio f(;)/g(t;); if f(t;)/g9(t;)) < R, then return to

point 2 for a new try;

4. otherwise ¢; is retained as final answer.

It may not be apparent why this works. Consider, however, the various ways in which
one can select a specific time t. The probability that the first try works, ¢ = t1, i.e. that
no intermediate t values need be rejected, is given by

t / / f(t) t / /
Polt) = exp {~ [gty dt'} o)) 258 = fyex{~ [gyar} . ()
0 g(t) 0
where the exponential times g(¢) comes from eq. (8) applied to g, and the ratio f(t)/g(¢)
is the probability that t is accepted. Now consider the case where one intermediate time
t, is rejected and t = t, is only accepted in the second step. This gives

_ ¢ h ! /} f(tl)] { /t ! /} f(t)

Pi(t) /0 dtq exp{ /0 g(t")dt" s g(tq) [1 o) exp tlg(t)dt g(t) o0)

(12)

where the first exponential times g(t;) gives the probability that ¢; is first selected, the

square brackets the probability that t; is subsequently rejected, the following piece the

probability that ¢ = t, is selected when starting from ¢;, and the final factor that ¢ is

retained. The whole is to be integrated over all possible intermediate times ¢;. The

exponentials together give an integral over the range from 0 to ¢, just as in Py, and the
factor for the final step being accepted is also the same, so therefore one finds that

Pu(t) = Polt) [s lgt) — f(0)] (13)

This generalizes. In Py one has to consider two intermediate times, 0 < t; <ty < t3 =1,
and so

Pat) = Polt) [t [gttr) — F(t)] [z lgfts) - f2)
= 2oty ([o) - syar) (1)

43

The last equality is most easily seen if one also considers the alternative region 0 <ty <
t; < t, where the roles of t; and t, have just been interchanged, and the integral therefore
has the same value as in the region considered. Adding the two regions, however, the
integrals over ¢; and ¢, decouple, and become equal. In general, for P;, the ¢ intermediate
times can be ordered in ¢! different ways. Therefore the total probability to accept ¢, in
any step, is

P = 2P0 =R0 % ([) - sear)
— Jiex {— [ottyaeeo{ [[loe) - ryyar
— swep{- [reyar} . (15)

which is the desired answer.

If the process is to be stopped at some scale t,.y, i.e. if one would like to remain
with a fraction N (tmay) of events where nothing happens at all, this is easy to include in
the veto algorithm: just iterate upwards in ¢ at usual, but stop the process if no allowed
branching is found before t,,.y.

Usually f(¢) is a function also of additional variables . The methods of the preceding
section are easy to generalize if one can find a suitable function g(¢,z) with f(t,z) <
g(t,x). The g(t) used in the veto algorithm is the integral of g(¢,z) over x. Each time
a t; has been selected also an z; is picked, according to g(¢;,) dz, and the (¢, z) point is
accepted with probability f(¢;,x;)/g(t:, z;).

4.3 The Random Number Generator

In recent years, progress has been made in constructing portable generators with large
periods and other good properties; see the review | |. Therefore the current version
contains a random number generator based on the algorithm proposed by Marsaglia,
Zaman and Tsang [|. This routine should work on any machine with a mantissa
of at least 48 digits, i.e. on computers with a 64-bit (or more) representation of double
precision real numbers. Given the same initial state, the sequence will also be identical
on different platforms. This need not mean that the same sequence of events will be
generated, since the different treatments of roundoff errors in numerical operations will
lead to slightly different real numbers being tested against these random numbers in IF
statements. Also code optimization may lead to a divergence of the event sequence.

Apart from nomenclature issues, the coding of PYR as a function rather than a sub-
routine, and the extension to double precision, the only difference between our code and
the code given in | | is that slightly different algorithms are used to ensure that the
random number is not equal to 0 or 1 within the machine precision. Further developments
of the algorithm has been proposed | | to remove residual possibilities of small long-
range correlations, at the price of a slower generation procedure. However, given that
PyTHIA is using random numbers for so many different tasks, without any fixed cycle,
this has been deemed unnecessary.

The generator has a period of over 10*®, and the possibility to obtain almost 10°
different and disjoint subsequences, selected by giving an initial integer number. The
price to be paid for the long period is that the state of the generator at a given moment
cannot be described by a single integer, but requires about 100 words. Some of these
are real numbers, and are thus not correctly represented in decimal form. The old-style
procedure, which made it possible to restart the generation from a seed value written to
the run output, is therefore not convenient. The CERN library implementation keeps
track of the number of random numbers generated since the start. With this value saved,

44

in a subsequent run the random generator can be asked to skip ahead the corresponding
number of random numbers. PYTHIA is a heavy user of random numbers, however:
typically 30% of the full run time is spent on random number generation. Of this, half is
overhead coming from the function call administration, but the other half is truly related
to the speed of the algorithm. Therefore a skipping ahead would take place with 15% of
the time cost of the original run, i.e. an uncomfortably high figure.

Instead a different solution is chosen here. Two special routines are provided for
writing and reading the state of the random number generator (plus some initialization
information) on a sequential file, in a platform-dependent internal representation. The file
used for this purpose has to be specified by you, and opened for read and write. A state
is written as a single record, in free format. It is possible to write an arbitrary number of
states on a file, and a record can be overwritten, if so desired. The event generation loop
might then look something like:

1. save the state of the generator on file (using flag set in point 3 below),

2. generate an event,

3. study the event for errors or other reasons why to regenerate it later; set flag to
overwrite previous generator state if no errors, otherwise set flag to create new
record;

4. loop back to point 1.

With this procedure, the file will contain the state before each of the problematical events.
These events can therefore be generated in a shorter run, where further information can
be printed. (Inside PYTHIA, some initialization may take place in connection with the
very first event generated in a run, so it may be necessary to generate one ordinary
event before reading in a saved state to generate the interesting events.) An alternative
approach might be to save the state every 100 events or so. If the events are subsequently
processed through a detector simulation, you may have to save also other sets of seeds,
naturally.

Unfortunately, the procedure is not always going to work. For instance, if cross section
maximum violations have occured before the interesting event in the original run, there is
a possibility that another event is picked in the re-started one, where the maximum weight
estimate has not been updated. Another problem is the multiple interaction machinery,
where some of the options contain an element of learning, which again means that the
event sequence may be broken.

In addition to the service routines, the common block which contains the state of the
generator is available for manipulation, if you so desire. In particular, the initial seed
value is by default 19780503, i.e. different from the Marsaglia/CERN default 54217137.
It is possible to change this value before any random numbers have been generated, or to
force re-initialization in mid-run with any desired new seed.

It should be noted that, of course, the appearance of a random number generator
package inside PYTHIA does in no way preclude the use of other routines. You can easily
revert to having PYR as nothing but an interface to an arbitrary external random number
generator; e.g. to call a routine RNDM all you need to have is

FUNCTION PYR(IDUMMY)

IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
100 PYR=RNDM (IDUMMY)

IF(PYR.LE.ODO.OR.PYR.GE.1D0O) GOTO 100

RETURN

END

The random generator subpackage consists of the following components.

R = PYR(IDUMMY)

45

Purpose: to generate a (pseudo)random number R uniformly in the range 0<R<1, i.e.

IDUMMY

excluding the endpoints.
dummy input argument; normally 0.

CALL PYRGET(LFN,MOVE)

Purpose: to dump the current state of the random number generator on a separate file,

LFN :

MOVE :

= -1

—n :

using internal representation for real and integer numbers. To be precise, the
full contents of the PYDATR common block are written on the file, with the
exception of MRPY(6).

(logical file number) the file number to which the state is dumped. You must
associate this number with a true file (with a platform-dependent name), and
see to it that this file is open for write.

choice of adding a new record to the file or overwriting old record(s). Normally
only options 0 or —1 should be used.

0 (or > 0) : add a new record to the end of the file.

. overwrite the last record with a new one (i.e. do one BACKSPACE before
the new write).

back up n records before writing the new record. The records following
after the new one are lost, i.e. the last n old records are lost and one new

added.

CALL PYRSET(LFN,MOVE)

Purpose: toread in a state for the random number generator, from which the subsequent

LEN :

MOVE :

generation can proceed. The state must previously have been saved by a
PYRGET call. Again the full contents of the PYDATR common block are read,
with the exception of MRPY(6).

(logical file number) the file number from which the state is read. You must
associate this number with a true file previously written with a PYRGET call,
and see to it that this file is open for read.

positioning in file before a record is read. With zero value, records are read one
after the other for each new call, while non-zero values may be used to navigate

back and forth, and e.g. return to the same initial state several times.

=0 : read the next record.

= +n skip ahead n records before reading the record that sets the state of the
random number generator.

= —n : back up n records before reading the record that sets the state of the

random number generator.

COMMON/PYDATR/MRPY (6) ,RRPY (100)

Purpose: to contain the state of the random number generator at any moment (for

MRPY (1)

communication between PYR, PYRGET and PYRSET), and also to provide you
with the possibility to initialize different random number sequences, and to
know how many numbers have been generated.

: (D=19780503) the integer number that specifies which of the possible subse-

quences will be initialized in the next PYR call for which MRPY(2)=0. Allowed
values are 0<MRPY (1) <900 000 000, the original Marsaglia (and CERN library)
seed is 54217137. The MRPY(1) value is not changed by any of the PyTHIA
routines.

46

MRPY(2) : (D=O0) initialization flag, put to 1 in the first PYR call of run. A re-initialization
of the random number generator can be made in mid-run by resetting MRPY (2)
to 0 by hand. In addition, any time the counter MRPY (3) reaches 1000000000,
it is reset to 0 and MRPY(2) is increased by 1.

MRPY(3) : (R) counter for the number of random numbers generated from the beginning
of the run. To avoid overflow when very many numbers are generated, MRPY (2)
is used as described above.

MRPY (4), MRPY(5) : I97 and J97 of the CERN library implementation; part of the state
of the generator.

MRPY(6) : (R) current position, i.e. how many records after beginning, in the file; used
by PYRGET and PYRSET.

RRPY(1) - RRPY(97) : the U array of the CERN library implementation; part of the
state of the generator.

RRPY(98) - RRPY(100) : C, CD and CM of the CERN library implementation; the first
part of the state of the generator, the latter two constants calculated at ini-
tialization.

47

5 The Event Record

The event record is the central repository for information about the particles produced in
the current event: flavours, momenta, event history, and production vertices. It plays a
very central role: without a proper understanding of what the record is and how informa-
tion is stored, it is meaningless to try to use PYTHIA. The record is stored in the common
block PYJETS. Almost all the routines that the user calls can be viewed as performing
some action on the record: fill a new event, let partons fragment or particles decay, boost
it, list it, find clusters, etc.

In this section we will first describe the KF flavour code, subsequently the PYJETS
common block, and then give a few comments about the role of the event record in the
programs.

To ease the interfacing of different event generators, a HEPEVT standard common block
structure for the event record has been agreed on. For historical reasons the standard
common blocks are not directly used in PYTHIA, but a conversion routine comes with the
program, and is described at the end of this section.

5.1 Particle Codes

The Particle Data Group particle code | , , | is used consistently
throughout the program. Almost all known discrepancies between earlier versions of the
PDG standard and the PyTHIA usage have now been resolved. The one known exception is
the (very uncertain) classification of f,(980), with fy(1370) also affected as a consequence.
There is also some slight mixup in the technicolor sector between 7'y, and n.. These
should not be major problems. The PDG standard, with the local PYTHIA extensions, is
referred to as the KF particle code. This code you have to be thoroughly familiar with. It
is described below.

The KF code is not convenient for a direct storing of masses, decay data, or other
particle properties, since the KF codes are so spread out. Instead a compressed code KC
between 1 and 500 is used here. A particle and its antiparticle are mapped to the same
KC code, but else the mapping is unique. Normally this code is only used at very specific
places in the program, not visible to the user. If need be, the correspondence can always
be obtained by using the function PYCOMP, i.e. KC = PYCOMP(KF). This mapping is not
hardcoded, but can be changed by user intervention, e.g. by introducing new particles
with the PYUPDA facility. It is therefore not intended that you should ever want or need
to know any KC codes at all. It may be useful to know, however, that for codes smaller
than 80, KF and KC agree. Normally a user would never do the inverse mapping, but we
note that this is stored as KF = KCHG(KC,4), making use of the KCHG array in the PYDAT2
common block. Of course, the sign of a particle could never be recovered by this inverse
operation.

The particle names printed in the tables in this section correspond to the ones obtained
with the routine PYNAME, which is used extensively, e.g. in PYLIST. Greek characters
are spelt out in full, with a capital first letter to correspond to a capital Greek letter.
Generically the name of a particle is made up of the following pieces:

1. The basic root name. This includes a * for most spin 1 (L = 0) mesons and spin
3/2 baryons, and a ' for some spin 1/2 baryons (where there are two states to be
distinguished, cf. A-X%). The rules for heavy baryon naming are in accordance with
the 1986 Particle Data Group conventions |]. For mesons with one unit of
orbital angular momentum, K (D, B, ...) is used for quark-spin 0 and K* (D*, B*,
...) for quark-spin 1 mesons; the convention for ‘*” may here deviate slightly from
the one used by the PDG.

2. Any lower indices, separated from the root by a _. For heavy hadrons, this is the
additional heavy-flavour content not inherent in the root itself. For a diquark, it is

48

Table 5: Quark and lepton codes.

KF | Name | Printed || KF | Name | Printed
1 d d 11 e~ e-
2 u u 12 Ve nu_e
3 s S 13| w~ mu-

4 C c 14 Yy nu_mu
5 b b 15 T~ tau-
6 t t 16 v, nu_tau
7 b’ b’ 17 7! tau’
8 t/ t’ 18 | v, |nu’_tau
9 19

10 20

the spin.

3. The characters ‘bar’ for an antiparticle, wherever the distinction between particle
and antiparticle is not inherent in the charge information.

4. Charge information: ++, +, 0, —, or ——. Charge is not given for quarks or diquarks.
Some neutral particles which are customarily given without a 0 also here lack it,
such as neutrinos, g, v, and flavour-diagonal mesons other than 7° and p°. Note
that charge is included both for the proton and the neutron. While non-standard,
it is helpful in avoiding misunderstandings when looking at an event listing.

Below follows a list of KF particle codes. The list is not complete; a more extensive one
may be obtained with CALL PYLIST(11). Particles are grouped together, and the basic
rules are described for each group. Whenever a distinct antiparticle exists, it is given the
same KF code with a minus sign (whereas KC codes are always positive).

1. Quarks and leptons, Table 5.

This group contains the basic building blocks of matter, arranged according to
family, with the lower member of weak isodoublets also having the smaller code
(thus d precedes u). A fourth generation is included as part of the scenarios for
exotic physics. The quark codes are used as building blocks for the diquark, meson
and baryon codes below.

2. Gauge bosons and other fundamental bosons, Table 6.

This group includes all the gauge and Higgs bosons of the standard model, as well
as some of the bosons appearing in various extensions of it. They correspond to
one extra U(1) and one extra SU(2) group, a further Higgs doublet, a graviton,
a horizontal gauge boson R (coupling between families), and a (scalar) leptoquark
Lq.

3. Exotic particle codes.

The positions 43-80 are used as temporary sites for exotic particles that eventually
may be shifted to a separate code sequence. Currently this list is empty. The ones
not in use are at your disposal (but with no guarantees that they will remain so).

4. Various special codes, Table 7.

In a Monte Carlo, it is always necessary to have codes that do not correspond to
any specific particle, but are used to lump together groups of similar particles for
decay treatment (nowadays largely obsolete), to specify generic decay products (also
obsolete), or generic intermediate states in external processes, or additional event
record information from jet searches. These codes, which again are non-standard,
are found between numbers 81 and 100.

49

Table 6: Gauge boson and other fundamental boson codes.

KF | Name | Printed || KF | Name | Printed

21 g g 31

22 0l gamma | 32 | Z° Z°0

23| 7° Z0 33| 70 Z"0

24 | W+t W+ 34 | W't W+

25| h° hO 35| HY HO

26 36 | A° A0

27 37| Ht H+

28 38

29 39 G Graviton

30 40

41| RO RO
42 | Lg LQ
Table 7: Various special codes.

KF | Printed Meaning
81 | specflav | Spectator flavour; used in decay-product listings
82 | rndmflav | A random u, d, or s flavour; possible decay product
83 | phasespa Simple isotropic phase-space decay
84 | c-hadron Information on decay of generic charm hadron
85 | b-hadron Information on decay of generic bottom hadron
86
87
88
89 (internal use for unspecified resonance data)
90 system Intermediate pseudoparticle in external process
91 | cluster Parton system in cluster fragmentation
92 string Parton system in string fragmentation
93 indep. Parton system in independent fragmentation
94 | CMshower Four-momentum of time-like showering system
95 | SPHEaxis Event axis found with PYSPHE
96 | THRUaxis Event axis found with PYTHRU
97 | CLUSjet Jet (cluster) found with PYCLUS
98 | CELLjet Jet (cluster) found with PYCELL
99 table Tabular output from PYTABU
100

20

Table 8: Diquark codes. For brevity, diquarks containing ¢ or b quarks are not
listed, but are defined analogously.

KF | Name | Printed | KF | Name | Printed
1103 | dd; dd_1
2101 | udg ud_0 2103 | ud, ud_1
2203 | uwnyy uu_1
3101 | sdg sd_0 3103 | sdy sd_1
3201 | sug su0 3203 | suy su_l
3303 Ss1 ss_1

5. Diquark codes, Table 8.

A diquark made up of a quark with code ¢ and another with code j, where ¢ > j,

and with total spin s, is given the code

KF = 10007 4+ 1005 +2s + 1, (16)

i.e. the tens position is left empty (cf. the baryon code below). Some of the most
frequently used codes are listed in the table. All the lowest-lying spin 0 and 1

diquarks are included in the program.
6. Meson codes, Tables 9 and 10.

A meson made up of a quark with code ¢ and an antiquark with code —j, j # 1,

and with total spin s, is given the code

KF = {100 max(, j) + 10min(4, j) + 2s + 1} sign(i — j) (—1)mex@3) | (17)

assuming it is not orbitally or radially excited. Note the presence of an extra — sign
if the heaviest quark is a down-type one. This is in accordance with the particle—

antiparticle distinction adopted in the 1986 Review of Particle Properties |

It means for example that a B meson contains a b antiquark rather than a b quark.
The flavour-diagonal states are arranged in order of ascending mass. Thus the
obvious generalization of eq. (17) to KF = 110i + 2s + 1 is only valid for charm and
bottom. The lighter quark states can appear mixed, e.g. the 7° (111) is an equal

mixture of dd (naively code 111) and ul (naively code 221).

The standard rule of having the last digit of the form 2s+1 is broken for the K3-K¢
system, where it is 0, and this convention should carry over to mixed states in the
B meson system, should one choose to define such. For higher multiplets with the
same spin, 10000, £20000, etc., are added to provide the extra distinction needed.

Some of the most frequently used codes are given below.

The full lowest-lying pseudoscalar and vector multiplets are included in the program,

Table 9.

Also the lowest-lying orbital angular momentum L = 1 mesons are included, Table
10: one pseudovector multiplet obtained for total quark-spin 0 (L = 1,5 =0 =
J = 1) and one scalar, one pseudovector and one tensor multiplet obtained for total
quark-spin 1 (L = 1,5 =1 = J = 0,1 or 2), where J is what is conventionally
called the spin s of the meson. Any mixing between the two pseudovector multiplets
is not taken into account. Please note that some members of these multiplets have
still not been found, and are included here only based on guesswork. Even for known
ones, the information on particles (mass, width, decay modes) is highly incomplete.

Only two radial excitations are included, the 1" = ¢(2S) and T/ = T(25).
7. Baryon codes, Table 11.

A baryon made up of quarks i, j and k, with ¢ > j > k, and total spin s, is given

o1

Table 9: Meson codes, part 1.

KF | Name | Printed || KF | Name | Printed

211 | = pi+ 213 | p* rho+
311 | K° KO 313 | K K*0
321 | KT K+ 323 | K** K*+
411 | D* D+ 413 | D*+ D+
421 | D DO 423 | D* D*0
431 | Df Ds+ || 433 | D:F D*_s+
511 | B° BO 513 | B* B*0
521 | BT B+ 523 | B*T B+

531 | BY BsO | 533 | B B*_s0

S

541 | Bf Bc+ | 543 | Bif Bx_c+

111 0 pio 113 p° rho0
221 n eta 223 w omega
331 n eta’ 333) phi

41 | 1. etac | 443 | J/¢ | J/psi

551 b etab | 553 T Upsilon
130 | K¢ K L0
310 | K3 K_S0

the code
KF = 10007 + 1005 + 10k 4+ 2s + 1 . (18)

An exception is provided by spin 1/2 baryons made up of three different types of
quarks, where the two lightest quarks form a spin-0 diquark (A-like baryons). Here
the order of the 57 and k quarks is reversed, so as to provide a simple means of
distinction to baryons with the lightest quarks in a spin-1 diquark (¥-like baryons).
For hadrons with heavy flavours, the root names are Lambda or Sigma for hadrons
with two u or d quarks, Xi for those with one, and Omega for those without u or d
quarks.

Some of the most frequently used codes are given in Table 11. The full lowest-lying
spin 1/2 and 3/2 multiplets are included in the program.

. QCD effective states, Table 12.

We here include the pomeron IP and reggeon IR ‘particles’, which are important e.g.
in the description of diffractive scattering, but do not have a simple correspondence
with other particles in the classification scheme.

Also included are codes to be used for denoting diffractive states in PYTHIA, as part
of the event history. The first two digits here are 99 to denote the non-standard
character. The second, third and fourth last digits give flavour content, while the
very last one is 0, to denote the somewhat unusual character of the code. Only a
few codes have been introduced with names; depending on circumstances these also
have to double up for other diffractive states. Other diffractive codes for strange
mesons and baryon beams are also accepted by the program, but do not give nice
printouts.

. Supersymmetric codes, Table 13.

Susy doubles the number of states of the Standard Model (at least). Fermions
have separate spartners to the left- and right-handed components. In the third
generation these are assumed to mix to nontrivial mass eigenstates, while mixing

D2

Table 10: Meson codes, part 2. For brevity, states with b quark are omitted from
this listing, but are defined in the program.

10.

11.

12.

KF Name | Printed KF Name | Printed

10213 | by b 1+ 10211 | ag a 0+
10313 | K9 K_10 10311 | K;° | K*_00
10323 | Ki K 1+ 10321 | Kt | K+ 0+
10413 | Dy D_1+ 10411 | Dgt | Dx 0+
10423 | DY D_10 10421 | Dy’ | D*_00
10433 | D, D_1s+ 10431 | Dgf | Dx_0s+
10113 | bY b_10 10111 | af a_00
10223 | hY h_10 10221 | f§ £.00

10333 | hY h’ 10 10331 | £ £2.00
10443 | hY, h_1c0 10441 | x5, | chi_ 0cO
20213 | aj a1+ 215 ag a 2+
20313 | K3° K*_10 315 | K3° | Kx20
20323 | Ki* K*_1+ 325 | K3t | Kx.2+
20413 | Dit D*_1+ 415 | D3yt | Dx2+
20423 | Dp° D*_10 425 | D3 | D*x_20
20433 | Dif | Dx_1s+ 435 | D3f | D 2s+
20113 al a_10 115 ad a_20
20223 £ £ 10 225 £ £ 20
20333 | f}° £2.10 335 £ £2.20
20443 | % | chi1co | 445 | 9. | chi_2c0
100443 | psi’
100553 | YY" | Upsilon’

is not included in the first two. Note that all sparticle names begin with a tilde.
Default masses are arbitrary and branching ratios not set at all. This is taken care
of at initialization if IMSS(1) is positive.

Technicolor codes, Table 14.

A set of colourless and coloured technihadrons have been included, the latter specif-
ically for the case of Topcolor assisted Technicolor. Where unclear, indices 1 or 8
denote the colour multiplet. Then there are coloured technirhos and technipions that
can mix with the Coloron (or Vg) associated with the breaking of SU(3)2xSU(3)3
to ordinary SU(3)¢ (where the 2 and 3 indices refer to the first two and the third
generation, respectively).

The . belongs to an older iteration of Technicolor modelling than the rest. It was
originally given the 3000221 code, and thereby now comes to clash with the W/?C of
the current main scenario. Since the n. is one-of-a-kind, it was deemed better to
move it to make way for the 7/ SC. This leads to a slight inconsistency with the PDG
codes.

Excited fermion codes, Table 15.

A first generation of excited fermions are included.

Exotic particle codes, Table 16.

This section includes the excited graviton, as the first (but probably not last) man-
ifestation of the possibility of large extra dimensions. Although it is not yet in the

23

Table 11: Baryon codes. For brevity, some states with b quarks or multiple ¢ ones
are omitted from this listing, but are defined in the program.

KF | Name Printed KF | Name Printed

1114 | A~ Delta-
2112 n n0 2114 | A° Delta0l
2212 p p+ 2214 | AT Delta+
2224 | A*TT Delta++
3112 | X~ Sigma- 3114 | X*~ Sigmax-

3122 | A° Lambda0
3212 | X° Sigma0l 3214 | 30 Sigmax*0
3222 | ¥t Sigma+ || 3224 | X*t Sigma*+
3312 | =7 Xi- 3314 | =7 Xix-
3322 =0 Xio 3324 | =% Xi*0
3334 | Q~ Omega-
4112 | X0 Sigma cO | 4114 | X0 Sigmax*_cO
4122 | A} | Lambda c+
4212 | Xt | Sigma c+ | 4214 | X*T | Sigmax c+
4222 | Xt | Sigma c++ | 4224 | XX | Sigmax c++

4132 | =0 Xi_cO
4312 | =N Xi’ cO || 4314 | =0 Xi*_c0
4232 | =T Xi c+
4322 | =F Xi’ c+ || 4324 | =¢F Xi*_c+

4332 | Q0 Omega cO || 4334 | Q*° | Omega* cO
o112 | Xy Sigma b- | 5114 | X{~ | Sigma*_b-
5122 | A} | Lambda b0
5212 | XY | Sigma b0 | 5214 | X0 | Sigmax b0
5222 | X | Sigma b+ | 5224 | X" | Sigmax b+

Table 12: QCD effective states.

KF Printed Meaning
110 reggeon reggeon IR
990 pomeron pomeron [P

9900110 | rho_diff0 | Diffractive 7°/p°/~ state
9900210 | pi diffr+ Diffractive 7 state
9900220 | omega_di0 Diffractive w state
9900330 | phi_diff0 Diffractive ¢ state
9900440 | J/psi_di0 Diffractive J /1) state
9902110 | n.diffr Diffractive n state
9902210 | p_diffr+ Diffractive p state

o4

Table 13: Supersymmetric codes.

KF Name | Printed KF Name Printed
1000001 | dy, ~d.L | 2000001 | dg ~d R
1000002 | 1y, ~u_L 2000002 | 1g ~u_R
1000003 S, ~s_L 2000003 Sk ~s_R
1000004 ¢, ~c_L 2000004 | ¢g ~cR
1000005 | by ~b_1 || 2000005 | b, ~b_2
1000006 |t ~t_1 2000006 | to ~t 2
1000011 ér, ~e_L- 2000011 €r ~e_R-
1000012 | vgp, ~nu_eL 2000012 | Uug ~nu_eR
1000013 | jip ~mu_L- | 2000013 | [ig ~mu_R-
1000014 | .1 ~numul | 2000014 | ©»,g ~nu_muR
1000015 T ~tau_L- | 2000015 Ty ~tau_R-
1000016 | ©,r | ~nu_taul | 2000016 | 7.g ~nu_tauR
1000021 g ~g 1000025 | X9 ~chi_30
1000022 | X9 | ~chi 10 || 1000035 | X} ~chi 40
1000023 | X9 ~chi_20 | 1000037 | 3 ~chi_2+
1000024 | ¥{ | ~chi_1+ | 1000039 | G | ~Gravitino

Table 14: Technicolor codes.

KF Name Printed KF Name Printed
3000111 | 72 pi_tcO 3100021 | Vg e V8_tc
3000211 | 7 pi_tc+ 3100111 WSQ’MC pi22.1 tc
3000221 | 7', | pi’-tcO | 3200111 | 78,4, | pi-22-8_tc
3000113 | p% | rhotcO | 3100113 | pY .. | rho-11 tc
3000213 | pL rho_tc+ | 3200113 p(fQ’tC rho_12_tc
3000223 | wy, | omega_tcO | 3300113 | pY . | rho 21 tc
3000331 | mc etatcO | 3400113 | pY,. | rho 22 tc

Table 15: Excited fermion codes.
KF Name | Printed KF Name | Printed
4000001 u* d* 4000011 e e*x-
4000002 | d* uk 4000012 | v} nu*_e0

25

Table 16: Exotic particle codes.

KF Name Printed KF Name | Printed
5000039 G* Graviton*
9900012 | Vge nu_Re 9900023 | Z% Z_RO
9900014 | vg, nu_Rmu 9900024 | W§ W_R+
9900016 | vg, nu_Rtau 9900041 | Hf* | H.L++
9900042 | HAT | HR++

PDG standard, we assume that such states will go in a new series of numbers.
Included is also a set of particles associated with an extra SU(2) gauge group for
righthanded states, as required in order to obtain a left-right symmetric theory at
high energies. This includes righthanded (Majorana) neutrinos, righthanded Z% and
W7 gauge bosons, and both left- and righthanded doubly charged Higgses. Such a
scenario would also contain other Higgs states, but these do not bring anything new
relative to the ones already introduced, from an observational point of view. Here
the first two digits are 99 to denote the non-standard character.

A hint on large particle numbers: if you want to avoid mistyping the number of zeros,

it may pay off to define a statement like

PARAMETER (KSUSY1=1000000,KSUSY2=2000000,KTECHN=3000000,
&KEXCIT=4000000,KDIMEN=5000000)

at the beginning of your program and then refer to particles as KSUSY1+1 = d; and so
on. This then also agrees with the internal notation (where feasible).

5.2 The Event Record

Each new event generated is in its entirety stored in the common block PYJETS, which
thus forms the event record. Here each parton or particle that appears at some stage
of the fragmentation or decay chain will occupy one line in the matrices. The different
components of this line will tell which parton/particle it is, from where it originates, its
present status (fragmented/decayed or not), its momentum, energy and mass, and the
space—time position of its production vertex. Note that K(I,3)-K(I,5) and the P and V
vectors may take special meaning for some specific applications (e.g. sphericity or cluster
analysis), as described in those connections.

The event history information stored in K(I,3)-K(I,5) should not be taken too lit-
erally. In the particle decay chains, the meaning of a mother is well-defined, but the
fragmentation description is more complicated. The primary hadrons produced in string
fragmentation come from the string as a whole, rather than from an individual parton.
Even when the string is not included in the history (see MSTU(16)), the pointer from
hadron to parton is deceptive. For instance, in a qgq event, those hadrons are pointing
towards the q (@) parton that were produced by fragmentation from that end of the string,
according to the random procedure used in the fragmentation routine. No particles point
to the g. This assignment seldom agrees with the visual impression, and is not intended
to.

The common block PYJETS has expanded with time, and can now house 4000 entries.
This figure may seem ridiculously large, but actually the previous limit of 2000 was
often reached in studies of high-p, processes at the LHC (and SSC). This is because
the event record contains not only the final particles, but also all intermediate partons
and hadrons, which subsequently showered, fragmented or decayed. Included are also a
wealth of photons coming from 7% decays; the simplest way of reducing the size of the

26

event record is actually to switch off 7° decays by MDCY(PYCOMP(111),1)=0. Also note
that some routines, such as PYCLUS and PYCELL, use memory after the event record proper
as a working area. Still, to change the size of the common block, upwards or downwards,
is easy: just do a global substitute in the common block and change the MSTU(4) value to
the new number. If more than 10000 lines are to be used, the packing of colour information
should also be changed, see MSTU(5).

COMMON/PYJETS/N,NPAD,K(4000,5) ,P(4000,5),V(4000,5)

Purpose:

NPAD :

K(I,1)

=11

=12 :

= 13 :

=14 .

= 15 :

=21

= 31

= 32 :

to contain the event record, i.e. the complete list of all partons and particles
(initial, intermediate and final) in the current event. (By parton we here
mean the subclass of particles that carry colour, for which extra colour flow
information is then required. Normally this means quarks and gluons, which
can fragment to hadrons, but also squarks and other exotic particles fall in
this category.)

number of lines in the K, P and V matrices occupied by the current event. N
is continuously updated as the definition of the original configuration and the
treatment of fragmentation and decay proceed. In the following, the individual
parton/particle number, running between 1 and N, is called I.

dummy to ensure an even number of integers before the double precision reals,
as required by some compilers.

status code KS, which gives the current status of the parton/particle stored in
the line. The ground rule is that codes 1-10 correspond to currently existing
partons/particles, while larger codes contain partons/particles which no longer

exist, or other kinds of event information.

empty line.

an undecayed particle or an unfragmented parton, the latter being either
a single parton or the last one of a parton system.

an unfragmented parton, which is followed by more partons in the same
colour-singlet parton system.

an unfragmented parton with special colour flow information stored in
K(I,4) and K(I,5), such that adjacent partons along the string need
not follow each other in the event record.

a particle which could have decayed, but did not within the allowed
volume around the original vertex.

a particle which is to be forced to decay in the next PYEXEC call, in the
vertex position given (this code is only set by user intervention).

a decayed particle or a fragmented parton, the latter being either a single
parton or the last one of a parton system, cf. =1.

a fragmented parton, which is followed by more partons in the same
colour-singlet parton system, cf. =2. Further, a B meson which decayed
as a B one, or vice versa, because of B-B mixing, is marked with this
code rather than =11.

a parton which has been removed when special colour flow information
has been used to rearrange a parton system, cf. =3.

a parton which has branched into further partons, with special colour-
flow information provided, cf. =3.

a particle which has been forced to decay (by user intervention), cf. =5.
documentation lines used to give a compressed story of the event at the
beginning of the event record.

lines with information on sphericity, thrust or cluster search.

tabular output, as generated by PYTABU.

o7

A

K(I,2)
K(I,3)

K(I,4)

K(I,5)

P(I,1)
P(1,2)
P(I,3)
P(I,4)
P(I,5)

V(I,1)
V(I,2)
V(I,3)
V(I,4)
V(I,5)

O

junction (currently not fully implemented).
these codes are never used by the program, and are therefore usually
not affected by operations on the record, such as PYROBO, PYLIST and
event-analysis routines (the exception is some PYEDIT calls, where lines
are moved but not deleted). Such codes may therefore be useful in some
connections.
particle KF code, as described in section 5.1.
line number of parent particle, where known, otherwise 0. Note that the
assignment of a particle to a given parton in a parton system is unphysical,
and what is given there is only related to the way the fragmentation was
generated.
normally the line number of the first daughter; it is 0 for an undecayed particle
or unfragmented parton.
For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information
(for internal use only) of the form
K(I,4) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,
where ICFR and ICTO give the line numbers of the partons from which the
colour comes and to where it goes, respectively; MCFR and MCTO originally
are 0 and are set to 1 when the corresponding colour connection has been traced
in the PYPREP rearrangement procedure. (The packing may be changed with
MSTU(5).) The ‘from’ colour position may indicate a parton which branched
to produce the current parton, or a parton created together with the current
parton but with matched anticolour, while the ‘to’ normally indicates a parton
that the current parton branches into. Thus, for setting up an initial colour
configuration, it is normally only the ‘from’ part that is used, while the ‘to’
part is added by the program in a subsequent call to parton-shower evolution
(for final-state radiation; it is the other way around for initial-state radiation).
Note: normally most users never have to worry about the exact rules for
colour-flow storage, since this is used mainly for internal purposes. However,
when it is necessary to define this flow, it is recommended to use the PYJOIN
routine, since it is likely that this would reduce the chances of making a mis-
take.
normally the line number of the last daughter; it is 0 for an undecayed particle
or unfragmented parton.
For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information
(for internal use only) of the form
K(I,5) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,
where ICFR and ICTO give the line numbers of the partons from which the
anticolour comes and to where it goes, respectively; MCFR and MCTO orig-
inally are 0 and are set to 1 when the corresponding colour connection has
been traced in the PYPREP rearrangement procedure. For further discussion,
see K(I,4).

. Pz, momentum in the x direction, in GeV/c.
: py, momentum in the y direction, in GeV/ec.
. p., momentum in the z direction, in GeV/ec.

E, energy, in GeV.

m, mass, in GeV/c?. In parton showers, with space-like virtualities, i.e. where
Q? = —m? > 0, one puts P(I,5)= —Q.

x position of production vertex, in mm.

y position of production vertex, in mm.

z position of production vertex, in mm.

time of production, in mm/c (~ 3.33 x 10712 s).

proper lifetime of particle, in mm/c (= 3.33 x 107'2 s). If the particle is not

o8

expected to decay, V(I,5)=0. A line with K(I,1)=4, i.e. a particle that could
have decayed, but did not within the allowed region, has the proper non-zero
V(I,5).

In the absence of electric or magnetic fields, or other disturbances, the decay
vertex VP of an unstable particle may be calculated as

VP(j) = V(I,j) + V(I,5)*P(I,j)/P(1,5),] = 1+4.

5.3 How The Event Record Works

The event record is the main repository for information about an event. In the generation
chain, it is used as a ‘scoreboard’ for what has already been done and what remains to
do. This information can be studied by you, to access information not only about the
final state, but also about what came before.

5.3.1 A simple example

The first example of section 3.5 may help to clarify what is going on. When PY2ENT is
called to generate a qq pair, the quarks are stored in lines 1 and 2 of the event record,
respectively. Colour information is set to show that they belong together as a colour
singlet. The counter N is also updated to the value of 2. At no stage is a previously
generated event removed. Lines 1 and 2 are overwritten, but lines 3 onwards still contain
whatever may have been there before. This does not matter, since N indicates where the
‘real’ record ends.

As PYEXEC is called, explicitly by you or indirectly by PY2ENT, the first entry is con-
sidered and found to be the first parton of a system. Therefore the second entry is also
found, and these two together form a colour singlet parton system, which may be allowed
to fragment. The ‘string’ that fragments is put in line 3 and the fragmentation products
in lines 4 through 10 (in this particular case). At the same time, the q and @ in the first
two lines are marked as having fragmented, and the same for the string. At this stage, N
is 10. Internally in PYEXEC there is another counter with the value 2, which indicates how
far down in the record the event has been studied.

This second counter is gradually increased by one. If the entry in the corresponding
line can fragment or decay, then fragmentation or decay is performed. The fragmenta-
tion/decay products are added at the end of the event record, and N is updated accordingly.
The entry is then also marked as having been treated. For instance, when line 3 is con-
sidered, the ‘string’ entry of this line is seen to have been fragmented, and no action is
taken. Line 4, a pT, is allowed to decay to 77 7%; the decay products are stored in lines 11
and 12, and line 4 is marked as having decayed. Next, entry 5 is allowed to decay. The
entry in line 6, 7, is a stable particle (by default) and is therefore passed by without any
action being taken.

In the beginning of the process, entries are usually unstable, and N grows faster than
the second counter of treated entries. Later on, an increasing fraction of the entries are
stable end products, and the roles are now reversed, with the second counter growing
faster. When the two coincide, the end of the record has been reached, and the process
can be stopped. All unstable objects have now been allowed to fragment or decay. They
are still present in the record, so as to simplify the tracing of the history.

Notice that PYEXEC could well be called a second time. The second counter would then
start all over from the beginning, but slide through until the end without causing any
action, since all objects that can be treated already have been. Unless some of the relevant
switches were changed meanwhile, that is. For instance, if 7° decays were switched off
the first time around but on the second, all the 7%’s found in the record would be allowed
to decay in the second call. A particle once decayed is not ‘undecayed’, however, so if the
7% is put back stable and PYEXEC is called a third time, nothing will happen.

29

5.3.2 Complete PYTHIA events

In a full-blown event generated with PYTHIA, the usage of PYJETS is more complicated,
although the general principles survive. PYJETS is used extensively by many of the gener-
ation routines; indeed it provides the bridge between many of them. The PYTHIA event
listing begins (optionally) with a few lines of event summary, specific to the hard process
simulated and thus not described in the overview above. These specific parts are covered
in the following.

In most instances, only the particles actually produced are of interest. For
MSTP(125)=0, the event record starts off with the parton configuration existing after
hard interaction, initial- and final-state radiation, multiple interactions and beam rem-
nants have been considered. The partons are arranged in colour singlet clusters, ordered
as required for string fragmentation. Also photons and leptons produced as part of the
hard interaction (e.g. from qq — g7y or ut — Z° — eTe™) appear in this part of the event
record. These original entries appear with pointer K(I,3)=0, whereas the products of the
subsequent fragmentation and decay have K(I,3) numbers pointing back to the line of
the parent.

The standard documentation, obtained with MSTP (125)=1, includes a few lines at the
beginning of the event record, which contain a brief summary of the process that has taken
place. The number of lines used depends on the nature of the hard process and is stored
in MSTI(4) for the current event. These lines all have K(I,1)=21. For all processes, lines
1 and 2 give the two incoming particles. When listed with PYLIST, these two lines will be
separated from subsequent ones by a sequence of ‘======" signs, to improve readability.
For diffractive and elastic events, the two outgoing states in lines 3 and 4 complete the
list. Otherwise, lines 3 and 4 contain the two partons that initiate the two initial-state
parton showers, and 5 and 6 the end products of these showers, i.e. the partons that
enter the hard interaction. With initial-state radiation switched off, lines 3 and 5 and
lines 4 and 6 are identical. For a simple 2 — 2 hard scattering, lines 7 and 8 give the
two outgoing partons/particles from the hard interaction, before any final-state radiation.
For 2 — 2 processes proceeding via an intermediate resonance such as v*/Z°, W= or h?,
the resonance is found in line 7 and the two outgoing partons/particles in 8 and 9. In
some cases one of these may be a resonance in its own right, or both of them, so that
further pairs of lines are added for subsequent decays. If the decay of a given resonance
has been switched off, then no decay products are listed either in this initial summary
or in the subsequent ordinary listing. Whenever partons are listed, they are assumed to
be on the mass shell for simplicity. The fact that effective masses may be generated by
initial- and final-state radiation is taken into account in the actual parton configuration
that is allowed to fragment, however. The listing of the event documentation closes with
another line made up of ‘======" signs.

A few examples may help clarify the picture. For a single diffractive event pp — paimP,
the event record will start with

I K(I,1) K(I,2) K(I,3) comment

1 21 2212 0 incoming p
2 21 -2212 0 incoming p
not part of record; appears in listings
3 21 9902210 1 outgoing paifr
4 21 -2212 2 outgoing p

again not part of record
The typical QCD 2 — 2 process would be

I K(I,1) K(I,2) K(I,3) comment

1 21 2212 0 incoming p

2 21 -2212 0 incoming p

60

3 21 2 1 u picked from incoming p

4 21 -1 2 d picked from incoming p

5 21 21 3 u evolved to g at hard scattering
6 21 -1 4 still d at hard scattering

7 21 21 0 outgoing g from hard scattering

8 21 -1 0 outgoing d from hard scattering

Note that, where well defined, the K(I,3) code does contain information as to which
side the different partons come from, e.g. above the gluon in line 5 points back to the u
in line 3, which points back to the proton in line 1. In the example above, it would have
been possible to associate the scattered g in line 7 with the incoming one in line 5, but
this is not possible in the general case, consider e.g. gg — gg.

A special case is provided by WHW— or Z°Z° fusion to an h®. Then the virtual W’s or
Z’s are shown in lines 7 and 8, the h” in line 9, and the two recoiling quarks (that emitted
the bosons) in 10 and 11, followed by the Higgs decay products. Since the W’s and Z’s are
space-like, what is actually listed as the mass for them is —v/—m2. Thus WTW~ fusion
to an h® in process 8 (not process 124, which is lengthier) might look like

I K(I,1) K(I,2) K(I,3) comment

1 21 2212 0 first incoming p
2 21 2212 0 second incoming p
3 21 2 1 u picked from first p
4 21 21 2 g picked from second p
5 21 2 3 still u after initial-state radiation
6 21 -4 4 g evolved to ©
7 21 24 5 space-like W' emitted by u quark
8 21 -24 6 space-like W™ emitted by € quark
9 21 25 0 Higgs produced by WTW~ fusion
10 21 1 5 u turned into d by emission of W+
11 21 -3 6 ¢ turned into S by emission of W~
12 21 23 9 first Z° coming from decay of h®
13 21 23 9 second Z° coming from decay of h°
14 21 12 12 v, from first Z° decay
15 21 -12 12 7, from first Z° decay
16 21 5 13 b quark from second Z° decay
17 21 -5 13 b antiquark from second Z° decay

Another special case is when a spectrum of virtual photons are generated inside a
lepton beam, i.e. when PYINIT is called with one or two ’gamma/lepton’ arguments.
Then the documentation section is expanded to reflect the new layer of administration.
Positions 1 and 2 contain the original beam particles, e.g. e and p (or et and e”). In
position 3 (and 4 for ete™) is (are) the scattered outgoing lepton(s). Thereafter comes
the normal documentation, but starting from the photon rather than a lepton. For ep,
this means 4 and 5 are the v* and p, 6 and 7 the shower initiators, 8 and 9 the incoming
partons to the hard interaction, and 10 and 11 the outgoing ones. Thus the documentation
is 3 lines longer (4 for eTe™) than normally.

After these lines with the initial information, the event record looks the same as
for MSTP(125)=0, i.e. first comes the parton configuration to be fragmented and, after
another separator line ‘======"in the output (but not the event record), the products
of subsequent fragmentation and decay chains. This ordinary listing begins in position
MST(4)+1. The K(I,3) pointers for the partons, as well as leptons and photons produced
in the hard interaction, are now pointing towards the documentation lines above, however.
In particular, beam remnants point to 1 or 2, depending on which side they belong to, and

61

partons emitted in the initial-state parton showers point to 3 or 4. In the second example
above, the partons produced by final-state radiation will be pointing back to 7 and §; as
usual, it should be remembered that a specific assignment to 7 or 8 need not be unique.
For the third example, final-state radiation partons will come both from partons 10 and
11 and from partons 16 and 17, and additionally there will be a neutrino—antineutrino
pair pointing to 14 and 15.

A hadronic event may contain several (semi)hard interactions, in the multiple inter-
actions scenario. The hardest interaction of an event is shown in the initial section of the
event record, while further ones are not. Therefore these extra partons, documented in
the main section of the event, do not have a documentation copy to point back to, and
so are assigned K(I,3)=0.

There exists a third documentation option, MSTP(125)=2. Here the history of initial-
and final-state parton branchings may be traced, including all details on colour flow. This
information has not been optimized for user-friendliness, and cannot be recommended for
general usage. With this option, the initial documentation lines are the same. They are
followed by blank lines, K(I,1)=0, up to line 100 (can be changed in MSTP(126)). From
line 101 onwards each parton with K(I,1)= 3, 13 or 14 appears with special colour-flow
information in the K(I,4) and K(I,5) positions. For an ordinary 2 — 2 scattering,
the two incoming partons at the hard scattering are stored in lines 101 and 102, and
the two outgoing in 103 and 104. The colour flow between these partons has to be
chosen according to the proper relative probabilities in cases when many alternatives are
possible, see section 8.2.1. If there is initial-state radiation, the two partons in lines 101
and 102 are copied down to lines 105 and 106, from which the initial-state showers are
reconstructed backwards step by step. The branching history may be read by noting that,
for a branching a — be, the K(I,3) codes of b and ¢ point towards the line number of a.
Since the showers are reconstructed backwards, this actually means that parton b would
appear in the listing before parton a and ¢, and hence have a pointer to a position below
itself in the list. Associated time-like partons ¢ may initiate time-like showers, as may
the partons of the hard scattering. Again a showering parton or pair of partons will be
copied down towards the end of the list and allowed to undergo successive branchings
¢ — de, with d and e pointing towards c¢. The mass of time-like partons is properly
stored in P(I,5); for space-like partons —v/—m? is stored instead. After this section,
containing all the branchings, comes the final parton configuration, properly arranged in
colour, followed by all subsequent fragmentation and decay products, as usual.

5.4 The HEPEVT Standard

A set of common blocks was developed and agreed on within the framework of the 1989
LEP physics study, see |]. This standard defines an event record structure which
should make the interfacing of different event generators much simpler.

It would be a major work to rewrite PYTHIA to agree with this standard event record
structure. More importantly, the standard only covers quantities which can be defined
unambiguously, i.e. which are independent of the particular program used. There are
thus no provisions for the need for colour-flow information in models based on string frag-
mentation, etc., so the standard common blocks would anyway have to be supplemented
with additional event information. For the moment, the adopted approach is therefore to
retain the PYJETS event record, but supply a routine PYHEPC which can convert to or from
the standard event record. Owing to a somewhat different content in the two records,
some ambiguities do exist in the translation procedure. PYHEPC has therefore to be used
with some judgement.

In this section, the standard event structure is first presented, i.e. the most important
points in | | are recapitulated. Thereafter the conversion routine is described, with
particular attention to ambiguities and limitations.

62

The standard event record is stored in two common blocks. The second of these is
specifically intended for spin information. Since PYTHIA never (explicitly) makes use of
spin information, this latter common block is not addressed here. A third common block
for colour flow information has been discussed, but never formalized. Note that a CALL
PYLIST(5) can be used to obtain a simple listing of the more interesting information in
the event record.

In order to make the components of the standard more distinguishable in your pro-
grams, the three characters HEP (for High Energy Physics) have been chosen to be a part
of all names.

Originally it was not specified whether real variables should be in single or double
precision. At the time, this meant that single precision became the default choice, but
since then the trend has been towards increasing precision. In connection with the 1995
LEP 2 workshop, it was therefore agreed to adopt DOUBLE PRECISION real variables as
part of the standard, and also to extend the size from 2000 to 4000 entries | |. If, for
some reason, one would want to revert to single precision, this would only require trivial
changes to the code of the PYHEPC conversion routine described below.

PARAMETER (NMXHEP=4000)
COMMON/HEPEVT/NEVHEP , NHEP , ISTHEP (NMXHEP) , IDHEP (NMXHEP) ,

&JMOHEP (2 ,NMXHEP) , JDAHEP (2 ,NMXHEP) , PHEP (5 ,NMXHEP) , VHEP (4 , NMXHEP)
DOUBLE PRECISION PHEP, VHEP

Purpose: to contain an event record in a Monte Carlo-independent format.

NMXHEP: maximum numbers of entries (particles) that can be stored in the common
block. The default value of 4000 can be changed via the parameter construc-
tion. In the translation, it is checked that this value is not exceeded.

NEVHEP: is normally the event number, but may have special meanings, according to
the description below:

>0 : event number, sequentially increased by 1 for each call to the main event
generation routine, starting with 1 for the first event generated.
=0 : for a program which does not keep track of event numbers, as some of
the PYTHIA routines.
= -1 special initialization record; not used by PYTHIA.
= -2 : special final record; not used by PYTHIA.
NHEP: the actual number of entries stored in the current event. These are found in the

first NHEP positions of the respective arrays below. Index IHEP, 1<THEP<NHEP,
is used below to denote a given entry.
ISTHEP (IHEP) : status code for entry IHEP, with the following meanings:

=0 : null entry.

=1 : an existing entry, which has not decayed or fragmented. This is the main
class of entries, which represents the ‘final state’ given by the generator.

=2 an entry which has decayed or fragmented and is therefore not appearing
in the final state, but is retained for event history information.

=3: a documentation line, defined separately from the event history. This

could include the two incoming reacting particles, etc.
4 - 10 : undefined, but reserved for future standards.
11 - 200 : at the disposal of each model builder for constructs specific to his
program, but equivalent to a null line in the context of any other program.
201 - : at the disposal of users, in particular for event tracking in the detector.
IDHEP (IHEP) : particle identity, according to the PDG standard. The four additional
codes 91-94 have been introduced to make the event history more legible, see
section 5.1 and the MSTU(16) description of how daughters can point back to

63

them.

JMOHEP (1,THEP) : pointer to the position where the mother is stored. The value is 0 for
initial entries.

JMOHEP (2,THEP) : pointer to position of second mother. Normally only one mother
exists, in which case the value 0 is to be used. In PYTHIA, entries with
codes 91-94 are the only ones to have two mothers. The flavour con-
tents of these objects, as well as details of momentum sharing, have to be
found by looking at the mother partons, i.e. the two partons in positions
JMOHEP (1, IHEP) and JMOHEP(2,IHEP) for a cluster or a shower system, and
the range JMOHEP (1,TIHEP)-JMOHEP(2,IHEP) for a string or an independent
fragmentation parton system.

JDAHEP (1,IHEP) : pointer to the position of the first daughter. If an entry has not
decayed, this is 0.

JDAHEP (2,THEP) : pointer to the position of the last daughter. If an entry has not
decayed, this is 0. It is assumed that daughters are stored sequentially, so
that the whole range JDAHEP (1,IHEP)-JDAHEP(2,IHEP) contains daughters.
This variable should be set also when only one daughter is present, as in
K® — K@ decays, so that looping from the first daughter to the last one works
transparently. Normally daughters are stored after mothers, but in backwards
evolution of initial-state radiation the opposite may appear, i.e. that mothers
are found below the daughters they branch into. Also, the two daughters then
need not appear one after the other, but may be separated in the event record.

PHEP(1,IHEP) : momentum in the z direction, in GeV/ec.

PHEP(2,IHEP) : momentum in the y direction, in GeV/c.

PHEP(3,IHEP) : momentum in the z direction, in GeV/c.

PHEP (4,IHEP) : energy, in GeV.

PHEP(5,IHEP) : mass, in GeV/c?. For space-like partons, it is allowed to use a negative
mass, according to PHEP (5, IHEP) = —v/ —m?.

VHEP (1,IHEP) : production vertex x position, in mm.

VHEP (2, IHEP) : production vertex y position, in mm.

VHEP (3,IHEP) : production vertex z position, in mm.

VHEP (4,THEP) : production time, in mm/c (& 3.33 x 1072 s).

This completes the brief description of the standard. In PYTHIA, the routine PYHEPC
is provided as an interface.

CALL PYHEPC (MCONV)

Purpose: to convert between the PYJETS event record and the HEPEVT event record.
MCONV : direction of conversion.

=1 : translates the current PYJETS record into the HEPEVT one, while leaving
the original PYJETS one unaffected.
=2 : translates the current HEPEVT record into the PYJETS one, while leaving

the original HEPEVT one unaffected.

The conversion of momenta is trivial: it is just a matter of exchanging the order of the
indices. The vertex information is but little more complicated; the extra fifth component
present in PYJETS can be easily reconstructed from other information for particles which
have decayed. (Some of the advanced features made possible by this component, such as
the possibility to consider decays within expanding spatial volumes in subsequent PYEXEC
calls, cannot be used if the record is translated back and forth, however.) Also, the
particle codes K(I,2) and IDHEP(I) are identical, since they are both based on the PDG
codes.

64

The remaining, non-trivial areas deal with the status codes and the event history. In
moving from PYJETS to HEPEVT, information on colour flow is lost. On the other hand, the
position of a second mother, if any, has to be found; this only affects lines with K(I,2)=
91-94. Also, for lines with K(I,1)= 13 or 14, the daughter pointers have to be found. By
and large, however, the translation from PYJETS to HEPEVT should cause little problem,
and there should never be any need for user intervention. (We assume that PYTHIA is run
with the default MSTU(16)=1 mother pointer assignments, otherwise some discrepancies
with respect to the proposed standard event history description will be present.)

In moving from HEPEVT to PYJETS, information on a second mother is lost. Any
codes IDHEP(I) not equal to 1, 2 or 3 are translated into K(I,1)=0, and so all entries
with K(I,1)> 30 are effectively lost in a translation back and forth. All entries with
IDHEP (I)=2 are translated into K(I,1)=11, and so entries of type K(I,1) = 12, 13, 14
or 15 are never found. There is thus no colour-flow information available for partons
which have fragmented. For partons with IDHEP(I)=1, i.e. which have not fragmented,
an attempt is made to subdivide the partonic system into colour singlets, as required
for subsequent string fragmentation. To this end, it is assumed that partons are stored
sequentially along strings. Normally, a string would then start at a q (q) or qq (qq) entry,
cover a number of intermediate gluons, and end at a @ (q) or qq (qq) entry. Particles
could be interspersed in this list with no adverse effects, i.e. a u — g — v — T sequence
would be interpreted as a u — g — 1 string plus an additional photon. A closed gluon loop
would be assumed to be made up of a sequential listing of the gluons, with the string
continuing from the last gluon up back to the first one. Contrary to the previous, open
string case, the appearance of any particle but a gluon would therefore signal the end of
the gluon loop. For example, a g — g — g — g sequence would be interpreted as one single
four-gluon loop, while a g — g — v — g — g sequence would be seen as composed of two
2-gluon systems.

If these interpretations, which are not unique, are not to your liking, it is up to you
to correct them, e.g. by using PYJOIN to tell exactly which partons should be joined, in
which sequence, to give a string. Calls to PYJOIN (or the equivalent) are also necessary if
PYSHOW is to be used to have some partons develop a shower.

For practical applications, one should note that eTe™ events, which have been allowed
to shower but not to fragment, do have partons arranged in the order assumed above,
so that a translation to HEPEVT and back does not destroy the possibility to perform
fragmentation by a simple PYEXEC call. Also the hard interactions in hadronic events
fulfil this condition, while problems may appear in the multiple interaction scenario,
where several closed gg loops may appear directly following one another, and thus would
be interpreted as a single multigluon loop after translation back and forth.

65

6 The Old ete” Annihilation Routines

From the JETSET package, PYTHIA inherits routines for the dedicated simulation of two
hard processes in eTe™ annihilation. The process of main interest is efe™ — v*/Z° — qq.
The description provided by the PYEEVT routine has been a main staple from PETRA days
up to the LEP1 era. Nowadays it is superseded by process 1 of the main PYTHIA event
generation machinery, see section 8.4.2. This latter process offers a better description of
flavour selection, resonance shape and initial-state radiation. It can also, optionally, be
used with the second-order matrix element machinery documented in this section. For
backwards compatibility, however, the old routines have still been retained here. There
are also a few features found in the routines in this section, and not in the other ones,
such as polarized incoming beams.

For the process eTe™ — ~*/Z° — qq, higher-order QCD corrections can be obtained
either with parton showers or with second-order matrix elements. The details of the
parton-shower evolution are given in section 10, while this section contains the matrix-
element description, including a summary of the older algorithm for initial-state photon
radiation used here.

The other standalone hard process in this section is T decay to ggg or vgg, which is
briefly commented on.

The main sources of information for this chapter are refs. | , ,].

6.1 Annihilation Events in the Continuum

The description of ete™ annihilation into hadronic events involves a number of compo-
nents: the s dependence of the total cross section and flavour composition, multiparton
matrix elements, angular orientation of events, initial-state photon bremsstrahlung and
effects of initial-state electron polarization. Many of the published formulae have been
derived for the case of massless outgoing quarks. For each of the components described in
the following, we will begin by discussing the massless case, and then comment on what
is done to accommodate massive quarks.

6.1.1 Electroweak cross sections

In the standard theory, fermions have the following couplings (illustrated here for the first
generation):

e, =0, v, = 1, a, =1,
e = —1, Ve = —1 + 4sin?fyy, a. = —1,
ew=2/3, wvy=1-8sin*0y /3, a,=1,
ea=—1/3, vqg=—1+4sin*0y /3, aq=—1,

with e the electric charge, and v and a the vector and axial couplings to the Z°. The
relative energy dependence of the weak neutral current to the electromagnetic one is given

by
1 S

16 sin®0y; cos20y s — mz + imgly

X(s)

where s = E2_. In this section the electroweak mixing parameter sin’fy, and the Z° mass
my and width 'y, are considered as constants to be given by you (while the full PyTHIA
event generation machinery itself calculates an s-dependent width).

Although the incoming et and e~ beams are normally unpolarized, we have included

(19)

the possibility of polarized beams, following the formalism of | |. Thus the incoming
et and e~ are characterized by polarizations P* in the rest frame of the particles:
P* = Pis* + PFp* | (20)

66

where 0 < P% <land —1< Pf < 1, with the constraint

(PE)? = (Pr)* +(PL)*<1. (21)
Here 8 are unit vectors perpendicular to the beam directions p*. To be specific, we
choose a right-handed coordinate frame with p* = (0,0, F1), and standard transverse
polarization directions (out of the machine plane for storage rings) §* = (0,41,0), the
latter corresponding to azimuthal angles p* = +7/2. As free parameters in the program
we choose P, P, Pr = \/P{ Py and Ap = (o +¢7)/2.
In the massless QED case, the probability to produce a flavour f is proportional to
e?, i.e up-type quarks are four times as likely as down-type ones. In lowest-order mass-
less QFD (Quantum Flavour Dynamics; part of the Standard Model) the corresponding
relative probabilities are given by []

he(s) = eg (1-PrPD) e? + 2e, {ve(l — PP —al(P — PLJF)} Rx(s) efve +
+ {2 +a2)(1 - BT P) = 2veae(PD — PO} IxGs)P {0 +a?} . (22)

where Rx(s) denotes the real part of x(s). The h¢(s) expression depends both on the s
value and on the longitudinal polarization of the e* beams in a non-trivial way.
The cross section for the process ete™ — +*/Z° — ff may now be written as

r(s) = T i) (23)

where Ry gives the ratio to the lowest-order QED cross section for the process ete™ —
T,

Rf(S) == NC RQCD hf(S) . (24)
The factor of No = 3 counts the number of colour states available for the qq pair. The

Rqep factor takes into account QCD loop corrections to the cross section. For ny effective
flavours (normally ny = 5)

Qg Qg 2
Rqcp & 14 = + (L986 — 0.115n,) (ﬂ) . (25)

in the MS renormalization scheme []. Note that Rqcp does not affect the relative
quark-flavour composition, and so is of peripheral interest here. (For leptons the N¢
and Rqcp factors would be absent, i.e. No Roep = 1, but leptonic final states are not
generated by this routine.)

Neglecting higher-order QCD and QFD effects, the corrections for massive quarks are

given in terms of the velocity [of a fermion with mass m¢, G = (/1 — 4m? /s, as follows.

The vector quark current terms in h; (proportional to €?, efvg, or v) are multiplied by a
threshold factor 3¢(3 — (3?)/2, while the axial vector quark current term (proportional to
a?) is multiplied by 8f. While inclusion of quark masses in the QFD formulae decreases
the total cross section, first-order QCD corrections tend in the opposite direction |].
Naively, one would expect one factor of 3; to get cancelled. So far, the available options
are either to include threshold factors in full or not at all.

Given that all five quarks are light at the scale of the Z°, the issue of quark masses
is not really of interest at LEP. Here, however, purely weak corrections are important, in
particular since they change the b quark partial width differently from that of the other
ones | |. No such effects are included in the program.

67

6.1.2 First-order QCD matrix elements

The Born process ete™ — qq is modified in first-order QCD by the probability for the q or
q to radiate a gluon, i.e. by the process ete™ — qqg. The matrix element is conveniently
given in terms of scaled energy variables in the c.m. frame of the event, xy = 2E,/FEy,
Ty = 2Eg/Eey, and x3 = 2B,/ Eoy, 1.€. 1 + 3 + 23 = 2. For massless quarks the matrix
element reads |

1 do oY z3 + 23
- - S 1 2 26
0o dxl diL‘Q 2m F (1 — .1'1)(1 — IEQ) ’ ()

where oy is the lowest-order cross section, Cr = 4/3 is the appropriate colour factor, and
the kinematically allowed region is 0 < x; < 1,7 = 1,2, 3. By kinematics, the z; variable
for parton k is related to the invariant mass m;; of the other two partons i and j by
Yig — Mg/ Hem ke - :

The strong coupling constant «j is in first order given by

127
(33 —2n¢) In(Q?/A%)

(@) = (27)

Conventionally Q? = s = E2_; we will return to this issue below. The number of flavours
ny is 5 for LEP applications, and so the A value determined is A5 (while e.g. most Deeply
Inelastic Scattering studies refer to Ay, the energies for these experiments being below
the bottom threshold). The oy values are matched at flavour thresholds, i.e. as ny is
changed the A value is also changed. It is therefore the derivative of ag that changes at
a threshold, not «y itself.

In order to separate 2-jets from 3-jets, it is useful to introduce jet-resolution param-
eters. This can be done in several different ways. Most famous are the y and (e, 0)
procedures. We will only refer to the y cut, which is the one used in the program. Here

a 3-parton configuration is called a 2-jet event if

2.
r%n(y”) = Hzlljn <E§;> <y. (28)

The cross section in eq. (26) diverges for #7 — 1 or x93 — 1 but, when first-order
propagator and vertex corrections are included, a corresponding singularity with opposite
sign appears in the qq cross section, so that the total cross section is finite. In analytical
calculations, the average value of any well-behaved quantity Q can therefore be calculated
as

(Q) = ! lim <Q(2parton) Taparton (V) —I—/ Q(x1,x2) w dz; dx2> , (29)

Otot ¥—0 Yig >y dx; dzsy

where any explicit y dependence disappears in the limit y — 0.

In a Monte Carlo program, it is not possible to work with a negative total 2-jet rate,
and thus it is necessary to introduce a fixed non-vanishing y cut in the 3-jet phase space.
Experimentally, there is evidence for the need of a low y cut, i.e. a large 3-jet rate. For
LEP applications, the recommended value is y = 0.01, which is about as far down as one
can go and still retain a positive 2-jet rate. With oy = 0.12, in full second-order QCD
(see below), the 2 : 3 : 4 jet composition is then approximately 11% : 77% : 12%.

Note, however, that initial-state QED radiation may occasionally lower the c.m. energy
significantly, i.e. increase as, and thereby bring the 3-jet fraction above unity if y is kept
fixed at 0.01 also in those events. Therefore, at PETRA/PEP energies, y values slightly
above 0.01 are needed. In addition to the y cut, the program contains a cut on the

68

invariant mass m;; between any two partons, which is typically required to be larger than
2 GeV. This cut corresponds to the actual merging of two nearby parton jets, i.e. where a
treatment with two separate partons rather than one would be superfluous in view of the
smearing arising from the subsequent fragmentation. Since the cut-off mass scale |/yEcn
normally is much larger, this additional cut only enters for events at low energies.

For massive quarks, the amount of QCD radiation is slightly reduced | |:

2
1 do :%CF{(x?+ 23 _4mq(1 N 1)

oo dx; day 21 1—x1)(1 — x9) s \1—2; 1—ua9

2m? 1 1 dmg 1 12
- + - () 1 -60)
s \(1—xz1)?2 (1 —x9)? s2 \l—x; 1—um

Properly, the above expression is only valid for the vector part of the cross section, with
a slightly different expression for the axial part, but here the one above is used for it all.
In addition, the phase space for emission is reduced by the requirement

(1 —1‘1)(1 —1'2)(1 —l’g) 2 EZ .

(31)

For b quarks at LEP energies, these corrections are fairly small.

6.1.3 4-jet matrix elements

Two new event types are added in second-order QCD, eTe™ — qqgg and ete™ — qqq'q.
The 4-jet cross section has been calculated by several groups |
which agree on the result. The formulae are too lengthy to be quoted here In one of the
calculations | |, quark masses were explicitly included, but here only the massless
expressions are included, as taken from | |. Here the angular orientation of the event
has been integrated out, so that five independent internal kinematical variables remain.
These may be related to the six y;; and the four y;;;, variables, y;; = m?j/s = (pi +p))?*/s
and yijx = my /s = (pi + pj + pi)?/s, in terms of which the matrix elements are given.

The original calculations were for the pure v-exchange case; it has been pointed out
[| that an additional contribution to the eTe™ — qqq'q cross section arises from the
axial part of the Z°. This term is not included in the program, but fortunately it is finite
and small.

Whereas the way the string, i.e. the fragmenting colour flux tube, is stretched is
uniquely given in qqg event, for qqgg events there are two possibilities: q —g; — gy — @
or q—gs — g1 —q. A knowledge of quark and gluon colours, obtained by perturbation
theory, will uniquely specify the stretching of the string, as long as the two gluons do not
have the same colour. The probability for the latter is down in magnitude by a factor
1/N% = 1/9. One may either choose to neglect these terms entirely, or to keep them for the
choice of kinematical setup, but then drop them at the choice of string drawing |].
We have adopted the latter procedure. Comparing the two possibilities, differences are
typically 10-20% for a given kinematical configuration, and less for the total 4-jet cross
section, so from a practical point of view this is not a major problem.

In higher orders, results depend on the renormalization scheme; we will use MS
throughout. In addition to this choice, several possible forms can be chosen for ay, all
of which are equivalent to that order but differ in higher orders. We have picked the
recommended standard |]

as(Q%) =

(32)

127 {1 6 153 — 19n; ln(ln(Qz/Ai/[S))}
(33 — 2ny) In(Q*/AZy) (33 —2n;)? In(Q*/AZy)

69

6.1.4 Second-order 3-jet matrix elements

As for first order, a full second-order calculation consists both of real parton emission
terms and of vertex and propagator corrections. These modify the 3-jet and 2-jet cross
sections. Although there was some initial confusion, everybody soon agreed on the size
of the loop corrections | ,]. In analytlc calculations, the procedure
of eq. (29), suitably expanded, can therefore be used unambiguously for a well-behaved
variable.

For Monte Carlo event simulation, it is again necessary to impose some finite jet-
resolution criterion. This means that four-parton events which fail the cuts should be
reassigned either to the 3-jet or to the 2-jet event class. It is this area that caused quite a
lot of confusion in the past | , ,], and where
full agreement does not exist. Most hkely, agreement Wlll never be reached, since there
are indeed ambiguous points in the procedure, related to uncertainties on the theoretical
side, as follows.

For the y-cut case, any two partons with an invariant mass mfj < yE?_ should be
recombined into one. If the four-momenta are simply added, the sum will correspond
to a parton with a positive mass, namely the original m,;. The loop corrections are
given in terms of final massless partons, however. In order to perform the (partial)
cancellation between the four-parton real and the 3-parton virtual contributions, it is
therefore necessary to get rid of the bothersome mass in the four-parton states. Several
recombinations are used in practice, which go under names such as ‘E’, ‘EQ’, ‘p’ and
‘p0” [|. In the ‘E’-type schemes, the energy of a recombined parton is given by
E;; = E; + E;, and three-momenta may have to be adjusted accordingly. In the ‘p’-
type schemes, on the other hand, three-momenta are added, p;; = p; + p;, and then
energies may have to be adjusted. These procedures result in different 3-jet topologies,
and therefore in different second-order differential 3-jet cross sections.

Within each scheme, a number of lesser points remain to be dealt with, in particular
what to do if a recombination of a nearby parton pair were to give an event with a non-qqg
flavour structure.

This code contains two alternative second-order 3-jet implementations, GKS and
ERT(Zhu). The latter is the recommended one and default. Other parameterizations
have also been made available that run together with JETSET 6 (but not adopted to the
current program), see |

The GKS option is based on the GKS [] calculation, where some of the original
mistakes in FKSS |] have been corrected. The GKS formulae have the advantage of
giving the second-order corrections in closed analytic form, as not-too-long functions of
x1, T9, and the y cut. However, it is today recognized, also by the authors, that important
terms are still missing, and that the matrix elements should therefore not be taken too
seriously. The option is thus kept mainly for backwards compatibility.

The ERT(Zhu) generator | | is based on the ERT matrix elements |], with
a Monte Carlo recombination procedure suggested by Kunszt | | and developed by
Ali | |. It has the merit of giving corrections in a convenient, parameterized form.

For practical applications, the main limitation is that the corrections are only given for
discrete values of the cut-off parameter y, namely y = 0.01, 0.02, 0.03, 0.04, and 0.05. At
these y values, the full second-order 3-jet cross section is written in terms of the ‘ratio
function’” R(X,Y;y), defined by

1 dof Qs

- = B AXY {1 B RX,Y: } , 33
opdXdY w of) +7T (v) (33)

where X = 21 — 29 = g —2q, ¥ = 23 = x4, 0¢ is the lowest-order hadronic cross

section, and Ay(X,Y) the standard first-order 3-jet cross section, cf. eq. (26). By Monte

Carlo integration, the value of R(X,Y’;y) is evaluated in bins of (X,Y’), and the result

parameterized by a simple function F(X,Y;y). Further details are found in |].

70

6.1.5 The matrix-element event generator scheme

The program contains parameterizations, separately, of the total first-order 3-jet rate, the
total second-order 3-jet rate, and the total 4-jet rate, all as functions of y (with oy as a
separate prefactor). These parameterizations have been obtained as follows:

e The first-order 3-jet matrix element is almost analytically integrable; some small

finite pieces were obtained by a truncated series expansion of the relevant integrand.
The GKS second-order 3-jet matrix elements were integrated for 40 different y-cut
values, evenly distributed in Iny between a smallest value y = 0.001 and the kine-
matical limit y = 1/3. For each y value, 250 000 phase-space points were generated,
evenly in dIn(1 — ;) = dz;/(1 — z;), i = 1,2, and the second-order 3-jet rate in
the point evaluated. The properly normalized sum of weights in each of the 40 y
points were then fitted to a polynomial in In(y~! — 2). For the ERT(Zhu) matrix
elements the parameterizations in eq. (33) were used to perform a corresponding
Monte Carlo integration for the five y values available.

The 4-jet rate was integrated numerically, separately for qqgg and qqq'q events, by
generating large samples of 4-jet phase-space points within the boundary y = 0.001.
Each point was classified according to the actual minimum y between any two
partons. The same events could then be used to update the summed weights for
40 different counters, corresponding to y values evenly distributed in Iny between
y = 0.001 and the kinematical limit y = 1/6. In fact, since the weight sums for large
y values only received contributions from few phase-space points, extra (smaller)
subsamples of events were generated with larger y cuts. The summed weights,
properly normalized, were then parameterized in terms of polynomials in In(y = —5).
Since it turned out to be difficult to obtain one single good fit over the whole range
of y values, different parameterizations are used above and below y = 0.018. As
originally given, the qqq'q’ parameterization only took into account four q' flavours,
i.e. secondary bb pairs were not generated, but this has been corrected for LEP.

In the generation stage, each event is treated on its own, which means that the ag and
y values may be allowed to vary from event to event. The main steps are the following.

1.

The y value to be used in the current event is determined. If possible, this is
the value given by you, but additional constraints exist from the validity of the
parameterizations (y > 0.001 for GKS, 0.01 < y < 0.05 for ERT(Zhu)) and an
extra (user-modifiable) requirement of a minimum absolute invariant mass between
jets (which translates into varying y cuts due to the effects of initial-state QED
radiation).

The ag value is calculated.

For the y and a4 values given, the relative two/three/four-jet composition is deter-
mined. This is achieved by using the parameterized functions of y for 3- and 4-jet
rates, multiplied by the relevant number of factors of as. In ERT(Zhu), where the
second-order 3-jet rate is available only at a few y values, intermediate results are
obtained by linear interpolation in the ratio of second-order to first-order 3-jet rates.
The 3-jet and 4-jet rates are normalized to the analytically known second-order to-
tal event rate, i.e. divided by Rqcp of eq. (25). Finally, the 2-jet rate is obtained
by conservation of total probability.

If the combination of y and «ayg values is such that the total 3- plus 4-jet fraction is
larger than unity, i.e. the remainder 2-jet fraction negative, the y-cut value is raised
(for that event), and the process is started over at point 3.

The choice is made between generating a 2-; 3- or 4-jet event, according to the
relative probabilities.

For the generation of 4-jets, it is first necessary to make a choice between qqgg
and qqq'q events, according to the relative (parameterized) total cross sections. A
phase-space point is then selected, and the differential cross section at this point is

71

evaluated and compared with a parameterized maximum weight. If the phase-space
point is rejected, a new one is selected, until an acceptable 4-jet event is found.

7. For 3-jets, a phase-space point is first chosen according to the first-order cross sec-
tion. For this point, the weight

Qg
Wz, z0;y) = 1+ ?R(%,%;y) (34)

is evaluated. Here R(xi,z;y) is analytically given for GKS |], while it is
approximated by the parameterization F/(X,Y’;y) of eq. (33) for ERT(Zhu). Again,
linear interpolation of F'(X,Y’;y) has to be applied for intermediate y values. The
weight W is compared with a maximum weight

Wiax(y) = 1+ %Rm(y) , (35)

which has been numerically determined beforehand and suitably parameterized. If
the phase-space point is rejected, a new point is generated, etc.

8. Massive matrix elements are not available for second-order QCD (but are in the
first-order option). However, if a 3- or 4-jet event determined above falls outside the
phase-space region allowed for massive quarks, the event is rejected and reassigned
to be a 2-jet event. (The way the y;; and y;;, variables of 4-jet events should
be interpreted for massive quarks is not even unique, so some latitude has been
taken here to provide a reasonable continuity from 3-jet events.) This procedure
is known not to give the expected full mass suppression, but is a reasonable first
approximation.

9. Finally, if the event is classified as a 2-jet event, either because it was initially so
assigned, or because it failed the massive phase-space cuts for 3- and 4-jets, the
generation of 2-jets is trivial.

6.1.6 Optimized perturbation theory

Theoretically, it turns out that the second-order corrections to the 3-jet rate are large. It is
therefore not unreasonable to expect large third-order corrections to the 4-jet rate. Indeed,
the experimental 4-jet rate is much larger than second order predicts (when fragmentation
effects have been included), if oy is determined based on the 3-jet rate | :

The only consistent way to resolve this issue is to go ahead and calculate the full next
order. This is a tough task, however, so people have looked at possible shortcuts. For
example, one can try to minimize the higher-order contributions by a suitable choice of
the renormalization scale |] — ‘optimized perturbation theory’. This is equivalent
to a different choice for the Q? scale in ag, a scale which is not unambiguous anyway.
Indeed the standard value Q* = s = E?_ is larger than the natural physical scale of
gluon emission in events, given that most gluons are fairly soft. One could therefore pick
another scale, Q? = fs, with f < 1. The O(as) 3-jet rate would be increased by such
a scale change, and so would the number of 4-jet events, including those which collapse
into 3-jet ones. The loop corrections depend on the ()? scale, however, and compensate
the changes above by giving a larger negative contribution to the 3-jet rate.

The possibility of picking an optimized scale f is implemented as follows |].

Assume that the differential 3-jet rate at scale Q* = s is given by the expression
Rs = riag + 1m0 (36)

where R3, r1 and ry are functions of the kinematical variables x; and x5 and the y cut,
as implied by the second-order formulae above, see e.g. eq. (33). When the coupling is
chosen at a different scale, Q"2 = fs, the 3-jet rate has to be changed to

R, = rjal +real? | (37)

s 7

72

I
where 7] =74,

33 — 2ny
T lom Inf, (38)

and o) = a4(fs). Since we only have the Born term for 4-jets, here the effects of a scale
change come only from the change in the coupling constant. Finally, the 2-jet cross section
can still be calculated from the difference between the total cross section and the 3- and
4-jet cross sections.

If an optimized scale is used in the program, the default value is f = 0.002, which is
favoured by the studies in ref. []. (In fact, it is also possible to use a correspondingly
optimized Rqcp factor, eq. (25), but then the corresponding f is chosen independently
and much closer to unity.) The success of describing the jet rates should not hide the fact
that one is dabbling in (educated, hopefully) guesswork, and that any conclusions based
on this method have to be taken with a pinch of salt.

One special problem associated with the use of optimized perturbation theory is that
the differential 3-jet rate may become negative over large regions of the (z1,zy) phase
space. This problem already exists, at least in principle, even for a scale f = 1, since 7y is
not guaranteed to be positive definite. Indeed, depending on the choice of y cut, ag value
and recombination scheme, one may observe a small region of negative differential 3-jet
rate for the full second-order expression. This region is centred around qqg configurations,
where the q and q are close together in one hemisphere and the g is alone in the other, i.e.
1 &~ ry ~ 1/2. It is well understood why second-order corrections should be negative in
this region | |: the q and @ of a qqg state are in a relative colour octet state, and thus
the colour force between them is repulsive, which translates into a negative second-order
term.

However, as f is decreased below unity, 7, receives a negative contribution from the In f
term, and the region of negative differential cross section has a tendency to become larger,
also after taking into account related changes in ag. In an event-generator framework,
where all events are supposed to come with unit weight, it is clearly not possible to
simulate negative cross sections. What happens in the program is therefore that no 3-jet
events at all are generated in the regions of negative differential cross section, and that
the 3-jet rate in regions of positive cross sections is reduced by a constant factor, chosen
so that the total number of 3-jet events comes out as it should. This is a consequence
of the way the program works, where it is first decided what kind of event to generate,
based on integrated 3-jet rates in which positive and negative contributions are added up
with sign, and only thereafter the kinematics is chosen.

Based on our physics understanding of the origin of this negative cross section, the
approach adopted is as sensible as any, at least to that order in perturbation theory (what
one might strive for is a properly exponentiated description of the relevant region). It can
give rise to funny results for low f values, however, as observed by OPAL |] for
the energy—energy correlation asymmetry.

/
Ty =To+ 171

6.1.7 Angular orientation

While pure y exchange gives a simple 1+ cos? # distribution for the q (and q) direction in
qq events, Z° exchange and ~*/Z° interference results in a forward-backward asymmetry.
If one introduces

hi(s) = 2e, {ae(l — P P0) —wo(P — Pﬁ“)} Rx(s)eras

+ {2veae(1 = PFP) = (02 + a2)(PL = BD} Ix(s)Porar . (39)
then the angular distribution of the quark is given by
d
d(COZQf) oc he(s)(1 + cos?® b) + 2h4(s) cos b . (40)

73

The angular orientation of a 3- or 4-jet event may be described in terms of three angles
X, 0 and ¢; for 2-jet events only 6 and ¢ are necessary. From a standard orientation, with
the q along the +z axis and the q in the xz plane with p, > 0, an arbitrary orientation may
be reached by the rotations +y in azimuthal angle, +6 in polar angle, and +¢ in azimuthal
angle, in that order. Differential cross sections, including QFD effects and arbitrary beam
polarizations have been given for 2- and 3-jet events in refs. | , |. We use the
formalism of ref. | |, with translation from their terminology according tox — m — x
and ¢~ — —(¢ + 7/2). The resulting formulae are tedious, but straightforward to apply,
once the internal jet configuration has been chosen. 4-jet events are approximated by 3-jet
ones, by joining the two gluons of a qqgg event and the ¢’ and @’ of a qqq'q’ event into one
effective jet. This means that some angular asymmetries are neglected | |, but that
weak effects are automatically included. It is assumed that the second-order 3-jet events
have the same angular orientation as the first-order ones, some studies on this issue may
be found in | |. Further, the formulae normally refer to the massless case; only for
the QED 2- and 3-jet cases are mass corrections available.

The main effect of the angular distribution of multijet events is to smear the lowest-
order result, i.e. to reduce any anisotropies present in 2-jet systems. In the parton-shower
option of the program, only the initial qq axis is determined. The subsequent shower
evolution then de facto leads to a smearing of the jet axis, although not necessarily in full
agreement with the expectations from multijet matrix-element treatments.

6.1.8 Initial-state radiation

Initial-state photon radiation has been included using the formalism of ref. |]. Here
each event contains either no photon or one, i.e. it is a first-order non-exponentiated
description. The main formula for the hard radiative photon cross section is

2
do Qe (ln s _1> 1+(1—=x,)

- 2
dx., T m2 Ty

a0(8) (41)

where ., is the photon energy fraction of the beam energy, § = (1 — z.,)s is the squared
reduced hadronic c.m. energy, and oy is the ordinary annihilation cross section at the
reduced energy. In particular, the selection of jet flavours should be done according to
expectations at the reduced energy. The cross section is divergent both for z, — 1 and
x, — 0. The former is related to the fact that oy has a 1/§ singularity (the real photon
pole) for § — 0. An upper cut on z, can here be chosen to fit the experimental setup.
The latter is a soft photon singularity, which is to be compensated in the no-radiation
cross section. A requirement z, > 0.01 has therefore been chosen so that the hard-
photon fraction is smaller than unity. In the total cross section, effects from photons
with z, < 0.01 are taken into account, together with vertex and vacuum polarization
corrections (hadronic vacuum polarizations using a simple parameterization of the more
complicated formulae of ref. | 1.

The hard photon spectrum can be integrated analytically, for the full v*/Z° structure
including interference terms, provided that no new flavour thresholds are crossed and that
the Rqcp term in the cross section can be approximated by a constant over the range
of allowed § values. In fact, threshold effects can be taken into account by standard
rejection techniques, at the price of not obtaining the exact cross section analytically, but
only by an effective Monte Carlo integration taking place in parallel with the ordinary
event generation. In addition to z., the polar angle 6, and azimuthal angle ¢, of the
photons are also to be chosen. Further, for the orientation of the hadronic system, a
choice has to be made whether the photon is to be considered as having been radiated
from the et or from the e™.

Final-state photon radiation, as well as interference between initial- and final-state
radiation, has been left out of this treatment. The formulae for ete™ — p™p~ cannot

74

be simply taken over for the case of outgoing quarks, since the quarks as such only live
for a short while before turning into hadrons. Another simplification in our treatment is
that effects of incoming polarized e* beams have been completely neglected, i.e. neither
the effective shift in azimuthal distribution of photons nor the reduction in polarization is
included. The polarization parameters of the program are to be thought of as the effective
polarization surviving after initial-state radiation.

6.1.9 Alternative matrix elements

The program contains two sets of ‘toy model’ matrix elements, one for an Abelian vector
gluon model and one for a scalar gluon model. Clearly both of these alternatives are
already excluded by data, and are anyway not viable alternatives for a consistent theory
of strong interactions. They are therefore included more as references to show how well
the characteristic features of QCD can be measured experimentally.

Second-order matrix elements are available for the Abelian vector gluon model. These
are easily obtained from the standard QCD matrix elements by a substitution of the
Casimir group factors: Cp =4/3 — 1, No =3 — 0, and T = ns/2 — 3n;s. First-order
matrix elements contain only C'r; therefore the standard first-order QCD results may be
recovered by a rescaling of ag by a factor 4/3. In second order the change of N¢ to 0
means that g — gg couplings are absent from the Abelian model, while the change of Tx
corresponds to an enhancement of the g — ¢'q’ coupling, i.e. to an enhancement of the
qaqq'q 4-jet event rate.

The second-order corrections to the 3-jet rate turn out to be strongly negative — if
ay is fitted to get about the right rate of 4-jet events, the predicted differential 3-jet rate
is negative almost everywhere in the (21, x2) plane. Whether this unphysical behaviour
would be saved by higher orders is unclear. It has been pointed out that the rate can
be made positive by a suitable choice of scale, since ag runs in opposite directions in an
Abelian model and in QCD |]. This may be seen directly from eq. (38), where the
term 33 = 11 N¢ is absent in the Abelian model, and therefore the scale-dependent term
changes sign. In the program, optimized scales have not been implemented for this toy
model. Therefore the alternatives provided for you are either to generate only 4-jet events,
or to neglect second-order corrections to the 3-jet rate, or to have the total 3-jet rate set
vanishing (so that only 2- and 4-jet events are generated). Normally we would expect the
former to be the one of most interest, since it is in angular (and flavour) distributions
of 4-jet events that the structure of QCD can be tested. Also note that the ‘correct’
running of ag is not included; you are expected to use the option where «y is just given
as a constant number.

The scalar gluon model is even more excluded than the Abelian vector one, since
differences appear already in the 3-jet matrix element |):

do ~ 3
dl’l dIg (1 —131)(1 —I'Q)

(42)

when only ~ exchange is included. The axial part of the Z° gives a slightly different
shape; this is included in the program but does not make much difference. The angular
orientation does include the full v*/Z° interference | |, but the main interest is in the
3-jet topology as such |]. No higher-order corrections are included. It is recommended
to use the option of a fixed ay also here, since the correct running is not available.

6.2 Decays of Onia Resonances

Many different possibilities are open for the decay of heavy JF¢ = 17~ onia resonances.
Of special interest are the decays into three gluons or two gluons plus a photon, since

75

these offer unique possibilities to study a ‘pure sample’ of gluon jets. A routine for this
purpose is included in the program. It was written at a time where the expectations were
to find toponium at PETRA energies. Given the large value of the top mass, weak decays
dominate, to the extent that the top quark decays weakly even before a bound toponium
state is formed, and thus the routine will be of no use for top. The charm system, on the
other hand, is far too low in mass for a jet language to be of any use. The only application
is therefore likely to be for T, which unfortunately also is on the low side in mass.
The matrix element for qq — ggg is (in lowest order) |]

1 doge 1 {(1—x1>2+<1—x2)2+(1—953)2} | (43)
Ogge Az dze 72 —9 ToX3 T123 112

where, as before, x; = 2E;/FE., in the c.m. frame of the event. This is a well-defined

expression, without the kind of singularities encountered in the qqg matrix elements. In

principle, no cuts at all would be necessary, but for reasons of numerical simplicity we

implement a y cut as for continuum jet production, with all events not fulfilling this cut

considered as (effective) gg events. For ggg events, each gg invariant mass is required to
be at least 2 GeV.

Another process is qq — ~vgg, obtained by replacing a gluon in qq — ggg by a photon.

This process has the same normalized cross section as the one above, if e.g. x; is taken to
refer to the photon. The relative rate is |]

Tyeg _ 36 €qQem (44)
Oggg 5 as(Q?)

Here e is the charge of the heavy quark, and the scale in a5 has been chosen as the mass
of the onium state. If the mass of the recoiling gg system is lower than some cut-off (by
default 2 GeV), the event is rejected.

In the present implementation the angular orientation of the ggg and ~gg events is
given for the ete™ — 4* — onium case | | (optionally with beam polarization effects
included), i.e. weak effects have not been included, since they are negligible at around
10 GeV.

It is possible to start a perturbative shower evolution from either of the two states
above. However, for T the phase space for additional evolution is so constrained that not
much is to be gained from that. We therefore do not recommend this possibility. The
shower generation machinery, when starting up from a ~gg configuration, is constructed
such that the photon energy is not changed. This means that there is currently no
possibility to use showers to bring the theoretical photon spectrum in better agreement
with the experimental one.

In string fragmentation language, a ggg state corresponds to a closed string triangle
with the three gluons at the corners. As the partons move apart from a common origin,
the string triangle expands. Since the photon does not take part in the fragmentation,
the vgg state corresponds to a double string running between the two gluons.

6.3 Routines and Common Block Variables
6.3.1 efe” continuum event generation

The only routine a normal user will call to generate ete™ continuum events is PYEEVT.
The other routines listed below, as well as PYSHOW (see section 10.4), are called by PYEEVT.

CALL PYEEVT(KFL,ECM)

76

Purpose: to generate a complete event ee™ — v*/Z% — ¢q — parton shower — hadrons
according to QFD and QCD cross sections. As an alternative to parton show-
ers, second-order matrix elements are available for qq + qqg + qqgg + qqq'q

production.
KFL : flavour of events generated.
=0 : mixture of all allowed flavours according to relevant probabilities.
= 1 - 8 : primary quarks are only of the specified flavour KFL.
ECM : total c.m. energy of system.

Remark: Each call generates one event, which is independent of preceding ones, with
one exception, as follows. If radiative corrections are included, the shape of
the hard photon spectrum is recalculated only with each PYXTEE call, which
normally is done only if KFL, ECM or MSTJ(102) is changed. A change of e.g.
the Z° mass in mid-run has to be followed either by a user call to PYXTEE or
by an internal call forced e.g. by putting MSTJ(116)=3.

SUBROUTINE PYXTEE(KFL,ECM,XTOT) : to calculate the total hadronic cross section, in-
cluding quark thresholds, weak, beam polarization, and QCD effects and ra-
diative corrections. In the process, variables necessary for the treatment of
hard photon radiation are calculated and stored.

KFL, ECM : as for PYEEVT.
XTQT : the calculated total cross section in nb.

SUBROUTINE PYRADK(ECM,VMK,PAK,THEK,PHIK,ALPK) : to describe initial-state hard ~
radiation.

SUBROUTINE PYXKFL(KFL,ECM,ECMC,KFLC) : to generate the primary quark flavour in
case this is not specified by you.

SUBROUTINE PYXJET(ECM,NJET,CUT) : to determine the number of jets (2, 3 or 4) to be
generated within the kinematically allowed region (characterized by CUT =)
in the matrix-element approach; to be chosen such that all probabilities are
between 0 and 1.

SUBROUTINE PYX3JT(NJET,CUT,KFL,ECM,X1,X2) : to generate the internal momentum
variables of a 3-jet event, qqg, according to first- or second-order QCD matrix
elements.

SUBROUTINE PYX4JT(NJET,CUT,KFL,ECM,KFLN,X1,X2,X4,X12,X14) : to generate the
internal momentum variables for a 4-jet event, qqgg or qqq’'q’, according to
second-order QCD matrix elements.

SUBROUTINE PYXDIF(NC,NJET,KFL,ECM,CHI,THE,PHI) : to describe the angular orien-
tation of the jets. In first-order QCD the complete QED or QFD formulae are
used; in second order 3-jets are assumed to have the same orientation as in
first, and 4-jets are approximated by 3-jets.

6.3.2 A routine for onium decay

In PYONIA we have implemented the decays of heavy onia resonances into three gluons or
two gluons plus a photon, which are the dominant non-background-like decays of T.

CALL PYONIA(KFL,ECM)

Purpose: to simulate the process efe™ — * — 17~ onium resonance — (ggg or ggvy) —
shower — hadrons.
KFL : the flavour of the quark giving rise to the resonance.
=0 : generate ggg events alone.
1 - 8 : generate ggg and ggvy events in mixture determined by the squared
charge of flavour KFL, see eq. (44). Normally KFL= 5.

7

ECM : total c.m. energy of system.

6.3.3 Common block variables

The status codes and parameters relevant for the ete™ routines are found in the com-
mon block PYDAT1. This common block also contains more general status codes and
parameters, described elsewhere.

COMMON/PYDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)

Purpose: to give access to a number of status codes and parameters regulating the
performance of the ete™ event generation routines.

MSTJ(101)
=0 :
=1
=2 :

Il
[
N

Il
|
w

]
|
NS

MSTJ(102)

: (D=b) gives the type of QCD corrections used for continuum events.

only qq events are generated.

qq + qqg events are generated according to first-order QCD.

qq + qag + qqge + qaqq’q events are generated according to second-order
QCD.

qq + qqg + qqgg + qqq’q’ events are generated, but without second-order
corrections to the 3-jet rate.

a parton shower is allowed to develop from an original qq pair, see
MSTJ(38) - MSTJ(50) for details.

only qqg events are generated (within same matrix-element cuts as for
=1). Since the change in flavour composition from mass cuts or radiative
corrections is not taken into account, this option is not intended for
quantitative studies.

only qqgg and qqq'q’ events are generated (as for =2). The same warning
as for =-1 applies.

only qqgg events are generated (as for =2). The same warning as for =-1
applies.

only qqq'q events are generated (as for =2). The same warning as for
=-1 applies.

MSTJ(101) is also used in PYONIA, with

ggg+ygg events are generated according to lowest-order matrix elements.
a parton shower is allowed to develop from the original ggg or ggv con-
figuration, see MSTJ(38) - MSTJ(50) for details.

The default values of fragmentation parameters have been chosen to
work well with the default parton-shower approach above. If any of
the other options are used, or if the parton shower is used in non-default
mode, it is normally necessary to retune fragmentation parameters. As
an example, we note that the second-order matrix-element approach
(MSTJ(101)=2) at PETRA/PEP energies gives a better description when
the a and b parameters of the symmetric fragmentation function are set
to a =PARJ(41)=1, b =PARJ(42)=0.7, and the width of the transverse
momentum distribution to ¢ =PARJ(21)=0.40. In principle, one also
ought to change the joining parameter to PARJ(33)=PARJ(35)=1.1 to
preserve a flat rapidity plateau, but if this should be forgotten, it does
not make too much difference. For applications at TRISTAN or LEP,
one has to change the matrix-element approach parameters even more,
to make up for additional soft gluon effects not covered in this approach.

: (D=2) inclusion of weak effects (Z° exchange) for flavour production, angu-

lar orientation, cross sections and initial-state photon radiation in continuum
events.

78

=1 : QED, i.e. no weak effects are included.
=2 : QFD, i.e. including weak effects.
=3 : as =2, but at initialization in PYXTEE the Z° width is calculated from
sin?fyy, e and Z° and quark masses (including bottom and top thresh-
old factors for MSTJ(103) odd), assuming three full generations, and the
result is stored in PARJ(124).
MSTJ(103) : (D=T7) mass effects in continuum matrix elements, in the form MSTJ(103)
= M +2Ms5+4Ms5, where M; = 0 if no mass effects and M; = 1 if mass effects
should be included. Here;

My threshold factor for new flavour production according to QFD result;

M, gluon emission probability (only applies for |[MSTJ(101) | < 1, otherwise
no mass effects anyhow);

M; angular orientation of event (only applies for [MSTJ(101)|< 1 and

MSTJ(102)=1, otherwise no mass effects anyhow).

MSTJ(104) : (D=5) number of allowed flavours, i.e. flavours that can be produced in a
continuum event if the energy is enough. A change to 6 makes top production
allowed above the threshold, etc. Note that in qqq’'q’ events only the first five
flavours are allowed in the secondary pair, produced by a gluon breakup.

MSTJ(105) : (D=1) fragmentation and decay in PYEEVT and PYONIA calls.

=0 : no PYEXEC calls, i.e. only matrix-element and/or parton-shower treat-
ment, and collapse of small jet systems into one or two particles (in
PYPREP).

=1: PYEXEC calls are made to generate fragmentation and decay chain.

= -1 : no PYEXEC calls and no collapse of small jet systems into one or two

particles (in PYPREP).
MSTJ(106) : (D=1) angular orientation in PYEEVT and PYONIA.
=0 : standard orientation of events, i.e. q along +z axis and q along —z axis
or in zz plane with p, > 0 for continuum events, and g;gsg3 or vgsgs in
xz plane with g; or v along the 4z axis for onium events.

=1 : random orientation according to matrix elements.
MSTJ(107) : (D=0) radiative corrections to continuum events.
=0 : no radiative corrections.
=1: initial-state radiative corrections (including weak effects for MSTJ (102) =
2 or 3).

MSTJ(108) : (D=2) calculation of ay for matrix-element alternatives. The MSTU(111)
and PARU(112) values are automatically overwritten in PYEEVT or PYONIA calls

accordingly.
=0 : fixed o value as given in PARU(111).
=1 : first-order formula is always used, with Aqcp given by PARJ(121).
=2 : first- or second-order formula is used, depending on value of MSTJ(101),

with AQCD given by PARJ(121) or PARJ(122).

MSTJ(109) : (D=0) gives a possibility to switch from QCD matrix elements to some
alternative toy models. Is not relevant for shower evolution, MSTJ(101)=5,
where one can use MSTJ(49) instead.

=0 : standard QCD scenario.

=1: a scalar gluon model. Since no second-order corrections are available in
this scenario, one can only use this with MSTJ(101) = 1 or -1. Also note
that the event-as-a-whole angular distribution is for photon exchange
only (i.e. no weak effects), and that no higher-order corrections to the
total cross section are included.

=2 : an Abelian vector gluon theory, with the colour factors Cp = 1 (= 4/3
in QCD), N¢ = 0 (= 3 in QCD) and Tk = 3ns (= ns/2 in QCD).
If one selects aapelian = (4/3)aqep, the 3-jet cross section will agree

79

MSTJ(110)

=1

MSTJ(111)

=0 :

=1

MSTJ(115)

=0 :

=1

MSTJ(116)

=0 :

1

2

=2 .
=3 :

with the QCD one, and differences are to be found only in 4-jets. The
MSTJ(109)=2 option has to be run with MSTJ(110)=1 and MSTJ(111)=0;
if need be, the latter variables will be overwritten by the program.
Warning: second-order corrections give a large negative contribution to
the 3-jet cross section, so large that the whole scenario is of doubtful use.
In order to make the second-order options work at all, the 3-jet cross
section is here by hand set exactly equal to zero for MSTJ(101)=2. It is
here probably better to use the option MSTJ(101)=3, although this is not
a consistent procedure either.

: (D=2) choice of second-order contributions to the 3-jet rate.

the GKS second-order matrix elements.

the Zhu parameterization of the ERT matrix elements, based on the pro-
gram of Kunszt and Alj, i.e. in historical sequence ERT /Kunszt/Ali/Zhu.
The parameterization is available for y = 0.01, 0.02, 0.03, 0.04 and 0.05.
Values outside this range are put at the nearest border, while those in-
side it are given by a linear interpolation between the two nearest points.
Since this procedure is rather primitive, one should try to work at one of
the values given above. Note that no Abelian QCD parameterization is
available for this option.

: (D=0) use of optimized perturbation theory for second-order matrix ele-
ments (it can also be used for first-order matrix elements, but here it only
corresponds to a trivial rescaling of the oy argument).

no optimization procedure; i.e. Q? = EZ .

an optimized Q? scale is chosen as Q* = fE? , where f =PARJ(128) for
the total cross section R factor, while f =PARJ(129) for the 3- and 4-jet
rates. This f value enters via the ag, and also via a term proportional
to a?In f. Some constraints are imposed; thus the optimized ‘3-jet’ con-
tribution to R is assumed to be positive (for PARJ(128)), the total 3-jet
rate is not allowed to be negative (for PARJ(129)), etc. However, there is
no guarantee that the differential 3-jet cross section is not negative (and
truncated to 0) somewhere (this can also happen with f = 1, but is then
less frequent). The actually obtained f values are stored in PARJ(168)
and PARJ(169), respectively. If an optimized Q? scale is used, then the
Aqep (and as) should also be changed. With the value f = 0.002, it
has been shown | | that a Agep = 0.100 GeV gives a reasonable
agreement; the parameter to be changed is PARJ(122) for a second-order
running . Note that, since the optimized Q? scale is sometimes below
the charm threshold, the effective number of flavours used in ag may well
be 4 only. If one feels that it is still appropriate to use 5 flavours (one
choice might be as good as the other), it is necessary to put MSTU(113)=5.

: (D=1) documentation of continuum or onium events, in increasing order of
completeness.

only the parton shower, the fragmenting partons and the generated
hadronic system are stored in the PYJETS common block.

also a radiative photon is stored (for continuum events).

also the original ete™ are stored (with K(I,1)=21).

also the 7 or v*/Z° exchanged for continuum events, the onium state for
resonance events is stored (with K(I,1)=21).

: (D=1) initialization of total cross section and radiative photon spectrum
in PYEEVT calls.

never; cannot be used together with radiative corrections.
calculated at first call and then whenever KFL or MSTJ(102) is changed
or ECM is changed by more than PARJ(139).

80

2 : calculated at each call.

=3: everything is re-initialized in the next call, but MSTJ(116) is afterwards

automatically put =1 for use in subsequent calls.

MSTJ(119) : (I) check on need to re-initialize PYXTEE.
MSTJ(120) : (R) type of continuum event generated with the matrix-element option
(with the shower one, the result is always =1).
: qq.
qqs.
qqgg from Abelian (QED-like) graphs in matrix element.
qqgg from non-Abelian (i.e. containing triple-gluon coupling) graphs in
matrix element.

=5 : qaq'q’.
MSTJ(121) : (R) flag set if a negative differential cross section was encountered in the
latest PYX3JT call. Events are still generated, but maybe not quite according
